JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Effect of acute Plasmodium falciparum malaria on reactivation and shedding of the eight human herpes viruses.
PUBLISHED: 05-25-2011
Human herpes viruses (HHVs) are widely distributed pathogens. In immuno-competent individuals their clinical outcomes are generally benign but in immuno-compromised hosts, primary infection or extensive viral reactivation can lead to critical diseases. Plasmodium falciparum malaria profoundly affects the host immune system. In this retrospective study, we evaluated the direct effect of acute P. falciparum infection on reactivation and shedding of all known human herpes viruses (HSV-1, HSV-2, VZV, EBV, CMV, HHV-6, HHV-7, HHV-8). We monitored their presence by real time PCR in plasma and saliva of Ugandan children with malaria at the day of admission to the hospital (day-0) and 14 days later (after treatment), or in children with mild infections unrelated to malaria. For each child screened in this study, at least one type of HHV was detected in the saliva. HHV-7 and HHV-6 were detected in more than 70% of the samples and CMV in approximately half. HSV-1, HSV-2, VZV and HHV-8 were detected at lower frequency. During salivary shedding the highest mean viral load was observed for HSV-1 followed by EBV, HHV-7, HHV-6, CMV and HHV-8. After anti-malarial treatment the salivary HSV-1 levels were profoundly diminished or totally cleared. Similarly, four children with malaria had high levels of circulating EBV at day-0, levels that were cleared after anti-malarial treatment confirming the association between P. falciparum infection and EBV reactivation. This study shows that acute P. falciparum infection can contribute to EBV reactivation in the blood and HSV-1 reactivation in the oral cavity. Taken together our results call for further studies investigating the potential clinical implications of HHVs reactivation in children suffering from malaria.
Authors: Guadalupe Andreani, Dominic Gagnon, Robert Lodge, Michel J. Tremblay, Dave Richard.
Published: 08-15-2012
Plasmodium falciparum, the causative agent of the deadliest form of malaria, and human immunodeficiency virus type-1 (HIV-1) are among the most important health problems worldwide, being responsible for a total of 4 million deaths annually1. Due to their extensive overlap in developing regions, especially Sub-Saharan Africa, co-infections with malaria and HIV-1 are common, but the interplay between the two diseases is poorly understood. Epidemiological reports have suggested that malarial infection transiently enhances HIV-1 replication and increases HIV-1 viral load in co-infected individuals2,3. Because this viremia stays high for several weeks after treatment with antimalarials, this phenomenon could have an impact on disease progression and transmission. The cellular immunological mechanisms behind these observations have been studied only scarcely. The few in vitro studies investigating the impact of malaria on HIV-1 have demonstrated that exposure to soluble malarial antigens can increase HIV-1 infection and reactivation in immune cells. However, these studies used whole cell extracts of P. falciparum schizont stage parasites and peripheral blood mononuclear cells (PBMC), making it hard to decipher which malarial component(s) was responsible for the observed effects and what the target host cells were4,5. Recent work has demonstrated that exposure of immature monocyte-derived dendritic cells to the malarial pigment hemozoin increased their ability to transfer HIV-1 to CD4+ T cells6,7, but that it decreased HIV-1 infection of macrophages8. To shed light on this complex process, a systematic analysis of the interactions between the malaria parasite and HIV-1 in different relevant human primary cell populations is critically needed. Several techniques for investigating the impact of HIV-1 on the phagocytosis of micro-organisms and the effect of such pathogens on HIV-1 replication have been described. We here present a method to investigate the effects of P. falciparum-infected erythrocytes on the replication of HIV-1 in human primary monocyte-derived macrophages. The impact of parasite exposure on HIV-1 transcriptional/translational events is monitored by using single cycle pseudotyped viruses in which a luciferase reporter gene has replaced the Env gene while the effect on the quantity of virus released by the infected macrophages is determined by measuring the HIV-1 capsid protein p24 by ELISA in cell supernatants.
19 Related JoVE Articles!
Play Button
A Primary Neuron Culture System for the Study of Herpes Simplex Virus Latency and Reactivation
Authors: Mariko Kobayashi, Ju-Youn Kim, Vladimir Camarena, Pamela C. Roehm, Moses V. Chao, Angus C. Wilson, Ian Mohr.
Institutions: New York University School of Medicine, New York University School of Medicine, New York University School of Medicine, New York University School of Medicine, New York University School of Medicine, New York University School of Medicine, New York University School of Medicine.
Herpes simplex virus type-1 (HSV-1) establishes a life-long latent infection in peripheral neurons. This latent reservoir is the source of recurrent reactivation events that ensure transmission and contribute to clinical disease. Current antivirals do not impact the latent reservoir and there are no vaccines. While the molecular details of lytic replication are well-characterized, mechanisms controlling latency in neurons remain elusive. Our present understanding of latency is derived from in vivo studies using small animal models, which have been indispensable for defining viral gene requirements and the role of immune responses. However, it is impossible to distinguish specific effects on the virus-neuron relationship from more general consequences of infection mediated by immune or non-neuronal support cells in live animals. In addition, animal experimentation is costly, time-consuming, and limited in terms of available options for manipulating host processes. To overcome these limitations, a neuron-only system is desperately needed that reproduces the in vivo characteristics of latency and reactivation but offers the benefits of tissue culture in terms of homogeneity and accessibility. Here we present an in vitro model utilizing cultured primary sympathetic neurons from rat superior cervical ganglia (SCG) (Figure 1) to study HSV-1 latency and reactivation that fits most if not all of the desired criteria. After eliminating non-neuronal cells, near-homogeneous TrkA+ neuron cultures are infected with HSV-1 in the presence of acyclovir (ACV) to suppress lytic replication. Following ACV removal, non-productive HSV-1 infections that faithfully exhibit accepted hallmarks of latency are efficiently established. Notably, lytic mRNAs, proteins, and infectious virus become undetectable, even in the absence of selection, but latency-associated transcript (LAT) expression persists in neuronal nuclei. Viral genomes are maintained at an average copy number of 25 per neuron and can be induced to productively replicate by interfering with PI3-Kinase / Akt signaling or the simple withdrawal of nerve growth factor1. A recombinant HSV-1 encoding EGFP fused to the viral lytic protein Us11 provides a functional, real-time marker for replication resulting from reactivation that is readily quantified. In addition to chemical treatments, genetic methodologies such as RNA-interference or gene delivery via lentiviral vectors can be successfully applied to the system permitting mechanistic studies that are very difficult, if not impossible, in animals. In summary, the SCG-based HSV-1 latency / reactivation system provides a powerful, necessary tool to unravel the molecular mechanisms controlling HSV1 latency and reactivation in neurons, a long standing puzzle in virology whose solution may offer fresh insights into developing new therapies that target the latent herpesvirus reservoir.
Immunology, Issue 62, neuron cell culture, Herpes Simplex Virus (HSV), molecular biology, virology
Play Button
Separation of Plasmodium falciparum Late Stage-infected Erythrocytes by Magnetic Means
Authors: Lorena Michelle Coronado, Nicole Michelle Tayler, Ricardo Correa, Rita Marissa Giovani, Carmenza Spadafora.
Institutions: Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Acharya Nagarjuna University, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP).
Unlike other Plasmodium species, P. falciparum can be cultured in the lab, which facilitates its study 1. While the parasitemia achieved can reach the ≈40% limit, the investigator usually keeps the percentage at around 10%. In many cases it is necessary to isolate the parasite-containing red blood cells (RBCs) from the uninfected ones, to enrich the culture and proceed with a given experiment. When P. falciparum infects the erythrocyte, the parasite degrades and feeds from haemoglobin 2, 3. However, the parasite must deal with a very toxic iron-containing haem moiety 4, 5. The parasite eludes its toxicity by transforming the haem into an inert crystal polymer called haemozoin 6, 7. This iron-containing molecule is stored in its food vacuole and the metal in it has an oxidative state which differs from the one in haem 8. The ferric state of iron in the haemozoin confers on it a paramagnetic property absent in uninfected erythrocytes. As the invading parasite reaches maturity, the content of haemozoin also increases 9, which bestows even more paramagnetism on the latest stages of P. falciparum inside the erythrocyte. Based on this paramagnetic property, the latest stages of P. falciparum infected-red blood cells can be separated by passing the culture through a column containing magnetic beads. These beads become magnetic when the columns containing them are placed on a magnet holder. Infected RBCs, due to their paramagnetism, will then be trapped inside the column, while the flow-through will contain, for the most part, uninfected erythrocytes and those containing early stages of the parasite. Here, we describe the methodology to enrich the population of late stage parasites with magnetic columns, which maintains good parasite viability 10. After performing this procedure, the unattached culture can be returned to an incubator to allow the remaining parasites to continue growing.
Infection, Issue 73, Infectious Diseases, Molecular Biology, Cellular Biology, Immunology, Medicine, Parasitology, Plasmodium falciparum, Cell Culture Techniques, Hemozoin, Magnetic Beads, Schizont Purification, paramagnetism, erythrocytes, red blood cells, malaria, parasitemia, parasites, isolation, cell culture
Play Button
Protocol for Production of a Genetic Cross of the Rodent Malaria Parasites
Authors: Sittiporn Pattaradilokrat, Jian Li, Xin-zhuan Su.
Institutions: National Institutes of Health, Xiamen University.
Variation in response to antimalarial drugs and in pathogenicity of malaria parasites is of biologic and medical importance. Linkage mapping has led to successful identification of genes or loci underlying various traits in malaria parasites of rodents1-3 and humans4-6. The malaria parasite Plasmodium yoelii is one of many malaria species isolated from wild African rodents and has been adapted to grow in laboratories. This species reproduces many of the biologic characteristics of the human malaria parasites; genetic markers such as microsatellite and amplified fragment length polymorphism (AFLP) markers have also been developed for the parasite7-9. Thus, genetic studies in rodent malaria parasites can be performed to complement research on Plasmodium falciparum. Here, we demonstrate the techniques for producing a genetic cross in P. yoelii that were first pioneered by Drs. David Walliker, Richard Carter, and colleagues at the University of Edinburgh10. Genetic crosses in P. yoelii and other rodent malaria parasites are conducted by infecting mice Mus musculus with an inoculum containing gametocytes of two genetically distinct clones that differ in phenotypes of interest and by allowing mosquitoes to feed on the infected mice 4 days after infection. The presence of male and female gametocytes in the mouse blood is microscopically confirmed before feeding. Within 48 hrs after feeding, in the midgut of the mosquito, the haploid gametocytes differentiate into male and female gametes, fertilize, and form a diploid zygote (Fig. 1). During development of a zygote into an ookinete, meiosis appears to occur11. If the zygote is derived through cross-fertilization between gametes of the two genetically distinct parasites, genetic exchanges (chromosomal reassortment and cross-overs between the non-sister chromatids of a pair of homologous chromosomes; Fig. 2) may occur, resulting in recombination of genetic material at homologous loci. Each zygote undergoes two successive nuclear divisions, leading to four haploid nuclei. An ookinete further develops into an oocyst. Once the oocyst matures, thousands of sporozoites (the progeny of the cross) are formed and released into mosquito hemoceal. Sporozoites are harvested from the salivary glands and injected into a new murine host, where pre-erythrocytic and erythrocytic stage development takes place. Erythrocytic forms are cloned and classified with regard to the characters distinguishing the parental lines prior to genetic linkage mapping. Control infections of individual parental clones are performed in the same way as the production of a genetic cross.
Infectious Disease, Issue 47, Genetic cross, genetic mapping, malaria, rodent
Play Button
Analysis of Single-cell Gene Transcription by RNA Fluorescent In Situ Hybridization (FISH)
Authors: Elena Ronander, Dominique C. Bengtsson, Louise Joergensen, Anja T. R. Jensen, David E. Arnot.
Institutions: University of Copenhagen, Copenhagen University Hospital (Rigshospitalet), University of Edinburgh .
Adhesion of Plasmodium falciparum infected erythrocytes (IE) to human endothelial receptors during malaria infections is mediated by expression of PfEMP1 protein variants encoded by the var genes. The haploid P. falciparum genome harbors approximately 60 different var genes of which only one has been believed to be transcribed per cell at a time during the blood stage of the infection. How such mutually exclusive regulation of var gene transcription is achieved is unclear, as is the identification of individual var genes or sub-groups of var genes associated with different receptors and the consequence of differential binding on the clinical outcome of P. falciparum infections. Recently, the mutually exclusive transcription paradigm has been called into doubt by transcription assays based on individual P. falciparum transcript identification in single infected erythrocytic cells using RNA fluorescent in situ hybridization (FISH) analysis of var gene transcription by the parasite in individual nuclei of P. falciparum IE1. Here, we present a detailed protocol for carrying out the RNA-FISH methodology for analysis of var gene transcription in single-nuclei of P. falciparum infected human erythrocytes. The method is based on the use of digoxigenin- and biotin- labeled antisense RNA probes using the TSA Plus Fluorescence Palette System2 (Perkin Elmer), microscopic analyses and freshly selected P. falciparum IE. The in situ hybridization method can be used to monitor transcription and regulation of a variety of genes expressed during the different stages of the P. falciparum life cycle and is adaptable to other malaria parasite species and other organisms and cell types.
Genetics, Issue 68, Infectious Diseases, Immunology, Molecular Biology, nuclei, transcription, var genes, PfEMP1, infected erythrocytes (IE), Plasmodium falciparum, fluorescent in situ hybridization (FISH)
Play Button
Protocol for Dengue Infections in Mosquitoes (A. aegypti) and Infection Phenotype Determination
Authors: Suchismita Das, Lindsey Garver, Jose Ruiz Ramirez, Zhiyong Xi, George Dimopoulos.
Institutions: Johns Hopkins University.
The purpose of this procedure is to infect the Aedes mosquito with dengue virus in a laboratory condition and examine the infection level and dynamic of the virus in the mosquito tissues. This protocol is routinely used for studying mosquito-virus interactions, especially for identification of novel host factors that are able to determine vector competence. The entire experiment must be conducted in a BSL2 laboratory. Similar to Plasmodium falciparum infections, proper attire including gloves and lab coat must be worn at all times. After the experiment, all the materials that came in contact with the virus need to be treated with 75% ethanol and bleached before proceeding with normal washing. All other materials need to be autoclaved before discarding them.
Cellular Biology, Issue 5, mosquito, dengue, fever, infectious disease
Play Button
Generation of Multivirus-specific T Cells to Prevent/treat Viral Infections after Allogeneic Hematopoietic Stem Cell Transplant
Authors: Ulrike Gerdemann, Juan F. Vera, Cliona M. Rooney, Ann M. Leen.
Institutions: Baylor College of Medicine.
Viral infections cause morbidity and mortality in allogeneic hematopoietic stem cell transplant (HSCT) recipients. We and others have successfully generated and infused T-cells specific for Epstein Barr virus (EBV), cytomegalovirus (CMV) and Adenovirus (Adv) using monocytes and EBV-transformed lymphoblastoid cell (EBV-LCL) gene-modified with an adenovirus vector as antigen presenting cells (APCs). As few as 2x105/kg trivirus-specific cytotoxic T lymphocytes (CTL) proliferated by several logs after infusion and appeared to prevent and treat even severe viral disease resistant to other available therapies. The broader implementation of this encouraging approach is limited by high production costs, complexity of manufacture and the prolonged time (4-6 weeks for EBV-LCL generation, and 4-8 weeks for CTL manufacture – total 10-14 weeks) for preparation. To overcome these limitations we have developed a new, GMP-compliant CTL production protocol. First, in place of adenovectors to stimulate T-cells we use dendritic cells (DCs) nucleofected with DNA plasmids encoding LMP2, EBNA1 and BZLF1 (EBV), Hexon and Penton (Adv), and pp65 and IE1 (CMV) as antigen-presenting cells. These APCs reactivate T cells specific for all the stimulating antigens. Second, culture of activated T-cells in the presence of IL-4 (1,000U/ml) and IL-7 (10ng/ml) increases and sustains the repertoire and frequency of specific T cells in our lines. Third, we have used a new, gas permeable culture device (G-Rex) that promotes the expansion and survival of large cell numbers after a single stimulation, thus removing the requirement for EBV-LCLs and reducing technician intervention. By implementing these changes we can now produce multispecific CTL targeting EBV, CMV, and Adv at a cost per 106 cells that is reduced by >90%, and in just 10 days rather than 10 weeks using an approach that may be extended to additional protective viral antigens. Our FDA-approved approach should be of value for prophylactic and treatment applications for high risk allogeneic HSCT recipients.
Immunology, Issue 51, T cells, immunotherapy, viral infections, nucleofection, plasmids, G-Rex culture device
Play Button
Ex Vivo Organotypic Corneal Model of Acute Epithelial Herpes Simplex Virus Type I Infection
Authors: Oleg Alekseev, Anh H. Tran, Jane Azizkhan-Clifford.
Institutions: Drexel University College of Medicine.
Herpes keratitis is one of the most severe pathologies associated with the herpes simplex virus-type 1 (HSV-1). Herpes keratitis is currently the leading cause of both cornea-derived and infection-associated blindness in the developed world. Typical presentation of herpes keratitis includes infection of the corneal epithelium and sometimes the deeper corneal stroma and endothelium, leading to such permanent corneal pathologies as scarring, thinning, and opacity 1. Corneal HSV-1 infection is traditionally studied in two types of experimental models. The in vitro model, in which cultured monolayers of corneal epithelial cells are infected in a Petri dish, offers simplicity, high level of replicability, fast experiments, and relatively low costs. On the other hand, the in vivo model, in which animals such as rabbits or mice are inoculated directly in the cornea, offers a highly sophisticated physiological system, but has higher costs, longer experiments, necessary animal care, and a greater degree of variability. In this video article, we provide a detailed demonstration of a new ex vivo model of corneal epithelial HSV-1 infection, which combines the strengths of both the in vitro and the in vivo models. The ex vivo model utilizes intact corneas organotypically maintained in culture and infected with HSV-1. The use of the ex vivo model allows for highly physiologically-based conclusions, yet it is rather inexpensive and requires time commitment comparable to that of the in vitro model.
Neuroscience, Issue 69, Virology, herpes, cornea, HSV, ex vivo, explant, corneal epithelium, organotypic, keratitis, eye, vision, ophthalmology
Play Button
Isolation and Analysis of Brain-sequestered Leukocytes from Plasmodium berghei ANKA-infected Mice
Authors: Victoria Ryg-Cornejo, Lisa J. Ioannidis, Diana S. Hansen.
Institutions: The Walter and Eliza Hall Institute of Medical Research.
We describe a method for isolation and characterization of adherent inflammatory cells from brain blood vessels of P. berghei ANKA-infected mice. Infection of susceptible mouse-strains with this parasite strain results in the induction of experimental cerebral malaria, a neurologic syndrome that recapitulates certain important aspects of Plasmodium falciparum-mediated severe malaria in humans 1,2 . Mature forms of blood-stage malaria express parasitic proteins on the surface of the infected erythrocyte, which allows them to bind to vascular endothelial cells. This process induces obstructions in blood flow, resulting in hypoxia and haemorrhages 3 and also stimulates the recruitment of inflammatory leukocytes to the site of parasite sequestration. Unlike other infections, i.e neutrotopic viruses4-6, both malaria-parasitized red blood cells (pRBC) as well as associated inflammatory leukocytes remain sequestered within blood vessels rather than infiltrating the brain parenchyma. Thus to avoid contamination of sequestered leukocytes with non-inflammatory circulating cells, extensive intracardial perfusion of infected-mice prior to organ extraction and tissue processing is required in this procedure to remove the blood compartment. After perfusion, brains are harvested and dissected in small pieces. The tissue structure is further disrupted by enzymatic treatment with Collagenase D and DNAse I. The resulting brain homogenate is then centrifuged on a Percoll gradient that allows separation of brain-sequestered leukocytes (BSL) from myelin and other tissue debris. Isolated cells are then washed, counted using a hemocytometer and stained with fluorescent antibodies for subsequent analysis by flow cytometry. This procedure allows comprehensive phenotypic characterization of inflammatory leukocytes migrating to the brain in response to various stimuli, including stroke as well as viral or parasitic infections. The method also provides a useful tool for assessment of novel anti-inflammatory treatments in pre-clinical animal models.
Immunology, Issue 71, Infection, Infectious Diseases, Pathology, Hematology, Molecular Biology, Cellular Biology, Mouse, Brain, Intravascular inflammation, leukocytes, Plasmodium berghei, parasite, malaria, animal model, flow cytometry
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
Play Button
Development of an IFN-γ ELISpot Assay to Assess Varicella-Zoster Virus-specific Cell-mediated Immunity Following Umbilical Cord Blood Transplantation
Authors: Insaf Salem Fourati, Anne-Julie Grenier, Élyse Jolette, Natacha Merindol, Philippe Ovetchkine, Hugo Soudeyns.
Institutions: Université de Montréal, Université de Montréal, Université de Montréal.
Varicella zoster virus (VZV) is a significant cause of morbidity and mortality following umbilical cord blood transplantation (UCBT). For this reason, antiherpetic prophylaxis is administrated systematically to pediatric UCBT recipients to prevent complications associated with VZV infection, but there is no strong, evidence based consensus that defines its optimal duration. Because T cell mediated immunity is responsible for the control of VZV infection, assessing the reconstitution of VZV specific T cell responses following UCBT could provide indications as to whether prophylaxis should be maintained or can be discontinued. To this end, a VZV specific gamma interferon (IFN-γ) enzyme-linked immunospot (ELISpot) assay was developed to characterize IFN-γ production by T lymphocytes in response to in vitro stimulation with irradiated live attenuated VZV vaccine. This assay provides a rapid, reproducible and sensitive measurement of VZV specific cell mediated immunity suitable for monitoring the reconstitution of VZV specific immunity in a clinical setting and assessing immune responsiveness to VZV antigens.  
Immunology, Issue 89, Varicella zoster virus, cell-mediated immunity, T cells, interferon gamma, ELISpot, umbilical cord blood transplantation
Play Button
Use of In vivo Imaging to Monitor the Progression of Experimental Mouse Cytomegalovirus Infection in Neonates
Authors: Eleonore Ostermann, Cécile Macquin, Seiamak Bahram, Philippe Georgel.
Institutions: Université de Strasbourg.
Human Cytomegalovirus (HCMV or HHV-5) is a life-threatening pathogen in immune-compromised individuals. Upon congenital or neonatal infection, the virus can infect and replicate in the developing brain, which may induce severe neurological damage, including deafness and mental retardation. Despite the potential severity of the symptoms, the therapeutic options are limited by the unavailability of a vaccine and the absence of a specific antiviral therapy. Furthermore, a precise description of the molecular events occurring during infection of the central nervous system (CNS) is still lacking since observations mostly derive from the autopsy of infected children. Several animal models, such as rhesus macaque CMV, have been developed and provided important insights into CMV pathogenesis in the CNS. However, despite its evolutionary proximity with humans, this model was limited by the intracranial inoculation procedure used to infect the animals and consistently induce CNS infection. Furthermore, ethical considerations have promoted the development of alternative models, among which neonatal infection of newborn mice with mouse cytomegalovirus (MCMV) has recently led to significant advances. For instance, it was reported that intraperitoneal injection of MCMV to Balb/c neonates leads to infection of neurons and glial cells in specific areas of the brain. These findings suggested that experimental inoculation of mice might recapitulate the deficits induced by HCMV infection in children. Nevertheless, a dynamic analysis of MCMV infection of neonates is difficult to perform because classical methodology requires the sacrifice of a significant number of animals at different time points to analyze the viral burden and/or immune-related parameters. To circumvent this bottleneck and to enable future investigations of rare mutant animals, we applied in vivo imaging technology to perform a time-course analysis of the viral dissemination in the brain upon peripheral injection of a recombinant MCMV expressing luciferase to C57Bl/6 neonates.
Infection, Issue 77, Infectious Diseases, Virology, Microbiology, Immunology, Medicine, Neuroscience, Molecular Biology, Cellular Biology, Biomedical Engineering, Herpesviridae Infections, Encephalitis, Viral, animal models, MCMV, encephalitis, neonates, in vivo imaging, Human Cytomegalovirus, HCMV, HHV-5, virus, animal model
Play Button
Recurrent Herpetic Stromal Keratitis in Mice, a Model for Studying Human HSK
Authors: Jessica Morris, Patrick M. Stuart, Megan Rogge, Chloe Potter, Nipun Gupta, Xiao-Tang Yin.
Institutions: Saint Louis University.
Herpetic eye disease, termed herpetic stromal keratitis (HSK), is a potentially blinding infection of the cornea that results in over 300,000 clinical visits each year for treatment. Between 1 and 2 percent of those patients with clinical disease will experience loss of vision of the infected cornea. The vast majority of these cases are the result of reactivation of a latent infection by herpes simplex type I virus and not due to acute disease. Interestingly, the acute infection is the model most often used to study this disease. However, it was felt that a recurrent model of HSK would be more reflective of what occurs during clinical disease. The recurrent animal models for HSK have employed both rabbits and mice. The advantage of rabbits is that they experience reactivation from latency absent any known stimulus. That said, it is difficult to explore the role that many immunological factors play in recurrent HSK because the rabbit model does not have the immunological and genetic resources that the mouse has. We chose to use the mouse model for recurrent HSK because it has the advantage of there being many resources available and also we know when reactivation will occur because reactivation is induced by exposure to UV-B light. Thus far, this model has allowed those laboratories using it to define several immunological factors that are important to this disease. It has also allowed us to test both therapeutic and vaccine efficacy.
Infection, Issue 70, Immunology, Virology, Medicine, Infectious Diseases, Ophthalmology, Herpes, herpetic stromal keratitis, HSK, keratitis, pathogenesis, clinical evaluation, virus, eye, mouse, animal model
Play Button
Detection of the Genome and Transcripts of a Persistent DNA Virus in Neuronal Tissues by Fluorescent In situ Hybridization Combined with Immunostaining
Authors: Frédéric Catez, Antoine Rousseau, Marc Labetoulle, Patrick Lomonte.
Institutions: CNRS UMR 5534, Université de Lyon 1, LabEX DEVweCAN, CNRS UPR 3296, CNRS UMR 5286.
Single cell codetection of a gene, its RNA product and cellular regulatory proteins is critical to study gene expression regulation. This is a challenge in the field of virology; in particular for nuclear-replicating persistent DNA viruses that involve animal models for their study. Herpes simplex virus type 1 (HSV-1) establishes a life-long latent infection in peripheral neurons. Latent virus serves as reservoir, from which it reactivates and induces a new herpetic episode. The cell biology of HSV-1 latency remains poorly understood, in part due to the lack of methods to detect HSV-1 genomes in situ in animal models. We describe a DNA-fluorescent in situ hybridization (FISH) approach efficiently detecting low-copy viral genomes within sections of neuronal tissues from infected animal models. The method relies on heat-based antigen unmasking, and directly labeled home-made DNA probes, or commercially available probes. We developed a triple staining approach, combining DNA-FISH with RNA-FISH and immunofluorescence, using peroxidase based signal amplification to accommodate each staining requirement. A major improvement is the ability to obtain, within 10 µm tissue sections, low-background signals that can be imaged at high resolution by confocal microscopy and wide-field conventional epifluorescence. Additionally, the triple staining worked with a wide range of antibodies directed against cellular and viral proteins. The complete protocol takes 2.5 days to accommodate antibody and probe penetration within the tissue.
Neuroscience, Issue 83, Life Sciences (General), Virology, Herpes Simplex Virus (HSV), Latency, In situ hybridization, Nuclear organization, Gene expression, Microscopy
Play Button
High Yield Purification of Plasmodium falciparum Merozoites For Use in Opsonizing Antibody Assays
Authors: Danika L. Hill, Emily M. Eriksson, Louis Schofield.
Institutions: Walter and Eliza Hall Institute of Medical Research, University of Melbourne.
Plasmodium falciparum merozoite antigens are under development as potential malaria vaccines. One aspect of immunity against malaria is the removal of free merozoites from the blood by phagocytic cells. However assessing the functional efficacy of merozoite specific opsonizing antibodies is challenging due to the short half-life of merozoites and the variability of primary phagocytic cells. Described in detail herein is a method for generating viable merozoites using the E64 protease inhibitor, and an assay of merozoite opsonin-dependent phagocytosis using the pro-monocytic cell line THP-1. E64 prevents schizont rupture while allowing the development of merozoites which are released by filtration of treated schizonts.  Ethidium bromide labelled merozoites are opsonized with human plasma samples and added to THP-1 cells. Phagocytosis is assessed by a standardized high throughput protocol. Viable merozoites are a valuable resource for assessing numerous aspects of P. falciparum biology, including assessment of immune function. Antibody levels measured by this assay are associated with clinical immunity to malaria in naturally exposed individuals. The assay may also be of use for assessing vaccine induced antibodies.  
Immunology, Issue 89, Parasitic Diseases, malaria, Plasmodium falciparum, hemozoin, antibody, Fc Receptor, opsonization, merozoite, phagocytosis, THP-1
Play Button
An Experimental Model to Study Tuberculosis-Malaria Coinfection upon Natural Transmission of Mycobacterium tuberculosis and Plasmodium berghei
Authors: Ann-Kristin Mueller, Jochen Behrends, Jannike Blank, Ulrich E. Schaible, Bianca E. Schneider.
Institutions: University Hospital Heidelberg, Research Center Borstel.
Coinfections naturally occur due to the geographic overlap of distinct types of pathogenic organisms. Concurrent infections most likely modulate the respective immune response to each single pathogen and may thereby affect pathogenesis and disease outcome. Coinfected patients may also respond differentially to anti-infective interventions. Coinfection between tuberculosis as caused by mycobacteria and the malaria parasite Plasmodium, both of which are coendemic in many parts of sub-Saharan Africa, has not been studied in detail. In order to approach the challenging but scientifically and clinically highly relevant question how malaria-tuberculosis coinfection modulate host immunity and the course of each disease, we established an experimental mouse model that allows us to dissect the elicited immune responses to both pathogens in the coinfected host. Of note, in order to most precisely mimic naturally acquired human infections, we perform experimental infections of mice with both pathogens by their natural routes of infection, i.e. aerosol and mosquito bite, respectively.
Infectious Diseases, Issue 84, coinfection, mouse, Tuberculosis, Malaria, Plasmodium berghei, Mycobacterium tuberculosis, natural transmission
Play Button
A Simple Protocol for Platelet-mediated Clumping of Plasmodium falciparum-infected Erythrocytes in a Resource Poor Setting
Authors: Dumizulu L. Tembo, Jacqui Montgomery, Alister G. Craig, Samuel C. Wassmer.
Institutions: Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Liverpool School of Tropical Medicine, New York University School of Medicine.
P. falciparum causes the majority of severe malarial infections. The pathophysiological mechanisms underlying cerebral malaria (CM) are not fully understood and several hypotheses have been put forward, including mechanical obstruction of microvessels by P. falciparum-parasitized red blood cells (pRBC). Indeed, during the intra-erythrocytic stage of its life cycle, P. falciparum has the unique ability to modify the surface of the infected erythrocyte by exporting surface antigens with varying adhesive properties onto the RBC membrane. This allows the sequestration of pRBC in multiple tissues and organs by adhesion to endothelial cells lining the microvasculature of post-capillary venules 1. By doing so, the mature forms of the parasite avoid splenic clearance of the deformed infected erythrocytes 2 and restrict their environment to a more favorable low oxygen pressure 3. As a consequence of this sequestration, it is only immature asexual parasites and gametocytes that can be detected in peripheral blood. Cytoadherence and sequestration of mature pRBC to the numerous host receptors expressed on microvascular beds occurs in severe and uncomplicated disease. However, several lines of evidence suggest that only specific adhesive phenotypes are likely to be associated with severe pathological outcomes of malaria. One example of such specific host-parasite interactions has been demonstrated in vitro, where the ability of intercellular adhesion molecule-1 to support binding of pRBC with particular adhesive properties has been linked to development of cerebral malaria 4,5. The placenta has also been recognized as a site of preferential pRBC accumulation in malaria-infected pregnant women, with chondrotin sulphate A expressed on syncytiotrophoblasts that line the placental intervillous space as the main receptor 6. Rosetting of pRBC to uninfected erythrocytes via the complement receptor 1 (CD35)7,8 has also been associated with severe disease 9. One of the most recently described P. falciparum cytoadherence phenotypes is the ability of the pRBC to form platelet-mediated clumps in vitro. The formation of such pRBC clumps requires CD36, a glycoprotein expressed on the surface of platelets. Another human receptor, gC1qR/HABP1/p32, expressed on diverse cell types including endothelial cells and platelets, has also been shown to facilitate pRBC adhesion on platelets to form clumps 10. Whether clumping occurs in vivo remains unclear, but it may account for the significant accumulation of platelets described in brain microvasculature of Malawian children who died from CM 11. In addition, the ability of clinical isolate cultures to clump in vitro was directly linked to the severity of disease in Malawian 12 and Mozambican patients 13, (although not in Malian 14). With several aspects of the pRBC clumping phenotype poorly characterized, current studies on this subject have not followed a standardized procedure. This is an important issue because of the known high variability inherent in the assay 15. Here, we present a method for in vitro platelet-mediated clumping of P. falciparum with hopes that it will provide a platform for a consistent method for other groups and raise awareness of the limitations in investigating this phenotype in future studies. Being based in Malawi, we provide a protocol specifically designed for a limited resource setting, with the advantage that freshly collected clinical isolates can be examined for phenotype without need for cryopreservation.
Infection, Issue 75, Infectious Diseases, Immunology, Medicine, Microbiology, Molecular Biology, Cellular Biology, Parasitology, Clumping, platelets, Plasmodium falciparum, CD36, malaria, malarial infections, parasites, red blood cells, plasma, limited resources, clinical techniques, assay
Play Button
Dissection of Midgut and Salivary Glands from Ae. aegypti Mosquitoes
Authors: Judy Coleman, Jennifer Juhn, Anthony A. James.
Institutions: University of California, Irvine (UCI), University of California, Irvine (UCI).
The mosquito midgut and salivary glands are key entry and exit points for pathogens such as Plasmodium parasites and Dengue viruses. This video protocol demonstrates dissection techniques for removal of the midgut and salivary glands from Aedes aegypti mosquitoes.
Cellular Biology, Issue 5, mosquito, malaria, dissection, infectious disease
Play Button
Population Replacement Strategies for Controlling Vector Populations and the Use of Wolbachia pipientis for Genetic Drive
Authors: Jason Rasgon.
Institutions: Johns Hopkins University.
In this video, Jason Rasgon discusses population replacement strategies to control vector-borne diseases such as malaria and dengue. "Population replacement" is the replacement of wild vector populations (that are competent to transmit pathogens) with those that are not competent to transmit pathogens. There are several theoretical strategies to accomplish this. One is to exploit the maternally-inherited symbiotic bacteria Wolbachia pipientis. Wolbachia is a widespread reproductive parasite that spreads in a selfish manner at the extent of its host's fitness. Jason Rasgon discusses, in detail, the basic biology of this bacterial symbiont and various ways to use it for control of vector-borne diseases.
Cellular Biology, Issue 5, mosquito, malaria, genetics, infectious disease, Wolbachia
Play Button
Building a Better Mosquito: Identifying the Genes Enabling Malaria and Dengue Fever Resistance in A. gambiae and A. aegypti Mosquitoes
Authors: George Dimopoulos.
Institutions: Johns Hopkins University.
In this interview, George Dimopoulos focuses on the physiological mechanisms used by mosquitoes to combat Plasmodium falciparum and dengue virus infections. Explanation is given for how key refractory genes, those genes conferring resistance to vector pathogens, are identified in the mosquito and how this knowledge can be used to generate transgenic mosquitoes that are unable to carry the malaria parasite or dengue virus.
Cellular Biology, Issue 5, Translational Research, mosquito, malaria, virus, dengue, genetics, injection, RNAi, transgenesis, transgenic
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.