JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Endo-lysosomal vesicles positive for Rab7 and LAMP1 are terminal vesicles for the transport of dextran.
PLoS ONE
PUBLISHED: 06-28-2011
The endo-lysosomal pathway is essential for intracellular transport and the degradation of extracellular cargo. The relationship between three populations of endo-lysosomal vesicles--Rab7-positive, LAMP1-positive, and both Rab7- and LAMP1-postive--was probed with fluorescence microscopy and single particle tracking. Of specific interest was determining if these vesicles were intermediate or terminal vesicles in the transport of extracellular cargo. We find that the major organelle in the endo-lysosomal pathway, both in terms of population and cargo transport, is positive for Rab7 and LAMP1. Dextran, a fluid phase cargo, shifts from localization within all three populations of vesicles at 30 minutes and 1 hour to primarily LAMP1- and Rab7/LAMP1-vesicles at longer times. This demonstrates that LAMP1- and Rab7/LAMP1-vesicles are terminal vesicles in the endo-lysosomal pathway. We tested two possible mechanisms for this distribution of cargo, delivery to mannose 6-phosphate receptor (M6PR)-negative vesicles and the fusion dynamics of individual vesicles. We find no correlation with M6PR but do find that Rab7-vesicles undergo significantly fewer fusion events than LAMP1- or Rab7/LAMP1-vesicles suggesting that the distribution of fluid phase cargo is driven by vesicle dynamics.
Authors: Aurelia Defour, S. C. Sreetama, Jyoti K. Jaiswal.
Published: 03-24-2014
ABSTRACT
The ability of injured cells to heal is a fundamental cellular process, but cellular and molecular mechanisms involved in healing injured cells are poorly understood. Here assays are described to monitor the ability and kinetics of healing of cultured cells following localized injury. The first protocol describes an end point based approach to simultaneously assess cell membrane repair ability of hundreds of cells. The second protocol describes a real time imaging approach to monitor the kinetics of cell membrane repair in individual cells following localized injury with a pulsed laser. As healing injured cells involves trafficking of specific proteins and subcellular compartments to the site of injury, the third protocol describes the use of above end point based approach to assess one such trafficking event (lysosomal exocytosis) in hundreds of cells injured simultaneously and the last protocol describes the use of pulsed laser injury together with TIRF microscopy to monitor the dynamics of individual subcellular compartments in injured cells at high spatial and temporal resolution. While the protocols here describe the use of these approaches to study the link between cell membrane repair and lysosomal exocytosis in cultured muscle cells, they can be applied as such for any other adherent cultured cell and subcellular compartment of choice.
16 Related JoVE Articles!
Play Button
Characterizing the Composition of Molecular Motors on Moving Axonal Cargo Using "Cargo Mapping" Analysis
Authors: Sylvia Neumann, George E. Campbell, Lukasz Szpankowski, Lawrence S.B. Goldstein, Sandra E. Encalada.
Institutions: The Scripps Research Institute, University of California San Diego, University of California San Diego, University of California San Diego School of Medicine.
Understanding the mechanisms by which molecular motors coordinate their activities to transport vesicular cargoes within neurons requires the quantitative analysis of motor/cargo associations at the single vesicle level. The goal of this protocol is to use quantitative fluorescence microscopy to correlate (“map”) the position and directionality of movement of live cargo to the composition and relative amounts of motors associated with the same cargo. “Cargo mapping” consists of live imaging of fluorescently labeled cargoes moving in axons cultured on microfluidic devices, followed by chemical fixation during recording of live movement, and subsequent immunofluorescence (IF) staining of the exact same axonal regions with antibodies against motors. Colocalization between cargoes and their associated motors is assessed by assigning sub-pixel position coordinates to motor and cargo channels, by fitting Gaussian functions to the diffraction-limited point spread functions representing individual fluorescent point sources. Fixed cargo and motor images are subsequently superimposed to plots of cargo movement, to “map” them to their tracked trajectories. The strength of this protocol is the combination of live and IF data to record both the transport of vesicular cargoes in live cells and to determine the motors associated to these exact same vesicles. This technique overcomes previous challenges that use biochemical methods to determine the average motor composition of purified heterogeneous bulk vesicle populations, as these methods do not reveal compositions on single moving cargoes. Furthermore, this protocol can be adapted for the analysis of other transport and/or trafficking pathways in other cell types to correlate the movement of individual intracellular structures with their protein composition. Limitations of this protocol are the relatively low throughput due to low transfection efficiencies of cultured primary neurons and a limited field of view available for high-resolution imaging. Future applications could include methods to increase the number of neurons expressing fluorescently labeled cargoes.
Neuroscience, Issue 92, kinesin, dynein, single vesicle, axonal transport, microfluidic devices, primary hippocampal neurons, quantitative fluorescence microscopy
52029
Play Button
Ex Vivo Red Blood Cell Hemolysis Assay for the Evaluation of pH-responsive Endosomolytic Agents for Cytosolic Delivery of Biomacromolecular Drugs
Authors: Brian C. Evans, Christopher E. Nelson, Shann S. Yu, Kelsey R. Beavers, Arnold J. Kim, Hongmei Li, Heather M. Nelson, Todd D. Giorgio, Craig L. Duvall.
Institutions: Vanderbilt University, Vanderbilt University, Vanderbilt University, Vanderbilt University Medical Center, Vanderbilt University, Vanderbilt University.
Phospholipid bilayers that constitute endo-lysosomal vesicles can pose a barrier to delivery of biologic drugs to intracellular targets. To overcome this barrier, a number of synthetic drug carriers have been engineered to actively disrupt the endosomal membrane and deliver cargo into the cytoplasm. Here, we describe the hemolysis assay, which can be used as rapid, high-throughput screen for the cytocompatibility and endosomolytic activity of intracellular drug delivery systems. In the hemolysis assay, human red blood cells and test materials are co-incubated in buffers at defined pHs that mimic extracellular, early endosomal, and late endo-lysosomal environments. Following a centrifugation step to pellet intact red blood cells, the amount of hemoglobin released into the medium is spectrophotometrically measured (405 nm for best dynamic range). The percent red blood cell disruption is then quantified relative to positive control samples lysed with a detergent. In this model system the erythrocyte membrane serves as a surrogate for the lipid bilayer membrane that enclose endo-lysosomal vesicles. The desired result is negligible hemolysis at physiologic pH (7.4) and robust hemolysis in the endo-lysosomal pH range from approximately pH 5-6.8.
Immunology, Issue 73, Cellular Biology, Medicine, Biomedical Engineering, Bioengineering, Cancer Biology, Molecular Biology, Erythrocytes, Endosomes, Small Interfering RNA, Gene Therapy, Nanomedicine, Gene delivery, Nanoparticles, Endosome Escape, Intracellular Trafficking, Cytosolic Drug Delivery, red blood cells, assay
50166
Play Button
Detection of Viral RNA by Fluorescence in situ Hybridization (FISH)
Authors: Kishanda Vyboh, Lara Ajamian, Andrew J. Mouland.
Institutions: Sir Mortimer B. Davis Jewish General Hospital, McGill University , McGill University .
Viruses that infect cells elicit specific changes to normal cell functions which serve to divert energy and resources for viral replication. Many aspects of host cell function are commandeered by viruses, usually by the expression of viral gene products that recruit host cell proteins and machineries. Moreover, viruses engineer specific membrane organelles or tag on to mobile vesicles and motor proteins to target regions of the cell (during de novo infection, viruses co-opt molecular motor proteins to target the nucleus; later, during virus assembly, they will hijack cellular machineries that will help in the assembly of viruses). Less is understood on how viruses, in particular those with RNA genomes, coordinate the intracellular trafficking of both protein and RNA components and how they achieve assembly of infectious particles at specific loci in the cell. The study of RNA localization began in earlier work. Developing lower eukaryotic embryos and neuronal cells provided important biological information, and also underscored the importance of RNA localization in the programming of gene expression cascades. The study in other organisms and cell systems has yielded similar important information. Viruses are obligate parasites and must utilise their host cells to replicate. Thus, it is critical to understand how RNA viruses direct their RNA genomes from the nucleus, through the nuclear pore, through the cytoplasm and on to one of its final destinations, into progeny virus particles 1. FISH serves as a useful tool to identify changes in steady-state localization of viral RNA. When combined with immunofluorescence (IF) analysis 22, FISH/IF co-analyses will provide information on the co-localization of proteins with the viral RNA3. This analysis therefore provides a good starting point to test for RNA-protein interactions by other biochemical or biophysical tests 4,5, since co-localization by itself is not enough evidence to be certain of an interaction. In studying viral RNA localization using a method like this, abundant information has been gained on both viral and cellular RNA trafficking events 6. For instance, HIV-1 produces RNA in the nucleus of infected cells but the RNA is only translated in the cytoplasm. When one key viral protein is missing (Rev) 7, FISH of the viral RNA has revealed that the block to viral replication is due to the retention of the HIV-1 genomic RNA in the nucleus 8. Here, we present the method for visual analysis of viral genomic RNA in situ. The method makes use of a labelled RNA probe. This probe is designed to be complementary to the viral genomic RNA. During the in vitro synthesis of the antisense RNA probe, the ribonucleotide that is modified with digoxigenin (DIG) is included in an in vitro transcription reaction. Once the probe has hybridized to the target mRNA in cells, subsequent antibody labelling steps (Figure 1) will reveal the localization of the mRNA as well as proteins of interest when performing FISH/IF.
Genetics, Issue 63, Viral genomic RNA, Fluorescence in situ Hybridization, FISH, imaging, genomics
4002
Play Button
Constant Pressure-controlled Extrusion Method for the Preparation of Nano-sized Lipid Vesicles
Authors: Leslie A. Morton, Jonel P. Saludes, Hang Yin.
Institutions: University of Colorado Boulder, University of Colorado Boulder.
Liposomes are artificially prepared vesicles consisting of natural and synthetic phospholipids that are widely used as a cell membrane mimicking platform to study protein-protein and protein-lipid interactions3, monitor drug delivery4,5, and encapsulation4. Phospholipids naturally create curved lipid bilayers, distinguishing itself from a micelle.6 Liposomes are traditionally classified by size and number of bilayers, i.e. large unilamellar vesicles (LUVs), small unilamellar vesicles (SUVs) and multilamellar vesicles (MLVs)7. In particular, the preparation of homogeneous liposomes of various sizes is important for studying membrane curvature that plays a vital role in cell signaling, endo- and exocytosis, membrane fusion, and protein trafficking8. Several groups analyze how proteins are used to modulate processes that involve membrane curvature and thus prepare liposomes of diameters <100 - 400 nm to study their behavior on cell functions3. Others focus on liposome-drug encapsulation, studying liposomes as vehicles to carry and deliver a drug of interest9. Drug encapsulation can be achieved as reported during liposome formation9. Our extrusion step should not affect the encapsulated drug for two reasons, i.e. (1) drug encapsulation should be achieved prior to this step and (2) liposomes should retain their natural biophysical stability, securely carrying the drug in the aqueous core. These research goals further suggest the need for an optimized method to design stable sub-micron lipid vesicles. Nonetheless, the current liposome preparation technologies (sonication10, freeze-and-thaw10, sedimentation) do not allow preparation of liposomes with highly curved surface (i.e. diameter <100 nm) with high consistency and efficiency10,5, which limits the biophysical studies of an emerging field of membrane curvature sensing. Herein, we present a robust preparation method for a variety of biologically relevant liposomes. Manual extrusion using gas-tight syringes and polycarbonate membranes10,5 is a common practice but heterogeneity is often observed when using pore sizes <100 nm due to due to variability of manual pressure applied. We employed a constant pressure-controlled extrusion apparatus to prepare synthetic liposomes whose diameters range between 30 and 400 nm. Dynamic light scattering (DLS)10, electron microscopy11 and nanoparticle tracking analysis (NTA)12 were used to quantify the liposome sizes as described in our protocol, with commercial polystyrene (PS) beads used as a calibration standard. A near linear correlation was observed between the employed pore sizes and the experimentally determined liposomes, indicating high fidelity of our pressure-controlled liposome preparation method. Further, we have shown that this lipid vesicle preparation method is generally applicable, independent of various liposome sizes. Lastly, we have also demonstrated in a time course study that these prepared liposomes were stable for up to 16 hours. A representative nano-sized liposome preparation protocol is demonstrated below.
Bioengineering, Issue 64, Biomedical Engineering, Liposomes, particle extrusion, nano-sized vesicles, dynamic light scattering (DLS), nanoparticle tracking analysis (NTA)
4151
Play Button
Lipid Vesicle-mediated Affinity Chromatography using Magnetic Activated Cell Sorting (LIMACS): a Novel Method to Analyze Protein-lipid Interaction
Authors: Erhard Bieberich.
Institutions: Georgia Health Sciences University.
The analysis of lipid protein interaction is difficult because lipids are embedded in cell membranes and therefore, inaccessible to most purification procedures. As an alternative, lipids can be coated on flat surfaces as used for lipid ELISA and Plasmon resonance spectroscopy. However, surface coating lipids do not form microdomain structures, which may be important for the lipid binding properties. Further, these methods do not allow for the purification of larger amounts of proteins binding to their target lipids. To overcome these limitations of testing lipid protein interaction and to purify lipid binding proteins we developed a novel method termed lipid vesicle-mediated affinity chromatography using magnetic-activated cell sorting (LIMACS). In this method, lipid vesicles are prepared with the target lipid and phosphatidylserine as the anchor lipid for Annexin V MACS. Phosphatidylserine is a ubiquitous cell membrane phospholipid that shows high affinity to the protein Annexin V. Using magnetic beads conjugated to Annexin V the phosphatidylserine-containing lipid vesicles will bind to the magnetic beads. When the lipid vesicles are incubated with a cell lysate the protein binding to the target lipid will also be bound to the beads and can be co-purified using MACS. This method can also be used to test if recombinant proteins reconstitute a protein complex binding to the target lipid. We have used this method to show the interaction of atypical PKC (aPKC) with the sphingolipid ceramide and to co-purify prostate apoptosis response 4 (PAR-4), a protein binding to ceramide-associated aPKC. We have also used this method for the reconstitution of a ceramide-associated complex of recombinant aPKC with the cell polarity-related proteins Par6 and Cdc42. Since lipid vesicles can be prepared with a variety of sphingo- or phospholipids, LIMACS offers a versatile test for lipid-protein interaction in a lipid environment that resembles closely that of the cell membrane. Additional lipid protein complexes can be identified using proteomics analysis of lipid binding protein co-purified with the lipid vesicles.
Cellular Biology, Issue 50, ceramide, phosphatidylserine, lipid-protein interaction, atypical PKC
2657
Play Button
Studying Synaptic Vesicle Pools using Photoconversion of Styryl Dyes
Authors: Felipe Opazo, Silvio O. Rizzoli.
Institutions: European Neuroscience Institute Göttingen.
The fusion of synaptic vesicles with the plasma membrane (exocytosis) is a required step in neurotransmitter release and neuronal communication. The vesicles are then retrieved from the plasma membrane (endocytosis) and grouped together with the general pool of vesicles within the nerve terminal, until they undergo a new exo- and endocytosis cycle (vesicle recycling). These processes have been studied using a variety of techniques such as electron microscopy, electrophysiology recordings, amperometry and capacitance measurements. Importantly, during the last two decades a number of fluorescently labeled markers emerged, allowing optical techniques to track vesicles in their recycling dynamics. One of the most commonly used markers is the styryl or FM dye 1; structurally, all FM dyes contain a hydrophilic head and a lipophilic tail connected through an aromatic ring and one or more double bonds (Fig. 1B). A classical FM dye experiment to label a pool of vesicles consists in bathing the preparation (Fig. 1Ai) with the dye during the stimulation of the nerve (electrically or with high K+). This induces vesicle recycling and the subsequent loading of the dye into recently endocytosed vesicles (Fig. 1Ai-iii). After loading the vesicles with dye, a second round of stimulation in a dye-free bath would trigger the FM release through exocytosis (Fig. 1Aiv-v), process that can be followed by monitoring the fluorescence intensity decrease (destaining). Although FM dyes have contributed greatly to the field of vesicle recycling, it is not possible to determine the exact localization or morphology of individual vesicles by using conventional fluorescence microscopy. For that reason, we explain here how FM dyes can also be used as endocytic markers using electron microscopy, through photoconversion. The photoconversion technique exploits the property of fluorescent dyes to generate reactive oxygen species under intense illumination. Fluorescently labeled preparations are submerged in a solution containing diaminobenzidine (DAB) and illuminated. Reactive species generated by the dye molecules oxidize the DAB, which forms a stable, insoluble precipitate that has a dark appearance and can be easily distinguished in electron microscopy 2,3. As DAB is only oxidized in the immediate vicinity of fluorescent molecules (as the reactive oxygen species are short-lived), the technique ensures that only fluorescently labeled structures are going to contain the electron-dense precipitate. The technique thus allows the study of the exact location and morphology of actively recycling organelles.
JoVE Neuroscience, Issue 36, Photoconversion, FM1-43, Electron Microscope, Fluorescence, Drosophila, NMJ
1790
Play Button
Models and Methods to Evaluate Transport of Drug Delivery Systems Across Cellular Barriers
Authors: Rasa Ghaffarian, Silvia Muro.
Institutions: University of Maryland, University of Maryland.
Sub-micrometer carriers (nanocarriers; NCs) enhance efficacy of drugs by improving solubility, stability, circulation time, targeting, and release. Additionally, traversing cellular barriers in the body is crucial for both oral delivery of therapeutic NCs into the circulation and transport from the blood into tissues, where intervention is needed. NC transport across cellular barriers is achieved by: (i) the paracellular route, via transient disruption of the junctions that interlock adjacent cells, or (ii) the transcellular route, where materials are internalized by endocytosis, transported across the cell body, and secreted at the opposite cell surface (transyctosis). Delivery across cellular barriers can be facilitated by coupling therapeutics or their carriers with targeting agents that bind specifically to cell-surface markers involved in transport. Here, we provide methods to measure the extent and mechanism of NC transport across a model cell barrier, which consists of a monolayer of gastrointestinal (GI) epithelial cells grown on a porous membrane located in a transwell insert. Formation of a permeability barrier is confirmed by measuring transepithelial electrical resistance (TEER), transepithelial transport of a control substance, and immunostaining of tight junctions. As an example, ~200 nm polymer NCs are used, which carry a therapeutic cargo and are coated with an antibody that targets a cell-surface determinant. The antibody or therapeutic cargo is labeled with 125I for radioisotope tracing and labeled NCs are added to the upper chamber over the cell monolayer for varying periods of time. NCs associated to the cells and/or transported to the underlying chamber can be detected. Measurement of free 125I allows subtraction of the degraded fraction. The paracellular route is assessed by determining potential changes caused by NC transport to the barrier parameters described above. Transcellular transport is determined by addressing the effect of modulating endocytosis and transcytosis pathways.
Bioengineering, Issue 80, Antigens, Enzymes, Biological Therapy, bioengineering (general), Pharmaceutical Preparations, Macromolecular Substances, Therapeutics, Digestive System and Oral Physiological Phenomena, Biological Phenomena, Cell Physiological Phenomena, drug delivery systems, targeted nanocarriers, transcellular transport, epithelial cells, tight junctions, transepithelial electrical resistance, endocytosis, transcytosis, radioisotope tracing, immunostaining
50638
Play Button
Simple Microfluidic Devices for in vivo Imaging of C. elegans, Drosophila and Zebrafish
Authors: Sudip Mondal, Shikha Ahlawat, Sandhya P. Koushika.
Institutions: NCBS-TIFR, TIFR.
Micro fabricated fluidic devices provide an accessible micro-environment for in vivo studies on small organisms. Simple fabrication processes are available for microfluidic devices using soft lithography techniques 1-3. Microfluidic devices have been used for sub-cellular imaging 4,5, in vivo laser microsurgery 2,6 and cellular imaging 4,7. In vivo imaging requires immobilization of organisms. This has been achieved using suction 5,8, tapered channels 6,7,9, deformable membranes 2-4,10, suction with additional cooling 5, anesthetic gas 11, temperature sensitive gels 12, cyanoacrylate glue 13 and anesthetics such as levamisole 14,15. Commonly used anesthetics influence synaptic transmission 16,17 and are known to have detrimental effects on sub-cellular neuronal transport 4. In this study we demonstrate a membrane based poly-dimethyl-siloxane (PDMS) device that allows anesthetic free immobilization of intact genetic model organisms such as Caenorhabditis elegans (C. elegans), Drosophila larvae and zebrafish larvae. These model organisms are suitable for in vivo studies in microfluidic devices because of their small diameters and optically transparent or translucent bodies. Body diameters range from ~10 μm to ~800 μm for early larval stages of C. elegans and zebrafish larvae and require microfluidic devices of different sizes to achieve complete immobilization for high resolution time-lapse imaging. These organisms are immobilized using pressure applied by compressed nitrogen gas through a liquid column and imaged using an inverted microscope. Animals released from the trap return to normal locomotion within 10 min. We demonstrate four applications of time-lapse imaging in C. elegans namely, imaging mitochondrial transport in neurons, pre-synaptic vesicle transport in a transport-defective mutant, glutamate receptor transport and Q neuroblast cell division. Data obtained from such movies show that microfluidic immobilization is a useful and accurate means of acquiring in vivo data of cellular and sub-cellular events when compared to anesthetized animals (Figure 1J and 3C-F 4). Device dimensions were altered to allow time-lapse imaging of different stages of C. elegans, first instar Drosophila larvae and zebrafish larvae. Transport of vesicles marked with synaptotagmin tagged with GFP (syt.eGFP) in sensory neurons shows directed motion of synaptic vesicle markers expressed in cholinergic sensory neurons in intact first instar Drosophila larvae. A similar device has been used to carry out time-lapse imaging of heartbeat in ~30 hr post fertilization (hpf) zebrafish larvae. These data show that the simple devices we have developed can be applied to a variety of model systems to study several cell biological and developmental phenomena in vivo.
Bioengineering, Issue 67, Molecular Biology, Neuroscience, Microfluidics, C. elegans, Drosophila larvae, zebrafish larvae, anesthetic, pre-synaptic vesicle transport, dendritic transport of glutamate receptors, mitochondrial transport, synaptotagmin transport, heartbeat
3780
Play Button
Examination of Synaptic Vesicle Recycling Using FM Dyes During Evoked, Spontaneous, and Miniature Synaptic Activities
Authors: Sadahiro Iwabuchi, Yasuhiro Kakazu, Jin-Young Koh, Kirsty M. Goodman, N. Charles Harata.
Institutions: University of Iowa Carver College of Medicine, University of Bath.
Synaptic vesicles in functional nerve terminals undergo exocytosis and endocytosis. This synaptic vesicle recycling can be effectively analyzed using styryl FM dyes, which reveal membrane turnover. Conventional protocols for the use of FM dyes were designed for analyzing neurons following stimulated (evoked) synaptic activity. Recently, protocols have become available for analyzing the FM signals that accompany weaker synaptic activities, such as spontaneous or miniature synaptic events. Analysis of these small changes in FM signals requires that the imaging system is sufficiently sensitive to detect small changes in intensity, yet that artifactual changes of large amplitude are suppressed. Here we describe a protocol that can be applied to evoked, spontaneous, and miniature synaptic activities, and use cultured hippocampal neurons as an example. This protocol also incorporates a means of assessing the rate of photobleaching of FM dyes, as this is a significant source of artifacts when imaging small changes in intensity.
Neuroscience, Issue 85, Presynaptic Terminals, Synaptic Vesicles, Microscopy, Biological Assay, Nervous System, Endocytosis, exocytosis, fluorescence imaging, FM dye, neuron, photobleaching
50557
Play Button
Study of Phagolysosome Biogenesis in Live Macrophages
Authors: Marc Bronietzki, Bahram Kasmapour, Maximiliano Gabriel Gutierrez.
Institutions: Helmholtz Centre for Infection Research, National Institute for Medical Research.
Phagocytic cells play a major role in the innate immune system by removing and eliminating invading microorganisms in their phagosomes. Phagosome maturation is the complex and tightly regulated process during which a nascent phagosome undergoes drastic transformation through well-orchestrated interactions with various cellular organelles and compartments in the cytoplasm. This process, which is essential for the physiological function of phagocytic cells by endowing phagosomes with their lytic and bactericidal properties, culminates in fusion of phagosomes with lysosomes and biogenesis of phagolysosomes which is considered to be the last and critical stage of maturation for phagosomes. In this report, we describe a live cell imaging based method for qualitative and quantitative analysis of the dynamic process of lysosome to phagosome content delivery, which is a hallmark of phagolysosome biogenesis. This approach uses IgG-coated microbeads as a model for phagocytosis and fluorophore-conjugated dextran molecules as a luminal lysosomal cargo probe, in order to follow the dynamic delivery of lysosmal content to the phagosomes in real time in live macrophages using time-lapse imaging and confocal laser scanning microscopy. Here we describe in detail the background, the preparation steps and the step-by-step experimental setup to enable easy and precise deployment of this method in other labs. Our described method is simple, robust, and most importantly, can be easily adapted to study phagosomal interactions and maturation in different systems and under various experimental settings such as use of various phagocytic cells types, loss-of-function experiments, different probes, and phagocytic particles.
Immunology, Issue 85, Lysosome, Phagosome, phagolysosome, live-cell imaging, phagocytes, macrophages
51201
Play Button
Reconstitution of a Kv Channel into Lipid Membranes for Structural and Functional Studies
Authors: Sungsoo Lee, Hui Zheng, Liang Shi, Qiu-Xing Jiang.
Institutions: University of Texas Southwestern Medical Center at Dallas.
To study the lipid-protein interaction in a reductionistic fashion, it is necessary to incorporate the membrane proteins into membranes of well-defined lipid composition. We are studying the lipid-dependent gating effects in a prototype voltage-gated potassium (Kv) channel, and have worked out detailed procedures to reconstitute the channels into different membrane systems. Our reconstitution procedures take consideration of both detergent-induced fusion of vesicles and the fusion of protein/detergent micelles with the lipid/detergent mixed micelles as well as the importance of reaching an equilibrium distribution of lipids among the protein/detergent/lipid and the detergent/lipid mixed micelles. Our data suggested that the insertion of the channels in the lipid vesicles is relatively random in orientations, and the reconstitution efficiency is so high that no detectable protein aggregates were seen in fractionation experiments. We have utilized the reconstituted channels to determine the conformational states of the channels in different lipids, record electrical activities of a small number of channels incorporated in planar lipid bilayers, screen for conformation-specific ligands from a phage-displayed peptide library, and support the growth of 2D crystals of the channels in membranes. The reconstitution procedures described here may be adapted for studying other membrane proteins in lipid bilayers, especially for the investigation of the lipid effects on the eukaryotic voltage-gated ion channels.
Molecular Biology, Issue 77, Biochemistry, Genetics, Cellular Biology, Structural Biology, Biophysics, Membrane Lipids, Phospholipids, Carrier Proteins, Membrane Proteins, Micelles, Molecular Motor Proteins, life sciences, biochemistry, Amino Acids, Peptides, and Proteins, lipid-protein interaction, channel reconstitution, lipid-dependent gating, voltage-gated ion channel, conformation-specific ligands, lipids
50436
Play Button
The Cell-based L-Glutathione Protection Assays to Study Endocytosis and Recycling of Plasma Membrane Proteins
Authors: Kristine M. Cihil, Agnieszka Swiatecka-Urban.
Institutions: Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine.
Membrane trafficking involves transport of proteins from the plasma membrane to the cell interior (i.e. endocytosis) followed by trafficking to lysosomes for degradation or to the plasma membrane for recycling. The cell based L-glutathione protection assays can be used to study endocytosis and recycling of protein receptors, channels, transporters, and adhesion molecules localized at the cell surface. The endocytic assay requires labeling of cell surface proteins with a cell membrane impermeable biotin containing a disulfide bond and the N-hydroxysuccinimide (NHS) ester at 4 ºC - a temperature at which membrane trafficking does not occur. Endocytosis of biotinylated plasma membrane proteins is induced by incubation at 37 ºC. Next, the temperature is decreased again to 4 ºC to stop endocytic trafficking and the disulfide bond in biotin covalently attached to proteins that have remained at the plasma membrane is reduced with L-glutathione. At this point, only proteins that were endocytosed remain protected from L-glutathione and thus remain biotinylated. After cell lysis, biotinylated proteins are isolated with streptavidin agarose, eluted from agarose, and the biotinylated protein of interest is detected by western blotting. During the recycling assay, after biotinylation cells are incubated at 37 °C to load endocytic vesicles with biotinylated proteins and the disulfide bond in biotin covalently attached to proteins remaining at the plasma membrane is reduced with L-glutathione at 4 ºC as in the endocytic assay. Next, cells are incubated again at 37 °C to allow biotinylated proteins from endocytic vesicles to recycle to the plasma membrane. Cells are then incubated at 4 ºC, and the disulfide bond in biotin attached to proteins that recycled to the plasma membranes is reduced with L-glutathione. The biotinylated proteins protected from L-glutathione are those that did not recycle to the plasma membrane.
Basic Protocol, Issue 82, Endocytosis, recycling, plasma membrane, cell surface, EZLink, Sulfo-NHS-SS-Biotin, L-Glutathione, GSH, thiol group, disulfide bond, epithelial cells, cell polarization
50867
Play Button
Metabolic Labeling and Membrane Fractionation for Comparative Proteomic Analysis of Arabidopsis thaliana Suspension Cell Cultures
Authors: Witold G. Szymanski, Sylwia Kierszniowska, Waltraud X. Schulze.
Institutions: Max Plank Institute of Molecular Plant Physiology, University of Hohenheim.
Plasma membrane microdomains are features based on the physical properties of the lipid and sterol environment and have particular roles in signaling processes. Extracting sterol-enriched membrane microdomains from plant cells for proteomic analysis is a difficult task mainly due to multiple preparation steps and sources for contaminations from other cellular compartments. The plasma membrane constitutes only about 5-20% of all the membranes in a plant cell, and therefore isolation of highly purified plasma membrane fraction is challenging. A frequently used method involves aqueous two-phase partitioning in polyethylene glycol and dextran, which yields plasma membrane vesicles with a purity of 95% 1. Sterol-rich membrane microdomains within the plasma membrane are insoluble upon treatment with cold nonionic detergents at alkaline pH. This detergent-resistant membrane fraction can be separated from the bulk plasma membrane by ultracentrifugation in a sucrose gradient 2. Subsequently, proteins can be extracted from the low density band of the sucrose gradient by methanol/chloroform precipitation. Extracted protein will then be trypsin digested, desalted and finally analyzed by LC-MS/MS. Our extraction protocol for sterol-rich microdomains is optimized for the preparation of clean detergent-resistant membrane fractions from Arabidopsis thaliana cell cultures. We use full metabolic labeling of Arabidopsis thaliana suspension cell cultures with K15NO3 as the only nitrogen source for quantitative comparative proteomic studies following biological treatment of interest 3. By mixing equal ratios of labeled and unlabeled cell cultures for joint protein extraction the influence of preparation steps on final quantitative result is kept at a minimum. Also loss of material during extraction will affect both control and treatment samples in the same way, and therefore the ratio of light and heave peptide will remain constant. In the proposed method either labeled or unlabeled cell culture undergoes a biological treatment, while the other serves as control 4.
Empty Value, Issue 79, Cellular Structures, Plants, Genetically Modified, Arabidopsis, Membrane Lipids, Intracellular Signaling Peptides and Proteins, Membrane Proteins, Isotope Labeling, Proteomics, plants, Arabidopsis thaliana, metabolic labeling, stable isotope labeling, suspension cell cultures, plasma membrane fractionation, two phase system, detergent resistant membranes (DRM), mass spectrometry, membrane microdomains, quantitative proteomics
50535
Play Button
In vivo Visualization of Synaptic Vesicles Within Drosophila Larval Segmental Axons
Authors: Michelle L. Kuznicki, Shermali Gunawardena.
Institutions: SUNY-University at Buffalo.
Elucidating the mechanisms of axonal transport has shown to be very important in determining how defects in long distance transport affect different neurological diseases. Defects in this essential process can have detrimental effects on neuronal functioning and development. We have developed a dissection protocol that is designed to expose the Drosophila larval segmental nerves to view axonal transport in real time. We have adapted this protocol for live imaging from the one published by Hurd and Saxton (1996) used for immunolocalizatin of larval segmental nerves. Careful dissection and proper buffer conditions are critical for maximizing the lifespan of the dissected larvae. When properly done, dissected larvae have shown robust vesicle transport for 2-3 hours under physiological conditions. We use the UAS-GAL4 method 1 to express GFP-tagged APP or synaptotagmin vesicles within a single axon or many axons in larval segmental nerves by using different neuronal GAL4 drivers. Other fluorescently tagged markers, for example mitochrondria (MitoTracker) or lysosomes (LysoTracker), can be also applied to the larvae before viewing. GFP-vesicle movement and particle movement can be viewed simultaneously using separate wavelengths.
Neuroscience, Issue 44, Live imaging, Axonal transport, GFP-tagged vesicles
2151
Play Button
Measuring Exocytosis in Neurons Using FM Labeling
Authors: Jamila Newton, Venkatesh Murthy.
Institutions: Harvard.
The ability to measure the kinetics of vesicle release can help provide insight into some of the basics of neurotransmission. Here we used real-time imaging of vesicles labeled with FM dye to monitor the rate of presynaptic vesicle release. FM4-64 is a red fluorescent amphiphilic styryl dye that embeds into the membranes of synaptic vesicles as endocytosis is stimulated. Lipophilic interactions cause the dye to greatly increase in fluorescence, thus emitting a bright signal when associated with vesicles and a nominal one when in the extracellular fluid. After a wash step is used to help remove external dye within the plasma membrane, the remaining FM is concentrated within the vesicles and is then expelled when exocytosis is induced by another round of electrical stimulation. The rate of vesicles release is measured from the resulting decrease in fluorescence. Since FM dye can be applied external and transiently, it is a useful tool for determining rates of exocytosis in neuronal cultures, especially when comparing the rates between transfected synapses and neighboring control boutons.
Neuroscience, Issue 1, neuron, imaging, exocytosis
117
Play Button
Methods for Patch Clamp Capacitance Recordings from the Calyx
Authors: Kenneth Paradiso, Wei Wu, Ling-Gang Wu.
Institutions: National Institute of Health.
We demonstrate the basic techniques for presynaptic patch clamp recording at the calyx of Held, a mammalian central nervous system nerve terminal. Electrical recordings from the presynaptic terminal allow the measurement of action potentials, calcium channel currents, vesicle fusion (exocytosis) and subsequent membrane uptake (endocytosis). The fusion of vesicles containing neurotransmitter causes the vesicle membrane to be added to the cell membrane of the calyx. This increase in the amount of cell membrane is measured as an increase in capacitance. The subsequent reduction in capacitance indicates endocytosis, the process of membrane uptake or removal from the calyx membrane. Endocytosis, is necessary to maintain the structure of the calyx and it is also necessary to form vesicles that will be filled with neurotransmitter for future exocytosis events. Capacitance recordings at the calyx of Held have made it possible to directly and rapidly measure vesicular release and subsequent endocytosis in a mammalian CNS nerve terminal. In addition, the corresponding postsynaptic activity can be simultaneously measured by using paired recordings. Thus a complete picture of the presynaptic and postsynaptic electrical activity at a central nervous system synapse is achievable using this preparation. Here, the methods for slice preparation, morphological features for identification of calyces of Held, basic patch clamping techniques, and examples of capacitance recordings to measure exocytosis and endocytosis are presented.
Neuroscience, Issue 6, membrane fusion, exocytosis, endocytosis
244
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.