JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Imaging of zebrafish in vivo with second-harmonic generation reveals shortened sarcomeres associated with myopathy induced by statin.
PLoS ONE
PUBLISHED: 06-05-2011
We employed second-harmonic generation (SHG) imaging and the zebrafish model to investigate the myopathy caused by statin in vivo with emphasis on the altered microstructures of the muscle sarcomere, the fundamental contractile element of muscles. This approach derives an advantage of SHG imaging to observe the striated skeletal muscle of living zebrafish based on signals produced mainly from the thick myosin filament of sarcomeres without employing exogenous labels, and eliminates concern about the distortion of muscle structures caused by sample preparation in conventional histological examination. The treatment with statin caused a significantly shortened sarcomere relative to an untreated control (1.73±0.09 µm vs 1.91±0.08 µm, P<0.05) while the morphological integrity of the muscle fibers remained largely intact. Mechanistic tests indicated that this microstructural disorder was associated with the biosynthetic pathway of cholesterol, or, specifically, with the impaired production of mevalonate by statins. This microstructural disorder exhibited a strong dependence on both the dosage and the duration of treatment, indicating a possibility to assess the severity of muscle injury according to the altered length of the sarcomeres. In contrast to a conventional assessment of muscle injury using clinical biomarkers in blood, such as creatine kinase that is released from only disrupted myocytes, the ability to determine microstructural modification of sarcomeres allows diagnosis of muscle injury before an onset of conventional clinical symptoms. In light of the increasing prevalence of the incidence of muscle injuries caused by new therapies, our work consolidates the combined use of the zebrafish and SHG imaging as an effective and sensitive means to evaluate the safety profile of new therapeutic targets in vivo.
Authors: Christopher J. Gaffney, Joseph J. Bass, Thomas F. Barratt, Nathaniel J. Szewczyk.
Published: 11-13-2014
ABSTRACT
Muscle is a dynamic tissue that responds to changes in nutrition, exercise, and disease state. The loss of muscle mass and function with disease and age are significant public health burdens. We currently understand little about the genetic regulation of muscle health with disease or age. The nematode C. elegans is an established model for understanding the genomic regulation of biological processes of interest. This worm’s body wall muscles display a large degree of homology with the muscles of higher metazoan species. Since C. elegans is a transparent organism, the localization of GFP to mitochondria and sarcomeres allows visualization of these structures in vivo. Similarly, feeding animals cationic dyes, which accumulate based on the existence of a mitochondrial membrane potential, allows the assessment of mitochondrial function in vivo. These methods, as well as assessment of muscle protein homeostasis, are combined with assessment of whole animal muscle function, in the form of movement assays, to allow correlation of sub-cellular defects with functional measures of muscle performance. Thus, C. elegans provides a powerful platform with which to assess the impact of mutations, gene knockdown, and/or chemical compounds upon muscle structure and function. Lastly, as GFP, cationic dyes, and movement assays are assessed non-invasively, prospective studies of muscle structure and function can be conducted across the whole life course and this at present cannot be easily investigated in vivo in any other organism.
22 Related JoVE Articles!
Play Button
Force Measurement During Contraction to Assess Muscle Function in Zebrafish Larvae
Authors: Darcée D. Sloboda, Dennis R. Claflin, James J. Dowling, Susan V. Brooks.
Institutions: University of Michigan , University of Michigan , University of Michigan , University of Michigan .
Zebrafish larvae provide models of muscle development, muscle disease and muscle-related chemical toxicity, but related studies often lack functional measures of muscle health. In this video article, we demonstrate a method to measure force generation during contraction of zebrafish larval trunk muscle. Force measurements are accomplished by placing an anesthetized larva into a chamber filled with a salt solution. The anterior end of the larva is tied to a force transducer and the posterior end of the larva is tied to a length controller. An isometric twitch contraction is elicited by electric field stimulation and the force response is recorded for analysis. Force generation during contraction provides a measure of overall muscle health and specifically provides a measure of muscle function. Although we describe this technique for use with wild-type larvae, this method can be used with genetically modified larvae or with larvae treated with drugs or toxicants, to characterize muscle disease models and evaluate treatments, or to study muscle development, injury, or chemical toxicity.
Developmental Biology, Issue 77, Anatomy, Physiology, Biophysics, Biomedical Engineering, Neurobiology, Neuroscience, Muscle, contraction, force, zebrafish, larvae, muscle function, muscle health, force generation, animal model
50539
Play Button
Evaluation of Muscle Function of the Extensor Digitorum Longus Muscle Ex vivo and Tibialis Anterior Muscle In situ in Mice
Authors: Chady H. Hakim, Nalinda B. Wasala, Dongsheng Duan.
Institutions: University of Missouri.
Body movements are mainly provided by mechanical function of skeletal muscle. Skeletal muscle is composed of numerous bundles of myofibers that are sheathed by intramuscular connective tissues. Each myofiber contains many myofibrils that run longitudinally along the length of the myofiber. Myofibrils are the contractile apparatus of muscle and they are composed of repeated contractile units known as sarcomeres. A sarcomere unit contains actin and myosin filaments that are spaced by the Z discs and titin protein. Mechanical function of skeletal muscle is defined by the contractile and passive properties of muscle. The contractile properties are used to characterize the amount of force generated during muscle contraction, time of force generation and time of muscle relaxation. Any factor that affects muscle contraction (such as interaction between actin and myosin filaments, homeostasis of calcium, ATP/ADP ratio, etc.) influences the contractile properties. The passive properties refer to the elastic and viscous properties (stiffness and viscosity) of the muscle in the absence of contraction. These properties are determined by the extracellular and the intracellular structural components (such as titin) and connective tissues (mainly collagen) 1-2. The contractile and passive properties are two inseparable aspects of muscle function. For example, elbow flexion is accomplished by contraction of muscles in the anterior compartment of the upper arm and passive stretch of muscles in the posterior compartment of the upper arm. To truly understand muscle function, both contractile and passive properties should be studied. The contractile and/or passive mechanical properties of muscle are often compromised in muscle diseases. A good example is Duchenne muscular dystrophy (DMD), a severe muscle wasting disease caused by dystrophin deficiency 3. Dystrophin is a cytoskeletal protein that stabilizes the muscle cell membrane (sarcolemma) during muscle contraction 4. In the absence of dystrophin, the sarcolemma is damaged by the shearing force generated during force transmission. This membrane tearing initiates a chain reaction which leads to muscle cell death and loss of contractile machinery. As a consequence, muscle force is reduced and dead myofibers are replaced by fibrotic tissues 5. This later change increases muscle stiffness 6. Accurate measurement of these changes provides important guide to evaluate disease progression and to determine therapeutic efficacy of novel gene/cell/pharmacological interventions. Here, we present two methods to evaluate both contractile and passive mechanical properties of the extensor digitorum longus (EDL) muscle and the contractile properties of the tibialis anterior (TA) muscle.
Medicine, Issue 72, Immunology, Microbiology, Anatomy, Physiology, Molecular Biology, Muscle, Skeletal, Neuromuscular Diseases, Drug Therapy, Gene Therapy, Musculoskeletal Diseases, Skeletal Muscle, Tibialis Anterior, Contractile Properties, Passive Properties, EDL, TA, animal model
50183
Play Button
Vascular Occlusion Training for Inclusion Body Myositis: A Novel Therapeutic Approach
Authors: Bruno Gualano, Carlos Ugrinowitsch, Manoel Neves Jr., Fernanda R. Lima, Ana Lúcia S. Pinto, Gilberto Laurentino, Valmor A.A. Tricoli, Antonio H. Lancha Jr., Hamilton Roschel.
Institutions: University of São Paulo, University of São Paulo.
Inclusion body myositis (IBM) is a rare idiopathic inflammatory myopathy. It is known to produces remarkable muscle weakness and to greatly compromise function and quality of life. Moreover, clinical practice suggests that, unlike other inflammatory myopathies, the majority of IBM patients are not responsive to treatment with immunosuppressive or immunomodulatory drugs to counteract disease progression1. Additionally, conventional resistance training programs have been proven ineffective in restoring muscle function and muscle mass in these patients2,3. Nevertheless, we have recently observed that restricting muscle blood flow using tourniquet cuffs in association with moderate intensity resistance training in an IBM patient produced a significant gain in muscle mass and function, along with substantial benefits in quality of life4. Thus, a new non-pharmacological approach for IBM patients has been proposed. Herein, we describe the details of a proposed protocol for vascular occlusion associated with a resistance training program for this population.
Medicine, Issue 40, exercise training, therapeutical, myositis, vascular occlusion
1894
Play Button
An in vivo Rodent Model of Contraction-induced Injury and Non-invasive Monitoring of Recovery
Authors: Richard M. Lovering, Joseph A. Roche, Mariah H. Goodall, Brett B. Clark, Alan McMillan.
Institutions: University of Maryland School of Medicine, University of Maryland School of Medicine, University of Maryland School of Medicine.
Muscle strains are one of the most common complaints treated by physicians. A muscle injury is typically diagnosed from the patient history and physical exam alone, however the clinical presentation can vary greatly depending on the extent of injury, the patient's pain tolerance, etc. In patients with muscle injury or muscle disease, assessment of muscle damage is typically limited to clinical signs, such as tenderness, strength, range of motion, and more recently, imaging studies. Biological markers, such as serum creatine kinase levels, are typically elevated with muscle injury, but their levels do not always correlate with the loss of force production. This is even true of histological findings from animals, which provide a "direct measure" of damage, but do not account for all the loss of function. Some have argued that the most comprehensive measure of the overall health of the muscle in contractile force. Because muscle injury is a random event that occurs under a variety of biomechanical conditions, it is difficult to study. Here, we describe an in vivo animal model to measure torque and to produce a reliable muscle injury. We also describe our model for measurement of force from an isolated muscle in situ. Furthermore, we describe our small animal MRI procedure.
Medicine, Issue 51, Skeletal muscle, lengthening contraction, injury, regeneration, contractile function, torque
2782
Play Button
Evaluation of Respiratory Muscle Activation Using Respiratory Motor Control Assessment (RMCA) in Individuals with Chronic Spinal Cord Injury
Authors: Sevda C. Aslan, Manpreet K. Chopra, William B. McKay, Rodney J. Folz, Alexander V. Ovechkin.
Institutions: University of Louisville, Shepherd Center, University of Louisville.
During breathing, activation of respiratory muscles is coordinated by integrated input from the brain, brainstem, and spinal cord. When this coordination is disrupted by spinal cord injury (SCI), control of respiratory muscles innervated below the injury level is compromised1,2 leading to respiratory muscle dysfunction and pulmonary complications. These conditions are among the leading causes of death in patients with SCI3. Standard pulmonary function tests that assess respiratory motor function include spirometrical and maximum airway pressure outcomes: Forced Vital Capacity (FVC), Forced Expiratory Volume in one second (FEV1), Maximal Inspiratory Pressure (PImax) and Maximal Expiratory Pressure (PEmax)4,5. These values provide indirect measurements of respiratory muscle performance6. In clinical practice and research, a surface electromyography (sEMG) recorded from respiratory muscles can be used to assess respiratory motor function and help to diagnose neuromuscular pathology. However, variability in the sEMG amplitude inhibits efforts to develop objective and direct measures of respiratory motor function6. Based on a multi-muscle sEMG approach to characterize motor control of limb muscles7, known as the voluntary response index (VRI)8, we developed an analytical tool to characterize respiratory motor control directly from sEMG data recorded from multiple respiratory muscles during the voluntary respiratory tasks. We have termed this the Respiratory Motor Control Assessment (RMCA)9. This vector analysis method quantifies the amount and distribution of activity across muscles and presents it in the form of an index that relates the degree to which sEMG output within a test-subject resembles that from a group of healthy (non-injured) controls. The resulting index value has been shown to have high face validity, sensitivity and specificity9-11. We showed previously9 that the RMCA outcomes significantly correlate with levels of SCI and pulmonary function measures. We are presenting here the method to quantitatively compare post-spinal cord injury respiratory multi-muscle activation patterns to those of healthy individuals.
Medicine, Issue 77, Anatomy, Physiology, Behavior, Neurobiology, Neuroscience, Spinal Cord Injuries, Pulmonary Disease, Chronic Obstructive, Motor Activity, Analytical, Diagnostic and Therapeutic Techniques and Equipment, Respiratory Muscles, Motor Control, Electromyography, Pulmonary Function Test, Spinal Cord Injury, SCI, clinical techniques
50178
Play Button
Analysis of Embryonic and Larval Zebrafish Skeletal Myofibers from Dissociated Preparations
Authors: Eric J. Horstick, Elizabeth M. Gibbs, Xingli Li, Ann E. Davidson, James J. Dowling.
Institutions: University of Michigan .
The zebrafish has proven to be a valuable model system for exploring skeletal muscle function and for studying human muscle diseases. Despite the many advantages offered by in vivo analysis of skeletal muscle in the zebrafish, visualizing the complex and finely structured protein milieu responsible for muscle function, especially in whole embryos, can be problematic. This hindrance stems from the small size of zebrafish skeletal muscle (60 μm) and the even smaller size of the sarcomere. Here we describe and demonstrate a simple and rapid method for isolating skeletal myofibers from zebrafish embryos and larvae. We also include protocols that illustrate post preparation techniques useful for analyzing muscle structure and function. Specifically, we detail the subsequent immunocytochemical localization of skeletal muscle proteins and the qualitative analysis of stimulated calcium release via live cell calcium imaging. Overall, this video article provides a straight-forward and efficient method for the isolation and characterization of zebrafish skeletal myofibers, a technique which provides a conduit for myriad subsequent studies of muscle structure and function.
Basic Protocol, Issue 81, Zebrafish, Neuromuscular Diseases, Muscular Diseases, Muscular Dystrophies, Primary Cell Culture, Immunohistochemistry (IHC), skeletal muscle, myofiber, live imaging
50259
Play Button
Production of Haploid Zebrafish Embryos by In Vitro Fertilization
Authors: Paul T. Kroeger Jr., Shahram Jevin Poureetezadi, Robert McKee, Jonathan Jou, Rachel Miceli, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish has become a mainstream vertebrate model that is relevant for many disciplines of scientific study. Zebrafish are especially well suited for forward genetic analysis of developmental processes due to their external fertilization, embryonic size, rapid ontogeny, and optical clarity – a constellation of traits that enable the direct observation of events ranging from gastrulation to organogenesis with a basic stereomicroscope. Further, zebrafish embryos can survive for several days in the haploid state. The production of haploid embryos in vitro is a powerful tool for mutational analysis, as it enables the identification of recessive mutant alleles present in first generation (F1) female carriers following mutagenesis in the parental (P) generation. This approach eliminates the necessity to raise multiple generations (F2, F3, etc.) which involves breeding of mutant families, thus saving the researcher time along with reducing the needs for zebrafish colony space, labor, and the husbandry costs. Although zebrafish have been used to conduct forward screens for the past several decades, there has been a steady expansion of transgenic and genome editing tools. These tools now offer a plethora of ways to create nuanced assays for next generation screens that can be used to further dissect the gene regulatory networks that drive vertebrate ontogeny. Here, we describe how to prepare haploid zebrafish embryos. This protocol can be implemented for novel future haploid screens, such as in enhancer and suppressor screens, to address the mechanisms of development for a broad number of processes and tissues that form during early embryonic stages.
Developmental Biology, Issue 89, zebrafish, haploid, in vitro fertilization, forward genetic screen, saturation, recessive mutation, mutagenesis
51708
Play Button
A Manual Small Molecule Screen Approaching High-throughput Using Zebrafish Embryos
Authors: Shahram Jevin Poureetezadi, Eric K. Donahue, Rebecca A. Wingert.
Institutions: University of Notre Dame.
Zebrafish have become a widely used model organism to investigate the mechanisms that underlie developmental biology and to study human disease pathology due to their considerable degree of genetic conservation with humans. Chemical genetics entails testing the effect that small molecules have on a biological process and is becoming a popular translational research method to identify therapeutic compounds. Zebrafish are specifically appealing to use for chemical genetics because of their ability to produce large clutches of transparent embryos, which are externally fertilized. Furthermore, zebrafish embryos can be easily drug treated by the simple addition of a compound to the embryo media. Using whole-mount in situ hybridization (WISH), mRNA expression can be clearly visualized within zebrafish embryos. Together, using chemical genetics and WISH, the zebrafish becomes a potent whole organism context in which to determine the cellular and physiological effects of small molecules. Innovative advances have been made in technologies that utilize machine-based screening procedures, however for many labs such options are not accessible or remain cost-prohibitive. The protocol described here explains how to execute a manual high-throughput chemical genetic screen that requires basic resources and can be accomplished by a single individual or small team in an efficient period of time. Thus, this protocol provides a feasible strategy that can be implemented by research groups to perform chemical genetics in zebrafish, which can be useful for gaining fundamental insights into developmental processes, disease mechanisms, and to identify novel compounds and signaling pathways that have medically relevant applications.
Developmental Biology, Issue 93, zebrafish, chemical genetics, chemical screen, in vivo small molecule screen, drug discovery, whole mount in situ hybridization (WISH), high-throughput screening (HTS), high-content screening (HCS)
52063
Play Button
Acute Brain Trauma in Mice Followed By Longitudinal Two-photon Imaging
Authors: Mikhail Paveliev, Mikhail Kislin, Dmitry Molotkov, Mikhail Yuryev, Heikki Rauvala, Leonard Khiroug.
Institutions: University of Helsinki.
Although acute brain trauma often results from head damage in different accidents and affects a substantial fraction of the population, there is no effective treatment for it yet. Limitations of currently used animal models impede understanding of the pathology mechanism. Multiphoton microscopy allows studying cells and tissues within intact animal brains longitudinally under physiological and pathological conditions. Here, we describe two models of acute brain injury studied by means of two-photon imaging of brain cell behavior under posttraumatic conditions. A selected brain region is injured with a sharp needle to produce a trauma of a controlled width and depth in the brain parenchyma. Our method uses stereotaxic prick with a syringe needle, which can be combined with simultaneous drug application. We propose that this method can be used as an advanced tool to study cellular mechanisms of pathophysiological consequences of acute trauma in mammalian brain in vivo. In this video, we combine acute brain injury with two preparations: cranial window and skull thinning. We also discuss advantages and limitations of both preparations for multisession imaging of brain regeneration after trauma.
Medicine, Issue 86, Trauma, Nervous System, animal models, Brain trauma, in vivo multiphoton microscopy, dendrite, astrocyte, microglia, second harmonic generation.
51559
Play Button
Quantification of the Respiratory Burst Response as an Indicator of Innate Immune Health in Zebrafish
Authors: Michelle F. Goody, Eric Peterman, Con Sullivan, Carol H. Kim.
Institutions: University of Maine.
The phagocyte respiratory burst is part of the innate immune response to pathogen infection and involves the production of reactive oxygen species (ROS). ROS are toxic and function to kill phagocytized microorganisms. In vivo quantification of phagocyte-derived ROS provides information regarding an organism's ability to mount a robust innate immune response. Here we describe a protocol to quantify and compare ROS in whole zebrafish embryos upon chemical induction of the phagocyte respiratory burst. This method makes use of a non-fluorescent compound that becomes fluorescent upon oxidation by ROS. Individual zebrafish embryos are pipetted into the wells of a microplate and incubated in this fluorogenic substrate with or without a chemical inducer of the respiratory burst. Fluorescence in each well is quantified at desired time points using a microplate reader. Fluorescence readings are adjusted to eliminate background fluorescence and then compared using an unpaired t-test. This method allows for comparison of the respiratory burst potential of zebrafish embryos at different developmental stages and in response to experimental manipulations such as protein knockdown, overexpression, or treatment with pharmacological agents. This method can also be used to monitor the respiratory burst response in whole dissected kidneys or cell preparations from kidneys of adult zebrafish and some other fish species. We believe that the relative simplicity and adaptability of this protocol will complement existing protocols and will be of interest to researchers who seek to better understand the innate immune response.
Immunology, Issue 79, Phagocytes, Immune System, Zebrafish, Reactive Oxygen Species, Immune System Processes, Host-Pathogen Interactions, Respiratory Burst, Immune System Phenomena, innate immunity, bacteria, virus, infection]
50667
Play Button
Bladder Smooth Muscle Strip Contractility as a Method to Evaluate Lower Urinary Tract Pharmacology
Authors: F. Aura Kullmann, Stephanie L. Daugherty, William C. de Groat, Lori A. Birder.
Institutions: University of Pittsburgh School of Medicine, University of Pittsburgh School of Medicine.
We describe an in vitro method to measure bladder smooth muscle contractility, and its use for investigating physiological and pharmacological properties of the smooth muscle as well as changes induced by pathology. This method provides critical information for understanding bladder function while overcoming major methodological difficulties encountered in in vivo experiments, such as surgical and pharmacological manipulations that affect stability and survival of the preparations, the use of human tissue, and/or the use of expensive chemicals. It also provides a way to investigate the properties of each bladder component (i.e. smooth muscle, mucosa, nerves) in healthy and pathological conditions. The urinary bladder is removed from an anesthetized animal, placed in Krebs solution and cut into strips. Strips are placed into a chamber filled with warm Krebs solution. One end is attached to an isometric tension transducer to measure contraction force, the other end is attached to a fixed rod. Tissue is stimulated by directly adding compounds to the bath or by electric field stimulation electrodes that activate nerves, similar to triggering bladder contractions in vivo. We demonstrate the use of this method to evaluate spontaneous smooth muscle contractility during development and after an experimental spinal cord injury, the nature of neurotransmission (transmitters and receptors involved), factors involved in modulation of smooth muscle activity, the role of individual bladder components, and species and organ differences in response to pharmacological agents. Additionally, it could be used for investigating intracellular pathways involved in contraction and/or relaxation of the smooth muscle, drug structure-activity relationships and evaluation of transmitter release. The in vitro smooth muscle contractility method has been used extensively for over 50 years, and has provided data that significantly contributed to our understanding of bladder function as well as to pharmaceutical development of compounds currently used clinically for bladder management.
Medicine, Issue 90, Krebs, species differences, in vitro, smooth muscle contractility, neural stimulation
51807
Play Button
Analysis of Oxidative Stress in Zebrafish Embryos
Authors: Vera Mugoni, Annalisa Camporeale, Massimo M. Santoro.
Institutions: University of Torino, Vesalius Research Center, VIB.
High levels of reactive oxygen species (ROS) may cause a change of cellular redox state towards oxidative stress condition. This situation causes oxidation of molecules (lipid, DNA, protein) and leads to cell death. Oxidative stress also impacts the progression of several pathological conditions such as diabetes, retinopathies, neurodegeneration, and cancer. Thus, it is important to define tools to investigate oxidative stress conditions not only at the level of single cells but also in the context of whole organisms. Here, we consider the zebrafish embryo as a useful in vivo system to perform such studies and present a protocol to measure in vivo oxidative stress. Taking advantage of fluorescent ROS probes and zebrafish transgenic fluorescent lines, we develop two different methods to measure oxidative stress in vivo: i) a “whole embryo ROS-detection method” for qualitative measurement of oxidative stress and ii) a “single-cell ROS detection method” for quantitative measurements of oxidative stress. Herein, we demonstrate the efficacy of these procedures by increasing oxidative stress in tissues by oxidant agents and physiological or genetic methods. This protocol is amenable for forward genetic screens and it will help address cause-effect relationships of ROS in animal models of oxidative stress-related pathologies such as neurological disorders and cancer.
Developmental Biology, Issue 89, Danio rerio, zebrafish embryos, endothelial cells, redox state analysis, oxidative stress detection, in vivo ROS measurements, FACS (fluorescence activated cell sorter), molecular probes
51328
Play Button
In Vivo Modeling of the Morbid Human Genome using Danio rerio
Authors: Adrienne R. Niederriter, Erica E. Davis, Christelle Golzio, Edwin C. Oh, I-Chun Tsai, Nicholas Katsanis.
Institutions: Duke University Medical Center, Duke University, Duke University Medical Center.
Here, we present methods for the development of assays to query potentially clinically significant nonsynonymous changes using in vivo complementation in zebrafish. Zebrafish (Danio rerio) are a useful animal system due to their experimental tractability; embryos are transparent to enable facile viewing, undergo rapid development ex vivo, and can be genetically manipulated.1 These aspects have allowed for significant advances in the analysis of embryogenesis, molecular processes, and morphogenetic signaling. Taken together, the advantages of this vertebrate model make zebrafish highly amenable to modeling the developmental defects in pediatric disease, and in some cases, adult-onset disorders. Because the zebrafish genome is highly conserved with that of humans (~70% orthologous), it is possible to recapitulate human disease states in zebrafish. This is accomplished either through the injection of mutant human mRNA to induce dominant negative or gain of function alleles, or utilization of morpholino (MO) antisense oligonucleotides to suppress genes to mimic loss of function variants. Through complementation of MO-induced phenotypes with capped human mRNA, our approach enables the interpretation of the deleterious effect of mutations on human protein sequence based on the ability of mutant mRNA to rescue a measurable, physiologically relevant phenotype. Modeling of the human disease alleles occurs through microinjection of zebrafish embryos with MO and/or human mRNA at the 1-4 cell stage, and phenotyping up to seven days post fertilization (dpf). This general strategy can be extended to a wide range of disease phenotypes, as demonstrated in the following protocol. We present our established models for morphogenetic signaling, craniofacial, cardiac, vascular integrity, renal function, and skeletal muscle disorder phenotypes, as well as others.
Molecular Biology, Issue 78, Genetics, Biomedical Engineering, Medicine, Developmental Biology, Biochemistry, Anatomy, Physiology, Bioengineering, Genomics, Medical, zebrafish, in vivo, morpholino, human disease modeling, transcription, PCR, mRNA, DNA, Danio rerio, animal model
50338
Play Button
Analysis of Skeletal Muscle Defects in Larval Zebrafish by Birefringence and Touch-evoke Escape Response Assays
Authors: Laura L. Smith, Alan H. Beggs, Vandana A. Gupta.
Institutions: Boston Children's Hospital, Harvard Medical School.
Zebrafish (Danio rerio) have become a particularly effective tool for modeling human diseases affecting skeletal muscle, including muscular dystrophies1-3, congenital myopathies4,5, and disruptions in sarcomeric assembly6,7, due to high genomic and structural conservation with mammals8. Muscular disorganization and locomotive impairment can be quickly assessed in the zebrafish over the first few days post-fertilization. Two assays to help characterize skeletal muscle defects in zebrafish are birefringence (structural) and touch-evoked escape response (behavioral). Birefringence is a physical property in which light is rotated as it passes through ordered matter, such as the pseudo-crystalline array of muscle sarcomeres9. It is a simple, noninvasive approach to assess muscle integrity in translucent zebrafish larvae early in development. Wild-type zebrafish with highly organized skeletal muscle appear very bright amidst a dark background when visualized between two polarized light filters, whereas muscle mutants have birefringence patterns specific to the primary muscular disorder they model. Zebrafish modeling muscular dystrophies, diseases characterized by myofiber degeneration followed by repeated rounds of regeneration, exhibit degenerative dark patches in skeletal muscle under polarized light. Nondystrophic myopathies are not associated with necrosis or regenerative changes, but result in disorganized myofibers and skeletal muscle weakness. Myopathic zebrafish typically show an overall reduction in birefringence, reflecting the disorganization of sarcomeres. The touch-evoked escape assay involves observing an embryo's swimming behavior in response to tactile stimulation10-12. In comparison to wild-type larvae, mutant larvae frequently display a weak escape contraction, followed by slow swimming or other type of impaired motion that fails to propel the larvae more than a short distance12. The advantage of these assays is that disease progression in the same fish type can be monitored in vivo for several days, and that large numbers of fish can be analyzed in a short time relative to higher vertebrates.
Physiology, Issue 82, birefringence, dystrophy, myopathy, touch-evoked escape, zebrafish, Danio rerio, microscopy
50925
Play Button
Analysis of Tubular Membrane Networks in Cardiac Myocytes from Atria and Ventricles
Authors: Eva Wagner, Sören Brandenburg, Tobias Kohl, Stephan E. Lehnart.
Institutions: Heart Research Center Goettingen, University Medical Center Goettingen, German Center for Cardiovascular Research (DZHK) partner site Goettingen, University of Maryland School of Medicine.
In cardiac myocytes a complex network of membrane tubules - the transverse-axial tubule system (TATS) - controls deep intracellular signaling functions. While the outer surface membrane and associated TATS membrane components appear to be continuous, there are substantial differences in lipid and protein content. In ventricular myocytes (VMs), certain TATS components are highly abundant contributing to rectilinear tubule networks and regular branching 3D architectures. It is thought that peripheral TATS components propagate action potentials from the cell surface to thousands of remote intracellular sarcoendoplasmic reticulum (SER) membrane contact domains, thereby activating intracellular Ca2+ release units (CRUs). In contrast to VMs, the organization and functional role of TATS membranes in atrial myocytes (AMs) is significantly different and much less understood. Taken together, quantitative structural characterization of TATS membrane networks in healthy and diseased myocytes is an essential prerequisite towards better understanding of functional plasticity and pathophysiological reorganization. Here, we present a strategic combination of protocols for direct quantitative analysis of TATS membrane networks in living VMs and AMs. For this, we accompany primary cell isolations of mouse VMs and/or AMs with critical quality control steps and direct membrane staining protocols for fluorescence imaging of TATS membranes. Using an optimized workflow for confocal or superresolution TATS image processing, binarized and skeletonized data are generated for quantitative analysis of the TATS network and its components. Unlike previously published indirect regional aggregate image analysis strategies, our protocols enable direct characterization of specific components and derive complex physiological properties of TATS membrane networks in living myocytes with high throughput and open access software tools. In summary, the combined protocol strategy can be readily applied for quantitative TATS network studies during physiological myocyte adaptation or disease changes, comparison of different cardiac or skeletal muscle cell types, phenotyping of transgenic models, and pharmacological or therapeutic interventions.
Bioengineering, Issue 92, cardiac myocyte, atria, ventricle, heart, primary cell isolation, fluorescence microscopy, membrane tubule, transverse-axial tubule system, image analysis, image processing, T-tubule, collagenase
51823
Play Button
Tissue Triage and Freezing for Models of Skeletal Muscle Disease
Authors: Hui Meng, Paul M.L. Janssen, Robert W. Grange, Lin Yang, Alan H. Beggs, Lindsay C. Swanson, Stacy A. Cossette, Alison Frase, Martin K. Childers, Henk Granzier, Emanuela Gussoni, Michael W. Lawlor.
Institutions: Medical College of Wisconsin, The Ohio State University, Virginia Tech, University of Kentucky, Boston Children's Hospital, Harvard Medical School, Cure Congenital Muscular Dystrophy, Joshua Frase Foundation, University of Washington, University of Arizona.
Skeletal muscle is a unique tissue because of its structure and function, which requires specific protocols for tissue collection to obtain optimal results from functional, cellular, molecular, and pathological evaluations. Due to the subtlety of some pathological abnormalities seen in congenital muscle disorders and the potential for fixation to interfere with the recognition of these features, pathological evaluation of frozen muscle is preferable to fixed muscle when evaluating skeletal muscle for congenital muscle disease. Additionally, the potential to produce severe freezing artifacts in muscle requires specific precautions when freezing skeletal muscle for histological examination that are not commonly used when freezing other tissues. This manuscript describes a protocol for rapid freezing of skeletal muscle using isopentane (2-methylbutane) cooled with liquid nitrogen to preserve optimal skeletal muscle morphology. This procedure is also effective for freezing tissue intended for genetic or protein expression studies. Furthermore, we have integrated our freezing protocol into a broader procedure that also describes preferred methods for the short term triage of tissue for (1) single fiber functional studies and (2) myoblast cell culture, with a focus on the minimum effort necessary to collect tissue and transport it to specialized research or reference labs to complete these studies. Overall, this manuscript provides an outline of how fresh tissue can be effectively distributed for a variety of phenotypic studies and thereby provides standard operating procedures (SOPs) for pathological studies related to congenital muscle disease.
Basic Protocol, Issue 89, Tissue, Freezing, Muscle, Isopentane, Pathology, Functional Testing, Cell Culture
51586
Play Button
Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney
Authors: Kristen K. McCampbell, Kristin N. Springer, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
Cellular Biology, Issue 90, zebrafish; kidney; nephron; nephrology; renal; regeneration; proximal tubule; distal tubule; segment; mesonephros; physiology; acute kidney injury (AKI)
51644
Play Button
Membrane Potentials, Synaptic Responses, Neuronal Circuitry, Neuromodulation and Muscle Histology Using the Crayfish: Student Laboratory Exercises
Authors: Brittany Baierlein, Alison L. Thurow, Harold L. Atwood, Robin L. Cooper.
Institutions: University of Kentucky, University of Toronto.
The purpose of this report is to help develop an understanding of the effects caused by ion gradients across a biological membrane. Two aspects that influence a cell's membrane potential and which we address in these experiments are: (1) Ion concentration of K+ on the outside of the membrane, and (2) the permeability of the membrane to specific ions. The crayfish abdominal extensor muscles are in groupings with some being tonic (slow) and others phasic (fast) in their biochemical and physiological phenotypes, as well as in their structure; the motor neurons that innervate these muscles are correspondingly different in functional characteristics. We use these muscles as well as the superficial, tonic abdominal flexor muscle to demonstrate properties in synaptic transmission. In addition, we introduce a sensory-CNS-motor neuron-muscle circuit to demonstrate the effect of cuticular sensory stimulation as well as the influence of neuromodulators on certain aspects of the circuit. With the techniques obtained in this exercise, one can begin to answer many questions remaining in other experimental preparations as well as in physiological applications related to medicine and health. We have demonstrated the usefulness of model invertebrate preparations to address fundamental questions pertinent to all animals.
Neuroscience, Issue 47, Invertebrate, Crayfish, neurophysiology, muscle, anatomy, electrophysiology
2322
Play Button
Ex Vivo Assessment of Contractility, Fatigability and Alternans in Isolated Skeletal Muscles
Authors: Ki Ho Park, Leticia Brotto, Oanh Lehoang, Marco Brotto, Jianjie Ma, Xiaoli Zhao.
Institutions: UMDNJ-Robert Wood Johnson Medical School, University of Missouri-Kansas City, Ohio State University .
Described here is a method to measure contractility of isolated skeletal muscles. Parameters such as muscle force, muscle power, contractile kinetics, fatigability, and recovery after fatigue can be obtained to assess specific aspects of the excitation-contraction coupling (ECC) process such as excitability, contractile machinery and Ca2+ handling ability. This method removes the nerve and blood supply and focuses on the isolated skeletal muscle itself. We routinely use this method to identify genetic components that alter the contractile property of skeletal muscle though modulating Ca2+ signaling pathways. Here, we describe a newly identified skeletal muscle phenotype, i.e., mechanic alternans, as an example of the various and rich information that can be obtained using the in vitro muscle contractility assay. Combination of this assay with single cell assays, genetic approaches and biochemistry assays can provide important insights into the mechanisms of ECC in skeletal muscle.
Physiology, Issue 69, extensor digitorum longus, soleus, in vitro contractility, calcium signaling, muscle-tendon complex, mechanic alternans
4198
Play Button
Paired Patch Clamp Recordings from Motor-neuron and Target Skeletal Muscle in Zebrafish
Authors: Hua Wen, Paul Brehm.
Institutions: Oregon Health and Sciences University.
Larval zebrafish represent the first vertebrate model system to allow simultaneous patch clamp recording from a spinal motor-neuron and target muscle. This is a direct consequence of the accessibility to both cell types and ability to visually distinguish the single segmental CaP motor-neuron on the basis of morphology and location. This video demonstrates the microscopic methods used to identify a CaP motor-neuron and target muscle cells as well as the methodologies for recording from each cell type. Identification of the CaP motor-neuron type is confirmed by either dye filling or by the biophysical features such as action potential waveform and cell input resistance. Motor-neuron recordings routinely last for one hour permitting long-term recordings from multiple different target muscle cells. Control over the motor-neuron firing pattern enables measurements of the frequency-dependence of synaptic transmission at the neuromuscular junction. Owing to a large quantal size and the low noise provided by whole cell voltage clamp, all of the unitary events can be resolved in muscle. This feature permits study of basic synaptic properties such as release properties, vesicle recycling, as well as synaptic depression and facilitation. The advantages offered by this in vivo preparation eclipse previous neuromuscular model systems studied wherein the motor-neurons are usually stimulated by extracellular electrodes and the muscles are too large for whole cell patch clamp. The zebrafish preparation is amenable to combining electrophysiological analysis with a wide range of approaches including transgenic lines, morpholino knockdown, pharmacological intervention and in vivo imaging. These approaches, coupled with the growing number of neuromuscular disease models provided by mutant lines of zebrafish, open the door for new understanding of human neuromuscular disorders.
Neuroscience, Issue 45, Zebrafish, synapse, electrophysiology, patch clamp, acetylcholine receptor, neuromuscular, cholinergic/action potential, myasthenic syndrome, motor control
2351
Play Button
Laser-inflicted Injury of Zebrafish Embryonic Skeletal Muscle
Authors: Cécile Otten, Salim Abdelilah-Seyfried.
Institutions: Max Delbrück Center for Molecular Medicine.
Various experimental approaches have been used in mouse to induce muscle injury with the aim to study muscle regeneration, including myotoxin injections (bupivacaine, cardiotoxin or notexin), muscle transplantations (denervation-devascularization induced regeneration), intensive exercise, but also murine muscular dystrophy models such as the mdx mouse (for a review of these approaches see 1). In zebrafish, genetic approaches include mutants that exhibit muscular dystrophy phenotypes (such as runzel2 or sapje3) and antisense oligonucleotide morpholinos that block the expression of dystrophy-associated genes4. Besides, chemical approaches are also possible, e.g. with Galanthamine, a chemical compound inhibiting acetylcholinesterase, thereby resulting in hypercontraction, which eventually leads to muscular dystrophy5. However, genetic and pharmacological approaches generally affect all muscles within an individual, whereas the extent of physically inflicted injuries are more easily controlled spatially and temporally1. Localized physical injury allows the assessment of contralateral muscle as an internal control. Indeed, we recently used laser-mediated cell ablation to study skeletal muscle regeneration in the zebrafish embryo6, while another group recently reported the use of a two-photon laser (822 nm) to damage very locally the plasma membrane of individual embryonic zebrafish muscle cells7. Here, we report a method for using the micropoint laser (Andor Technology) for skeletal muscle cell injury in the zebrafish embryo. The micropoint laser is a high energy laser which is suitable for targeted cell ablation at a wavelength of 435 nm. The laser is connected to a microscope (in our setup, an optical microscope from Zeiss) in such a way that the microscope can be used at the same time for focusing the laser light onto the sample and for visualizing the effects of the wounding (brightfield or fluorescence). The parameters for controlling laser pulses include wavelength, intensity, and number of pulses. Due to its transparency and external embryonic development, the zebrafish embryo is highly amenable for both laser-induced injury and for studying the subsequent recovery. Between 1 and 2 days post-fertilization, somitic skeletal muscle cells progressively undergo maturation from anterior to posterior due to the progression of somitogenesis from the trunk to the tail8, 9. At these stages, embryos spontaneously twitch and initiate swimming. The zebrafish has recently been recognized as an important vertebrate model organism for the study of tissue regeneration, as many types of tissues (cardiac, neuronal, vascular etc.) can be regenerated after injury in the adult zebrafish10, 11.
Developmental Biology, Issue 71, Anatomy, Physiology, Medicine, Molecular Biology, Cellular Biology, Biomedical Engineering, Genetics, Zebrafish, skeletal muscle, cell ablation, injury, regeneration, damage, laser pulses, tissue, embryos, Danio rerio, animal model
4351
Play Button
DNA Transfection of Mammalian Skeletal Muscles using In Vivo Electroporation
Authors: Marino DiFranco, Marbella Quinonez, Joana Capote, Julio Vergara.
Institutions: David Geffen School of Medicine, University of California, Los Angeles.
A growing interest in cell biology is to express transgenically modified forms of essential proteins (e.g. fluorescently tagged constructs and/or mutant variants) in order to investigate their endogenous distribution and functional relevance. An interesting approach that has been implemented to fulfill this objective in fully differentiated cells is the in vivo transfection of plasmids by various methods into specific tissues such as liver1, skeletal muscle2,3, and even the brain4. We present here a detailed description of the steps that must be followed in order to efficiently transfect genetic material into fibers of the flexor digitorum brevis (FDB) and interosseus (IO) muscles of adult mice using an in vivo electroporation approach. The experimental parameters have been optimized so as to maximize the number of muscle fibers transfected while minimizing tissue damages that may impair the quality and quantity of the proteins expressed in individual fibers. We have verified that the implementation of the methodology described in this paper results in a high yield of soluble proteins, i.e. EGFP and ECFP3, calpain, FKBP12, β2a-DHPR, etc. ; structural proteins, i.e. minidystrophin and α-actinin; and membrane proteins, i.e. α1s-DHPR, RyR1, cardiac Na/Ca2+ exchanger , NaV1.4 Na channel, SERCA1, etc., when applied to FDB, IO and other muscles of mice and rats. The efficient expression of some of these proteins has been verified with biochemical3 and functional evidence5. However, by far the most common confirmatory approach used by us are standard fluorescent microscopy and 2-photon laser scanning microscopy (TPLSM), which permit to identify not only the overall expression, but also the detailed intracellular localization, of fluorescently tagged protein constructs. The method could be equally used to transfect plasmids encoding for the expression of proteins of physiological relevance (as shown here), or for interference RNA (siRNA) aiming to suppress the expression of normally expressed proteins (not tested by us yet). It should be noted that the transfection of FDB and IO muscle fibers is particularly relevant for the investigation of mammalian muscle physiology since fibers enzymatically dissociated from these muscles are currently one of the most suitable models to investigate basic mechanisms of excitability and excitation-contraction coupling under current or voltage clamp conditions2,6-8.
Cellular Biology, Issue 32, electroporation, skeletal muscle, plasmids, protein expression, mouse, two-photon microscopy, fluorescence, transgenic
1520
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.