JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Benefit from B-lymphocyte depletion using the anti-CD20 antibody rituximab in chronic fatigue syndrome. A double-blind and placebo-controlled study.
PLoS ONE
PUBLISHED: 06-28-2011
Chronic fatigue syndrome (CFS) is a disease of unknown aetiology. Major CFS symptom relief during cancer chemotherapy in a patient with synchronous CFS and lymphoma spurred a pilot study of B-lymphocyte depletion using the anti-CD20 antibody Rituximab, which demonstrated significant clinical response in three CFS patients.
Authors: Ching-Wen Hsiao, Yen-Ting Lo, Hong Liu, Sonny C. Hsiao.
Published: 11-07-2014
ABSTRACT
A live cell-based whole blood cytotoxicity assay (WCA) that allows access to temporal information of the overall cell cytotoxicity is developed with high-throughput cell positioning technology. The targeted tumor cell populations are first preprogrammed to immobilization into an array format, and labeled with green fluorescent cytosolic dyes. Following the cell array formation, antibody drugs are added in combination with human whole blood. Propidium iodide (PI) is then added to assess cell death. The cell array is analyzed with an automatic imaging system. While cytosolic dye labels the targeted tumor cell populations, PI labels the dead tumor cell populations. Thus, the percentage of target cancer cell killing can be quantified by calculating the number of surviving targeted cells to the number of dead targeted cells. With this method, researchers are able to access time-dependent and dose-dependent cell cytotoxicity information. Remarkably, no hazardous radiochemicals are used. The WCA presented here has been tested with lymphoma, leukemia, and solid tumor cell lines. Therefore, WCA allows researchers to assess drug efficacy in a highly relevant ex vivo condition.
21 Related JoVE Articles!
Play Button
Measuring Frailty in HIV-infected Individuals. Identification of Frail Patients is the First Step to Amelioration and Reversal of Frailty
Authors: Hilary C. Rees, Voichita Ianas, Patricia McCracken, Shannon Smith, Anca Georgescu, Tirdad Zangeneh, Jane Mohler, Stephen A. Klotz.
Institutions: University of Arizona, University of Arizona.
A simple, validated protocol consisting of a battery of tests is available to identify elderly patients with frailty syndrome. This syndrome of decreased reserve and resistance to stressors increases in incidence with increasing age. In the elderly, frailty may pursue a step-wise loss of function from non-frail to pre-frail to frail. We studied frailty in HIV-infected patients and found that ~20% are frail using the Fried phenotype using stringent criteria developed for the elderly1,2. In HIV infection the syndrome occurs at a younger age. HIV patients were checked for 1) unintentional weight loss; 2) slowness as determined by walking speed; 3) weakness as measured by a grip dynamometer; 4) exhaustion by responses to a depression scale; and 5) low physical activity was determined by assessing kilocalories expended in a week's time. Pre-frailty was present with any two of five criteria and frailty was present if any three of the five criteria were abnormal. The tests take approximately 10-15 min to complete and they can be performed by medical assistants during routine clinic visits. Test results are scored by referring to standard tables. Understanding which of the five components contribute to frailty in an individual patient can allow the clinician to address relevant underlying problems, many of which are not evident in routine HIV clinic visits.
Medicine, Issue 77, Infection, Virology, Infectious Diseases, Anatomy, Physiology, Molecular Biology, Biomedical Engineering, Retroviridae Infections, Body Weight Changes, Diagnostic Techniques and Procedures, Physical Examination, Muscle Strength, Behavior, Virus Diseases, Pathological Conditions, Signs and Symptoms, Diagnosis, Musculoskeletal and Neural Physiological Phenomena, HIV, HIV-1, AIDS, Frailty, Depression, Weight Loss, Weakness, Slowness, Exhaustion, Aging, clinical techniques
50537
Play Button
Induction of Alloantigen-specific Anergy in Human Peripheral Blood Mononuclear Cells by Alloantigen Stimulation with Co-stimulatory Signal Blockade
Authors: Jeff K. Davies, Christine M. Barbon, Annie R. Voskertchian, Lee M. Nadler, Eva C. Guinan.
Institutions: Dana Farber Cancer Institute, Brigham and Womens Hospital, Dana Farber Cancer Institute, Children’s Hospital Boston.
Allogeneic hematopoietic stem cell transplantation (AHSCT) offers the best chance of cure for many patients with congenital and acquired hematologic diseases. Unfortunately, transplantation of alloreactive donor T cells which recognize and damage healthy patient tissues can result in Graft-versus-Host Disease (GvHD)1. One challenge to successful AHSCT is the prevention of GvHD without associated impairment of the beneficial effects of donor T cells, particularly immune reconstitution and prevention of relapse. GvHD can be prevented by non-specific depletion of donor T cells from stem cell grafts or by administration of pharmacological immunosuppression. Unfortunately these approaches increase infection and disease relapse2-4. An alternative strategy is to selectively deplete alloreactive donor T cells after allostimulation by recipient antigen presenting cells (APC) before transplant. Early clinical trials of these allodepletion strategies improved immune reconstitution after HLA-mismatched HSCT without excess GvHD5, 6. However, some allodepletion techniques require specialized recipient APC production6, 7and some approaches may have off-target effects including depletion of donor pathogen-specific T cells8and CD4 T regulatory cells9.One alternative approach is the inactivation of alloreactive donor T cells via induction of alloantigen-specific hyporesponsiveness. This is achieved by stimulating donor cells with recipient APC while providing blockade of CD28-mediated co-stimulation signals10.This "alloanergization" approach reduces alloreactivity by 1-2 logs while preserving pathogen- and tumor-associated antigen T cell responses in vitro11. The strategy has been successfully employed in 2 completed and 1 ongoing clinical pilot studies in which alloanergized donor T cells were infused during or after HLA-mismatched HSCT resulting in rapid immune reconstitution, few infections and less severe acute and chronic GvHD than historical control recipients of unmanipulated HLA-mismatched transplantation12. Here we describe our current protocol for the generation of peripheral blood mononuclear cells (PBMC) which have been alloanergized to HLA-mismatched unrelated stimulator PBMC. Alloanergization is achieved by allostimulation in the presence of monoclonal antibodies to the ligands B7.1 and B7.1 to block CD28-mediated costimulation. This technique does not require the production of specialized stimulator APC and is simple to perform, requiring only a single and relatively brief ex vivo incubation step. As such, the approach can be easily standardized for clinical use to generate donor T cells with reduced alloreactivity but retaining pathogen-specific immunity for adoptive transfer in the setting of AHSCT to improve immune reconstitution without excessive GvHD.
Immunology, Issue 49, Allogeneic stem cell transplantation, alloreactivity, Graft-versus-Host Disease, T cell costimulation, anergy, mixed lymphocyte reaction.
2673
Play Button
Depletion of Specific Cell Populations by Complement Depletion
Authors: Bonnie N. Dittel.
Institutions: Blood Research Institute.
The purification of immune cell populations is often required in order to study their unique functions. In particular, molecular approaches such as real-time PCR and microarray analysis require the isolation of cell populations with high purity. Commonly used purification strategies include fluorescent activated cell sorting (FACS), magnetic bead separation and complement depletion. Of the three strategies, complement depletion offers the advantages of being fast, inexpensive, gentle on the cells and a high cell yield. The complement system is composed of a large number of plasma proteins that when activated initiate a proteolytic cascade culminating in the formation of a membrane-attack complex that forms a pore on a cell surface resulting in cell death1. The classical pathway is activated by IgM and IgG antibodies and was first described as a mechanism for killing bacteria. With the generation of monoclonal antibodies (mAb), the complement cascade can be used to lyse any cell population in an antigen-specific manner. Depletion of cells by the complement cascade is achieved by the addition of complement fixing antigen-specific antibodies and rabbit complement to the starting cell population. The cells are incubated for one hour at 37°C and the lysed cells are subsequently removed by two rounds of washing. MAb with a high efficiency for complement fixation typically deplete 95-100% of the targeted cell population. Depending on the purification strategy for the targeted cell population, complement depletion can be used for cell purification or for the enrichment of cell populations that then can be further purified by a subsequent method.
JoVE Immunology, Issue 36, rabbit, complement, cell isolation, cell depletion
1487
Play Button
New Tools to Expand Regulatory T Cells from HIV-1-infected Individuals
Authors: Mathieu Angin, Melanie King, Marylyn Martina Addo.
Institutions: Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital.
CD4+ Regulatory T cells (Tregs) are potent immune modulators and serve an important function in human immune homeostasis. Depletion of Tregs has led to measurable increases in antigen-specific T cell responses in vaccine settings for cancer and infectious pathogens. However, their role in HIV-1 immuno-pathogenesis remains controversial, as they could either serve to suppress deleterious HIV-1-associated immune activation and thus slow HIV-1 disease progression or alternatively suppress HIV-1-specific immunity and thereby promote virus spread. Understanding and modulating Treg function in the context of HIV-1 could lead to potential new strategies for immunotherapy or HIV vaccines. However, important open questions remain on their role in the context of HIV-1 infection, which needs to be carefully studied. Representing roughly 5% of human CD4+ T cells in the peripheral blood, studying the Treg population has proven to be difficult, especially in HIV-1 infected individuals where HIV-1-associated CD4 T cell and with that Treg depletion occurs. The characterization of regulatory T cells in individuals with advanced HIV-1 disease or tissue samples, for which only very small biological samples can be obtained, is therefore extremely challenging. We propose a technical solution to overcome these limitations using isolation and expansion of Tregs from HIV-1-positive individuals. Here we describe an easy and robust method to successfully expand Tregs isolated from HIV-1-infected individuals in vitro. Flow-sorted CD3+CD4+CD25+CD127low Tregs were stimulated with anti-CD3/anti-CD28 coated beads and cultured in the presence of IL-2. The expanded Tregs expressed high levels of FOXP3, CTLA4 and HELIOS compared to conventional T cells and were shown to be highly suppressive. Easier access to large numbers of Tregs will allow researchers to address important questions concerning their role in HIV-1 immunopathogenesis. We believe answering these questions may provide useful insight for the development of an effective HIV-1 vaccine.
Infection, Issue 75, Infectious Diseases, Medicine, Immunology, Virology, Cellular Biology, Molecular Biology, Lymphocytes, T-Lymphocytes, Regulatory, HIV, Culture Techniques, flow cytometry, cell culture, Treg expansion, regulatory T cells, CD4+ T cells, Tregs, HIV-1, virus, HIV-1 infection, AIDS, clinical techniques
50244
Play Button
Analysis of Cell Cycle Position in Mammalian Cells
Authors: Matthew J. Cecchini, Mehdi Amiri, Frederick A. Dick.
Institutions: University of Western Ontario, University of Western Ontario.
The regulation of cell proliferation is central to tissue morphogenesis during the development of multicellular organisms. Furthermore, loss of control of cell proliferation underlies the pathology of diseases like cancer. As such there is great need to be able to investigate cell proliferation and quantitate the proportion of cells in each phase of the cell cycle. It is also of vital importance to indistinguishably identify cells that are replicating their DNA within a larger population. Since a cell′s decision to proliferate is made in the G1 phase immediately before initiating DNA synthesis and progressing through the rest of the cell cycle, detection of DNA synthesis at this stage allows for an unambiguous determination of the status of growth regulation in cell culture experiments. DNA content in cells can be readily quantitated by flow cytometry of cells stained with propidium iodide, a fluorescent DNA intercalating dye. Similarly, active DNA synthesis can be quantitated by culturing cells in the presence of radioactive thymidine, harvesting the cells, and measuring the incorporation of radioactivity into an acid insoluble fraction. We have considerable expertise with cell cycle analysis and recommend a different approach. We Investigate cell proliferation using bromodeoxyuridine/fluorodeoxyuridine (abbreviated simply as BrdU) staining that detects the incorporation of these thymine analogs into recently synthesized DNA. Labeling and staining cells with BrdU, combined with total DNA staining by propidium iodide and analysis by flow cytometry1 offers the most accurate measure of cells in the various stages of the cell cycle. It is our preferred method because it combines the detection of active DNA synthesis, through antibody based staining of BrdU, with total DNA content from propidium iodide. This allows for the clear separation of cells in G1 from early S phase, or late S phase from G2/M. Furthermore, this approach can be utilized to investigate the effects of many different cell stimuli and pharmacologic agents on the regulation of progression through these different cell cycle phases. In this report we describe methods for labeling and staining cultured cells, as well as their analysis by flow cytometry. We also include experimental examples of how this method can be used to measure the effects of growth inhibiting signals from cytokines such as TGF-β1, and proliferative inhibitors such as the cyclin dependent kinase inhibitor, p27KIP1. We also include an alternate protocol that allows for the analysis of cell cycle position in a sub-population of cells within a larger culture5. In this case, we demonstrate how to detect a cell cycle arrest in cells transfected with the retinoblastoma gene even when greatly outnumbered by untransfected cells in the same culture. These examples illustrate the many ways that DNA staining and flow cytometry can be utilized and adapted to investigate fundamental questions of mammalian cell cycle control.
Molecular Biology, Issue 59, cell cycle, proliferation, flow cytometry, DNA synthesis, fluorescence
3491
Play Button
The Use of Magnetic Resonance Spectroscopy as a Tool for the Measurement of Bi-hemispheric Transcranial Electric Stimulation Effects on Primary Motor Cortex Metabolism
Authors: Sara Tremblay, Vincent Beaulé, Sébastien Proulx, Louis-Philippe Lafleur, Julien Doyon, Małgorzata Marjańska, Hugo Théoret.
Institutions: University of Montréal, McGill University, University of Minnesota.
Transcranial direct current stimulation (tDCS) is a neuromodulation technique that has been increasingly used over the past decade in the treatment of neurological and psychiatric disorders such as stroke and depression. Yet, the mechanisms underlying its ability to modulate brain excitability to improve clinical symptoms remains poorly understood 33. To help improve this understanding, proton magnetic resonance spectroscopy (1H-MRS) can be used as it allows the in vivo quantification of brain metabolites such as γ-aminobutyric acid (GABA) and glutamate in a region-specific manner 41. In fact, a recent study demonstrated that 1H-MRS is indeed a powerful means to better understand the effects of tDCS on neurotransmitter concentration 34. This article aims to describe the complete protocol for combining tDCS (NeuroConn MR compatible stimulator) with 1H-MRS at 3 T using a MEGA-PRESS sequence. We will describe the impact of a protocol that has shown great promise for the treatment of motor dysfunctions after stroke, which consists of bilateral stimulation of primary motor cortices 27,30,31. Methodological factors to consider and possible modifications to the protocol are also discussed.
Neuroscience, Issue 93, proton magnetic resonance spectroscopy, transcranial direct current stimulation, primary motor cortex, GABA, glutamate, stroke
51631
Play Button
Preparation and Use of HIV-1 Infected Primary CD4+ T-Cells as Target Cells in Natural Killer Cell Cytotoxic Assays
Authors: Zachary B. Davis, Jeffrey P. Ward, Edward Barker.
Institutions: Rush University Medical Center.
Natural killer (NK) cells are a vital component of the innate immune response to virus-infected cells. It is important to understand the ability of NK cells to recognize and lyse HIV-1 infected cells because identifying any aberrancy in NK cell function against HIV-infected cells could potentially lead to therapies that would enhance their cytolytic activity. There is a need to use HIV-infected primary T-cell blasts as target cells rather then infected-T-cell lines in the cytotoxicity assays. T-cell lines, even without infection, are quite susceptible to NK cell lysis. Furthermore, it is necessary to use autologous primary cells to prevent major histocompatibility complex class I mismatches between the target and effector cell that will result in lysis. Early studies evaluating NK cell cytolytic responses to primary HIV-infected cells failed to show significant killing of the infected cells 1,2. However, using HIV-1 infected primary T-cells as target cells in NK cell functional assays has been difficult due the presence of contaminating uninfected cells 3. This inconsistent infected cell to uninfected cell ratio will result in variation in NK cell killing between samples that may not be due to variability in donor NK cell function. Thus, it would be beneficial to work with a purified infected cell population in order to standardize the effector to target cell ratios between experiments 3,4. Here we demonstrate the isolation of a highly purified population of HIV-1 infected cells by taking advantage of HIV-1's ability to down-modulate CD4 on infected cells and the availability of commercial kits to remove dead or dying cells 3-6. The purified infected primary T-cell blasts can then be used as targets in either a degranulation or cytotoxic assay with purified NK cells as the effector population 5-7. Use of NK cells as effectors in a degranulation assay evaluates the ability of an NK cell to release the lytic contents of specialized lysosomes 8 called "cytolytic granules". By staining with a fluorochrome conjugated antibody against CD107a, a lysosomal membrane protein that becomes expressed on the NK cell surface when the cytolytic granules fuse to the plasma membrane, we can determine what percentage of NK cells degranulate in response to target cell recognition. Alternatively, NK cell lytic activity can be evaluated in a cytotoxic assay that allows for the determination of the percentage of target cells lysed by release of 51Cr from within the target cell in the presence of NK cells.
Immunology, Issue 49, innate immunity, HIV-1, natural killer cell, cytolytic assay, degranulation assay, primary lymphocytes
2668
Play Button
Intraoperative Detection of Subtle Endometriosis: A Novel Paradigm for Detection and Treatment of Pelvic Pain Associated with the Loss of Peritoneal Integrity
Authors: Bruce A. Lessey, H. Lee Higdon III, Sara E. Miller, Thomas A. Price.
Institutions: Greenville Hospital System, Duke University Health System, Duke University .
Endometriosis is a common disease affecting 40 to 70% of reproductive-aged women with chronic pelvic pain (CPP) and/or infertility. The purpose of this study was to demonstrate the use of a blue dye (methylene blue) to stain peritoneal surfaces during laparoscopy (L/S) to detect the loss of peritoneal integrity in patients with pelvic pain and suspected endometriosis. Forty women with CPP and 5 women without pain were evaluated in this pilot study. During L/S, concentrated dye was sprayed onto peritoneal surfaces, then aspirated and rinsed with Lactated Ringers solution. Areas of localized dye uptake were evaluated for the presence of visible endometriotic lesions. Areas of intense peritoneal staining were resected and some fixed in 2.5% buffered gluteraldehyde and examined by scanning (SEM) electron microscopy. Blue dye uptake was more common in women with endometriosis and chronic pelvic pain than controls (85% vs. 40%). Resection of the blue stained areas revealed endometriosis by SEM and loss of peritoneal cell-cell contact compared to normal, non-staining peritoneum. Affected peritoneum was associated with visible endometriotic implants in most but not all patients. Subjective pain relief was reported in 80% of subjects. Based on scanning electron microscopy, we conclude that endometrial cells extend well beyond visible implants of endometriosis and appear to disrupt the underlying mesothelium. Subtle lesions of endometriosis could therefore cause pelvic pain by disruption of peritoneal integrity, allowing menstrual or ovulatory blood and associated pain factors access to underlying sensory nerves. Complete resection of affected peritoneum may provide a better long-term treatment for endometriosis and CPP. This simple technique appears to improve detection of subtle or near invisible endometriosis in women with CPP and minimal visual findings at L/S and may serve to elevate diagnostic accuracy for endometriosis at laparoscopy.
Medicine, Issue 70, Anatomy, Physiology, Endocrinology, Obstetrics, Gynecology, Surgery, endometriosis, pelvic pain, dysmenorrhea, diagnostics, laparoscopy, peritoneum, scanning electron microscopy, SEM
4313
Play Button
Optimized Staining and Proliferation Modeling Methods for Cell Division Monitoring using Cell Tracking Dyes
Authors: Joseph D. Tario Jr., Kristen Humphrey, Andrew D. Bantly, Katharine A. Muirhead, Jonni S. Moore, Paul K. Wallace.
Institutions: Roswell Park Cancer Institute, University of Pennsylvania , SciGro, Inc., University of Pennsylvania .
Fluorescent cell tracking dyes, in combination with flow and image cytometry, are powerful tools with which to study the interactions and fates of different cell types in vitro and in vivo.1-5 Although there are literally thousands of publications using such dyes, some of the most commonly encountered cell tracking applications include monitoring of: stem and progenitor cell quiescence, proliferation and/or differentiation6-8 antigen-driven membrane transfer9 and/or precursor cell proliferation3,4,10-18 and immune regulatory and effector cell function1,18-21. Commercially available cell tracking dyes vary widely in their chemistries and fluorescence properties but the great majority fall into one of two classes based on their mechanism of cell labeling. "Membrane dyes", typified by PKH26, are highly lipophilic dyes that partition stably but non-covalently into cell membranes1,2,11. "Protein dyes", typified by CFSE, are amino-reactive dyes that form stable covalent bonds with cell proteins4,16,18. Each class has its own advantages and limitations. The key to their successful use, particularly in multicolor studies where multiple dyes are used to track different cell types, is therefore to understand the critical issues enabling optimal use of each class2-4,16,18,24. The protocols included here highlight three common causes of poor or variable results when using cell-tracking dyes. These are: Failure to achieve bright, uniform, reproducible labeling. This is a necessary starting point for any cell tracking study but requires attention to different variables when using membrane dyes than when using protein dyes or equilibrium binding reagents such as antibodies. Suboptimal fluorochrome combinations and/or failure to include critical compensation controls. Tracking dye fluorescence is typically 102 - 103 times brighter than antibody fluorescence. It is therefore essential to verify that the presence of tracking dye does not compromise the ability to detect other probes being used. Failure to obtain a good fit with peak modeling software. Such software allows quantitative comparison of proliferative responses across different populations or stimuli based on precursor frequency or other metrics. Obtaining a good fit, however, requires exclusion of dead/dying cells that can distort dye dilution profiles and matching of the assumptions underlying the model with characteristics of the observed dye dilution profile. Examples given here illustrate how these variables can affect results when using membrane and/or protein dyes to monitor cell proliferation.
Cellular Biology, Issue 70, Molecular Biology, Cell tracking, PKH26, CFSE, membrane dyes, dye dilution, proliferation modeling, lymphocytes
4287
Play Button
Nerve Excitability Assessment in Chemotherapy-induced Neurotoxicity
Authors: Susanna B. Park, Cindy S-Y. Lin, Matthew C. Kiernan.
Institutions: University of New South Wales , University of New South Wales , University of New South Wales .
Chemotherapy-induced neurotoxicity is a serious consequence of cancer treatment, which occurs with some of the most commonly used chemotherapies1,2. Chemotherapy-induced peripheral neuropathy produces symptoms of numbness and paraesthesia in the limbs and may progress to difficulties with fine motor skills and walking, leading to functional impairment. In addition to producing troubling symptoms, chemotherapy-induced neuropathy may limit treatment success leading to dose reduction or early cessation of treatment. Neuropathic symptoms may persist long-term, leaving permanent nerve damage in patients with an otherwise good prognosis3. As chemotherapy is utilised more often as a preventative measure, and survival rates increase, the importance of long-lasting and significant neurotoxicity will increase. There are no established neuroprotective or treatment options and a lack of sensitive assessment methods. Appropriate assessment of neurotoxicity will be critical as a prognostic factor and as suitable endpoints for future trials of neuroprotective agents. Current methods to assess the severity of chemotherapy-induced neuropathy utilise clinician-based grading scales which have been demonstrated to lack sensitivity to change and inter-observer objectivity4. Conventional nerve conduction studies provide information about compound action potential amplitude and conduction velocity, which are relatively non-specific measures and do not provide insight into ion channel function or resting membrane potential. Accordingly, prior studies have demonstrated that conventional nerve conduction studies are not sensitive to early change in chemotherapy-induced neurotoxicity4-6. In comparison, nerve excitability studies utilize threshold tracking techniques which have been developed to enable assessment of ion channels, pumps and exchangers in vivo in large myelinated human axons7-9. Nerve excitability techniques have been established as a tool to examine the development and severity of chemotherapy-induced neurotoxicity10-13. Comprising a number of excitability parameters, nerve excitability studies can be used to assess acute neurotoxicity arising immediately following infusion and the development of chronic, cumulative neurotoxicity. Nerve excitability techniques are feasible in the clinical setting, with each test requiring only 5 -10 minutes to complete. Nerve excitability equipment is readily commercially available, and a portable system has been devised so that patients can be tested in situ in the infusion centre setting. In addition, these techniques can be adapted for use in multiple chemotherapies. In patients treated with the chemotherapy oxaliplatin, primarily utilised for colorectal cancer, nerve excitability techniques provide a method to identify patients at-risk for neurotoxicity prior to the onset of chronic neuropathy. Nerve excitability studies have revealed the development of an acute Na+ channelopathy in motor and sensory axons10-13. Importantly, patients who demonstrated changes in excitability in early treatment were subsequently more likely to develop moderate to severe neurotoxicity11. However, across treatment, striking longitudinal changes were identified only in sensory axons which were able to predict clinical neurological outcome in 80% of patients10. These changes demonstrated a different pattern to those seen acutely following oxaliplatin infusion, and most likely reflect the development of significant axonal damage and membrane potential change in sensory nerves which develops longitudinally during oxaliplatin treatment10. Significant abnormalities developed during early treatment, prior to any reduction in conventional measures of nerve function, suggesting that excitability parameters may provide a sensitive biomarker.
Neuroscience, Issue 62, Chemotherapy, Neurotoxicity, Neuropathy, Nerve excitability, Ion channel function, Oxaliplatin, oncology, medicine
3439
Play Button
The Multiple Sclerosis Performance Test (MSPT): An iPad-Based Disability Assessment Tool
Authors: Richard A. Rudick, Deborah Miller, Francois Bethoux, Stephen M. Rao, Jar-Chi Lee, Darlene Stough, Christine Reece, David Schindler, Bernadett Mamone, Jay Alberts.
Institutions: Cleveland Clinic Foundation, Cleveland Clinic Foundation, Cleveland Clinic Foundation, Cleveland Clinic Foundation.
Precise measurement of neurological and neuropsychological impairment and disability in multiple sclerosis is challenging. We report a new test, the Multiple Sclerosis Performance Test (MSPT), which represents a new approach to quantifying MS related disability. The MSPT takes advantage of advances in computer technology, information technology, biomechanics, and clinical measurement science. The resulting MSPT represents a computer-based platform for precise, valid measurement of MS severity. Based on, but extending the Multiple Sclerosis Functional Composite (MSFC), the MSPT provides precise, quantitative data on walking speed, balance, manual dexterity, visual function, and cognitive processing speed. The MSPT was tested by 51 MS patients and 49 healthy controls (HC). MSPT scores were highly reproducible, correlated strongly with technician-administered test scores, discriminated MS from HC and severe from mild MS, and correlated with patient reported outcomes. Measures of reliability, sensitivity, and clinical meaning for MSPT scores were favorable compared with technician-based testing. The MSPT is a potentially transformative approach for collecting MS disability outcome data for patient care and research. Because the testing is computer-based, test performance can be analyzed in traditional or novel ways and data can be directly entered into research or clinical databases. The MSPT could be widely disseminated to clinicians in practice settings who are not connected to clinical trial performance sites or who are practicing in rural settings, drastically improving access to clinical trials for clinicians and patients. The MSPT could be adapted to out of clinic settings, like the patient’s home, thereby providing more meaningful real world data. The MSPT represents a new paradigm for neuroperformance testing. This method could have the same transformative effect on clinical care and research in MS as standardized computer-adapted testing has had in the education field, with clear potential to accelerate progress in clinical care and research.
Medicine, Issue 88, Multiple Sclerosis, Multiple Sclerosis Functional Composite, computer-based testing, 25-foot walk test, 9-hole peg test, Symbol Digit Modalities Test, Low Contrast Visual Acuity, Clinical Outcome Measure
51318
Play Button
How to Create and Use Binocular Rivalry
Authors: David Carmel, Michael Arcaro, Sabine Kastner, Uri Hasson.
Institutions: New York University, New York University, Princeton University, Princeton University.
Each of our eyes normally sees a slightly different image of the world around us. The brain can combine these two images into a single coherent representation. However, when the eyes are presented with images that are sufficiently different from each other, an interesting thing happens: Rather than fusing the two images into a combined conscious percept, what transpires is a pattern of perceptual alternations where one image dominates awareness while the other is suppressed; dominance alternates between the two images, typically every few seconds. This perceptual phenomenon is known as binocular rivalry. Binocular rivalry is considered useful for studying perceptual selection and awareness in both human and animal models, because unchanging visual input to each eye leads to alternations in visual awareness and perception. To create a binocular rivalry stimulus, all that is necessary is to present each eye with a different image at the same perceived location. There are several ways of doing this, but newcomers to the field are often unsure which method would best suit their specific needs. The purpose of this article is to describe a number of inexpensive and straightforward ways to create and use binocular rivalry. We detail methods that do not require expensive specialized equipment and describe each method's advantages and disadvantages. The methods described include the use of red-blue goggles, mirror stereoscopes and prism goggles.
Neuroscience, Issue 45, Binocular rivalry, continuous flash suppression, vision, visual awareness, perceptual competition, unconscious processing, neuroimaging
2030
Play Button
Use of a High-throughput In Vitro Microfluidic System to Develop Oral Multi-species Biofilms
Authors: Derek S. Samarian, Nicholas S. Jakubovics, Ting L. Luo, Alexander H. Rickard.
Institutions: The University of Michigan, Newcastle University.
There are few high-throughput in vitro systems which facilitate the development of multi-species biofilms that contain numerous species commonly detected within in vivo oral biofilms. Furthermore, a system that uses natural human saliva as the nutrient source, instead of artificial media, is particularly desirable in order to support the expression of cellular and biofilm-specific properties that mimic the in vivo communities. We describe a method for the development of multi-species oral biofilms that are comparable, with respect to species composition, to supragingival dental plaque, under conditions similar to the human oral cavity. Specifically, this methods article will describe how a commercially available microfluidic system can be adapted to facilitate the development of multi-species oral biofilms derived from and grown within pooled saliva. Furthermore, a description of how the system can be used in conjunction with a confocal laser scanning microscope to generate 3-D biofilm reconstructions for architectural and viability analyses will be presented. Given the broad diversity of microorganisms that grow within biofilms in the microfluidic system (including Streptococcus, Neisseria, Veillonella, Gemella, and Porphyromonas), a protocol will also be presented describing how to harvest the biofilm cells for further subculture or DNA extraction and analysis. The limits of both the microfluidic biofilm system and the current state-of-the-art data analyses will be addressed. Ultimately, it is envisioned that this article will provide a baseline technique that will improve the study of oral biofilms and aid in the development of additional technologies that can be integrated with the microfluidic platform.
Bioengineering, Issue 94, Dental plaque, biofilm, confocal laser scanning microscopy, three-dimensional structure, pyrosequencing, image analysis, image reconstruction, saliva, modeling, COMSTAT, IMARIS, IMAGEJ, multi-species biofilm communities.
52467
Play Button
Laser Nanosurgery of Cerebellar Axons In Vivo
Authors: Anna L. Allegra Mascaro, Leonardo Sacconi, Francesco Saverio Pavone.
Institutions: University of Florence, National Research Council, University of Florence, International Center for Computational Neurophotonics (ICON Foundation).
Only a few neuronal populations in the central nervous system (CNS) of adult mammals show local regrowth upon dissection of their axon. In order to understand the mechanism that promotes neuronal regeneration, an in-depth analysis of the neuronal types that can remodel after injury is needed. Several studies showed that damaged climbing fibers are capable of regrowing also in adult animals1,2. The investigation of the time-lapse dynamics of degeneration and regeneration of these axons within their complex environment can be performed by time-lapse two-photon fluorescence (TPF) imaging in vivo3,4. This technique is here combined with laser surgery, which proved to be a highly selective tool to disrupt fluorescent structures in the intact mouse cortex5-9. This protocol describes how to perform TPF time-lapse imaging and laser nanosurgery of single axonal branches in the cerebellum in vivo. Olivocerebellar neurons are labeled by anterograde tracing with a dextran-conjugated dye and then monitored by TPF imaging through a cranial window. The terminal portion of their axons are then dissected by irradiation with a Ti:Sapphire laser at high power. The degeneration and potential regrowth of the damaged neuron are monitored by TPF in vivo imaging during the days following the injury.
Neuroscience, Issue 89, axonal labeling, neuronal tracing, in vivo imaging, two-photon microscopy, cerebellum, climbing fibers, laser axotomy, craniotomy
51371
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
51506
Play Button
Development of an IFN-γ ELISpot Assay to Assess Varicella-Zoster Virus-specific Cell-mediated Immunity Following Umbilical Cord Blood Transplantation
Authors: Insaf Salem Fourati, Anne-Julie Grenier, Élyse Jolette, Natacha Merindol, Philippe Ovetchkine, Hugo Soudeyns.
Institutions: Université de Montréal, Université de Montréal, Université de Montréal.
Varicella zoster virus (VZV) is a significant cause of morbidity and mortality following umbilical cord blood transplantation (UCBT). For this reason, antiherpetic prophylaxis is administrated systematically to pediatric UCBT recipients to prevent complications associated with VZV infection, but there is no strong, evidence based consensus that defines its optimal duration. Because T cell mediated immunity is responsible for the control of VZV infection, assessing the reconstitution of VZV specific T cell responses following UCBT could provide indications as to whether prophylaxis should be maintained or can be discontinued. To this end, a VZV specific gamma interferon (IFN-γ) enzyme-linked immunospot (ELISpot) assay was developed to characterize IFN-γ production by T lymphocytes in response to in vitro stimulation with irradiated live attenuated VZV vaccine. This assay provides a rapid, reproducible and sensitive measurement of VZV specific cell mediated immunity suitable for monitoring the reconstitution of VZV specific immunity in a clinical setting and assessing immune responsiveness to VZV antigens.  
Immunology, Issue 89, Varicella zoster virus, cell-mediated immunity, T cells, interferon gamma, ELISpot, umbilical cord blood transplantation
51643
Play Button
Induction of Invasive Transitional Cell Bladder Carcinoma in Immune Intact Human MUC1 Transgenic Mice: A Model for Immunotherapy Development
Authors: Daniel P. Vang, Gregory T. Wurz, Stephen M. Griffey, Chiao-Jung Kao, Audrey M. Gutierrez, Gregory K. Hanson, Michael Wolf, Michael W. DeGregorio.
Institutions: University of California, Davis, University of California, Davis, Merck KGaA, Darmstadt, Germany.
A preclinical model of invasive bladder cancer was developed in human mucin 1 (MUC1) transgenic (MUC1.Tg) mice for the purpose of evaluating immunotherapy and/or cytotoxic chemotherapy. To induce bladder cancer, C57BL/6 mice (MUC1.Tg and wild type) were treated orally with the carcinogen N-butyl-N-(4-hydroxybutyl)nitrosamine (OH-BBN) at 3.0 mg/day, 5 days/week for 12 weeks. To assess the effects of OH-BBN on serum cytokine profile during tumor development, whole blood was collected via submandibular bleeds prior to treatment and every four weeks. In addition, a MUC1-targeted peptide vaccine and placebo were administered to groups of mice weekly for eight weeks. Multiplex fluorometric microbead immunoanalyses of serum cytokines during tumor development and following vaccination were performed. At termination, interferon gamma (IFN-γ)/interleukin-4 (IL-4) ELISpot analysis for MUC1 specific T-cell immune response and histopathological evaluations of tumor type and grade were performed. The results showed that: (1) the incidence of bladder cancer in both MUC1.Tg and wild type mice was 67%; (2) transitional cell carcinomas (TCC) developed at a 2:1 ratio compared to squamous cell carcinomas (SCC); (3) inflammatory cytokines increased with time during tumor development; and (4) administration of the peptide vaccine induces a Th1-polarized serum cytokine profile and a MUC1 specific T-cell response. All tumors in MUC1.Tg mice were positive for MUC1 expression, and half of all tumors in MUC1.Tg and wild type mice were invasive. In conclusion, using a team approach through the coordination of the efforts of pharmacologists, immunologists, pathologists and molecular biologists, we have developed an immune intact transgenic mouse model of bladder cancer that expresses hMUC1.
Medicine, Issue 80, Urinary Bladder, Animals, Genetically Modified, Cancer Vaccines, Immunotherapy, Animal Experimentation, Models, Neoplasms Bladder Cancer, C57BL/6 Mouse, MUC1, Immunotherapy, Preclinical Model
50868
Play Button
Adaptation of Semiautomated Circulating Tumor Cell (CTC) Assays for Clinical and Preclinical Research Applications
Authors: Lori E. Lowes, Benjamin D. Hedley, Michael Keeney, Alison L. Allan.
Institutions: London Health Sciences Centre, Western University, London Health Sciences Centre, Lawson Health Research Institute, Western University.
The majority of cancer-related deaths occur subsequent to the development of metastatic disease. This highly lethal disease stage is associated with the presence of circulating tumor cells (CTCs). These rare cells have been demonstrated to be of clinical significance in metastatic breast, prostate, and colorectal cancers. The current gold standard in clinical CTC detection and enumeration is the FDA-cleared CellSearch system (CSS). This manuscript outlines the standard protocol utilized by this platform as well as two additional adapted protocols that describe the detailed process of user-defined marker optimization for protein characterization of patient CTCs and a comparable protocol for CTC capture in very low volumes of blood, using standard CSS reagents, for studying in vivo preclinical mouse models of metastasis. In addition, differences in CTC quality between healthy donor blood spiked with cells from tissue culture versus patient blood samples are highlighted. Finally, several commonly discrepant items that can lead to CTC misclassification errors are outlined. Taken together, these protocols will provide a useful resource for users of this platform interested in preclinical and clinical research pertaining to metastasis and CTCs.
Medicine, Issue 84, Metastasis, circulating tumor cells (CTCs), CellSearch system, user defined marker characterization, in vivo, preclinical mouse model, clinical research
51248
Play Button
Tumor Treating Field Therapy in Combination with Bevacizumab for the Treatment of Recurrent Glioblastoma
Authors: Ayman I. Omar.
Institutions: Southern Illinois University School of Medicine.
A novel device that employs TTF therapy has recently been developed and is currently in use for the treatment of recurrent glioblastoma (rGBM). It was FDA approved in April 2011 for the treatment of patients 22 years or older with rGBM. The device delivers alternating electric fields and is programmed to ensure maximal tumor cell kill1. Glioblastoma is the most common type of glioma and has an estimated incidence of approximately 10,000 new cases per year in the United States alone2. This tumor is particularly resistant to treatment and is uniformly fatal especially in the recurrent setting3-5. Prior to the approval of the TTF System, the only FDA approved treatment for rGBM was bevacizumab6. Bevacizumab is a humanized monoclonal antibody targeted against the vascular endothelial growth factor (VEGF) protein that drives tumor angiogenesis7. By blocking the VEGF pathway, bevacizumab can result in a significant radiographic response (pseudoresponse), improve progression free survival and reduce corticosteroid requirements in rGBM patients8,9. Bevacizumab however failed to prolong overall survival in a recent phase III trial26. A pivotal phase III trial (EF-11) demonstrated comparable overall survival between physicians’ choice chemotherapy and TTF Therapy but better quality of life were observed in the TTF arm10. There is currently an unmet need to develop novel approaches designed to prolong overall survival and/or improve quality of life in this unfortunate patient population. One appealing approach would be to combine the two currently approved treatment modalities namely bevacizumab and TTF Therapy. These two treatments are currently approved as monotherapy11,12, but their combination has never been evaluated in a clinical trial. We have developed an approach for combining those two treatment modalities and treated 2 rGBM patients. Here we describe a detailed methodology outlining this novel treatment protocol and present representative data from one of the treated patients.
Medicine, Issue 92, Tumor Treating Fields, TTF System, TTF Therapy, Recurrent Glioblastoma, Bevacizumab, Brain Tumor
51638
Play Button
CD4+ T-Lymphocyte Capture Using a Disposable Microfluidic Chip for HIV
Authors: Sang Jun Moon, Richard Lin, Utkan Demirci.
Institutions: Brigham and Women's Hospital, Massachusetts Institute of Technology.
Cellular Biology, Issue 8, microfluidic, blood, diagnostics, bioengineering, HIV, Translational Research
315
Play Button
Deep Neuromuscular Blockade Leads to a Larger Intraabdominal Volume During Laparoscopy
Authors: Astrid Listov Lindekaer, Henrik Halvor Springborg, Olav Istre.
Institutions: Aleris-Hamlet Hospitals, Soeborg, Denmark, Aleris-Hamlet Hospitals, Soeborg, Denmark.
Shoulder pain is a commonly reported symptom following laparoscopic procedures such as myomectomy or hysterectomy, and recent studies have shown that lowering the insufflation pressure during surgery may reduce the risk of post-operative pain. In this pilot study, a method is presented for measuring the intra-abdominal space available to the surgeon during laproscopy, in order to examine whether the relaxation produced by deep neuromuscular blockade can increase the working surgical space sufficiently to permit a reduction in the CO2 insufflation pressure. Using the laproscopic grasper, the distance from the promontory to the skin is measured at two different insufflation pressures: 8 mm Hg and 12 mm Hg. After the initial measurements, a neuromuscular blocking agent (rocuronium) is administered to the patient and the intra-abdominal volume is measured again. Pilot data collected from 15 patients shows that the intra-abdominal space at 8 mm Hg with blockade is comparable to the intra-abdominal space measured at 12 mm Hg without blockade. The impact of neuromuscular blockade was not correlated with patient height, weight, BMI, and age. Thus, using neuromuscular blockade to maintain a steady volume while reducing insufflation pressure may produce improved patient outcomes.
Medicine, Issue 76, Anatomy, Physiology, Neurobiology, Surgery, gynecology, laparoscopy, deep neuromuscular blockade, reversal, rocuronium, sugammadex, laparoscopic surgery, clinical techniques, surgical techniques
50045
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.