JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Hypotheses of spatial stock structure in orange roughy Hoplostethus atlanticus inferred from diet, feeding, condition, and reproductive activity.
PLoS ONE
PUBLISHED: 06-29-2011
We evaluate hypotheses for meso-scale spatial structure in an orange roughy (Hoplostethus atlanticus) stock using samples collected during research trawl surveys off the east coast of New Zealand. Distance-based linear models and generalised additive models were used to identify the most significant biological, environmental, and temporal predictors of variability in diet, proportion of stomachs containing prey, standardised weight of prey, fish somatic weight, fish total weight, and reproductive activity. The diet was similar to that observed elsewhere, and varied with ontogeny, depth, and surface water temperature. Smaller sized and female orange roughy in warmer bottom water were most likely to contain food. Fish condition and reproductive activity were highest at distances more than 20 km from the summit of the hills. Trawl survey catches indicated greater orange roughy densities in hill strata, suggesting hill habitat was favoured. However, analyses of feeding, condition, and reproductive activity indicated hill fish were not superior, despite fish densities on hills being reduced by fishing which, in principle, should have reduced intra-specific competition for food and other resources. Hypotheses for this result include: (1) fish in relatively poor condition visit hills to feed and regain condition and then leave, or (2) commercial fishing has disturbed feeding aggregations and/or caused habitat damage, making fished hills less productive. Mature orange roughy were observed on both flat and hill habitat during periods outside of spawning, and if this spatial structure was persistent then a proportion of the total spawning stock biomass would remain unavailable to fisheries targeting hills. Orange roughy stock assessments informed only by data from hills may well be misleading.
Authors: Charles P. Madenjian, Richard R. Rediske, James P. O'Keefe, Solomon R. David.
Published: 08-29-2014
ABSTRACT
A technique for laboratory estimation of net trophic transfer efficiency (γ) of polychlorinated biphenyl (PCB) congeners to piscivorous fish from their prey is described herein. During a 135-day laboratory experiment, we fed bloater (Coregonus hoyi) that had been caught in Lake Michigan to lake trout (Salvelinus namaycush) kept in eight laboratory tanks. Bloater is a natural prey for lake trout. In four of the tanks, a relatively high flow rate was used to ensure relatively high activity by the lake trout, whereas a low flow rate was used in the other four tanks, allowing for low lake trout activity. On a tank-by-tank basis, the amount of food eaten by the lake trout on each day of the experiment was recorded. Each lake trout was weighed at the start and end of the experiment. Four to nine lake trout from each of the eight tanks were sacrificed at the start of the experiment, and all 10 lake trout remaining in each of the tanks were euthanized at the end of the experiment. We determined concentrations of 75 PCB congeners in the lake trout at the start of the experiment, in the lake trout at the end of the experiment, and in bloaters fed to the lake trout during the experiment. Based on these measurements, γ was calculated for each of 75 PCB congeners in each of the eight tanks. Mean γ was calculated for each of the 75 PCB congeners for both active and inactive lake trout. Because the experiment was replicated in eight tanks, the standard error about mean γ could be estimated. Results from this type of experiment are useful in risk assessment models to predict future risk to humans and wildlife eating contaminated fish under various scenarios of environmental contamination.
25 Related JoVE Articles!
Play Button
A Novel Method of Drug Administration to Multiple Zebrafish (Danio rerio) and the Quantification of Withdrawal
Authors: Adam Holcombe, Melike Schalomon, Trevor James Hamilton.
Institutions: MacEwan University.
Anxiety testing in zebrafish is often studied in combination with the application of pharmacological substances. In these studies, fish are routinely netted and transported between home aquaria and dosing tanks. In order to enhance the ease of compound administration, a novel method for transferring fish between tanks for drug administration was developed. Inserts that are designed for spawning were used to transfer groups of fish into the drug solution, allowing accurate dosing of all fish in the group. This increases the precision and efficiency of dosing, which becomes very important in long schedules of repeated drug administration. We implemented this procedure for use in a study examining the behavior of zebrafish in the light/dark test after administering ethanol with differing 21 day schedules. In fish exposed to daily-moderate amounts of alcohol there was a significant difference in location preference after 2 days of withdrawal when compared to the control group. However, a significant difference in location preference in a group exposed to weekly-binge administration was not observed. This protocol can be generalized for use with all types of compounds that are water-soluble and may be used in any situation when the behavior of fish during or after long schedules of drug administration is being examined. The light/dark test is also a valuable method of assessing withdrawal-induced changes in anxiety.
Neuroscience, Issue 93, Zebrafish, Ethanol, Behavior, Anxiety, Pharmacology, Fish, Neuroscience, Drug administration, Scototaxis
51851
Play Button
A Behavioral Assay to Measure Responsiveness of Zebrafish to Changes in Light Intensities
Authors: Farida Emran, Jason Rihel, John E. Dowling.
Institutions: Harvard.
The optokinetic reflex (OKR) is a basic visual reflex exhibited by most vertebrates and plays an important role in stabilizing the eye relative to the visual scene. However, the OKR requires that an animal detect moving stripes and it is possible that fish that fail to exhibit an OKR may not be completely blind. One zebrafish mutant, the no optokinetic response c (nrc) has no OKR under any light conditions tested and was reported to be completely blind. Previously, we have shown that OFF-ganglion cell activity can be recorded in these mutants. To determine whether mutant fish with no OKR such as the nrc mutant can detect simple light increments and decrements we developed the visual motor behavioral assay (VMR). In this assay, single zebrafish larvae are placed in each well of a 96-well plate allowing the simultaneous monitoring of larvae using an automated video-tracking system. The locomotor responses of each larva to 30 minutes light ON and 30 minutes light OFF were recorded and quantified. WT fish have a brief spike of motor activity upon lights ON, known as the startle response, followed by return to lower-than baseline activity, called a freeze. WT fish also sharply increase their locomotor activity immediately following lights OFF and only gradually (over several minutes) return to baseline locomotor activity. The nrc mutants respond similarly to light OFF as WT fish, but exhibit a slight reduction in their average activity as compared to WT fish. Motor activity in response to light ON in nrc mutants is delayed and sluggish. There is a slow rise time of the nrc mutant response to light ON as compared to WT light ON response. The results indicate that nrc fish are not completely blind. Because teleosts can detect light through non-retinal tissues, we confirmed that the immediate behavioral responses to light-intensity changes require intact eyes by using the chokh (chk) mutants, which completely lack eyes from the earliest stages of development. In our VMR assay, the chk mutants exhibit no startle response to either light ON or OFF, showing that the lateral eyes mediate this behavior. The VMR assay described here complements the well-established OKR assay, which does not test the ability of zebrafish larvae to respond to changes in light intensities. Additionally, the automation of the VMR assay lends itself to high-throughput screening for defects in light-intensity driven visual responses.
Developmental Biology, Issue 20, vision, ON- and OFF-responses, behavior, zebrafish
923
Play Button
Swimming Performance Assessment in Fishes
Authors: Keith B. Tierney.
Institutions: University of Alberta.
Swimming performance tests of fish have been integral to studies of muscle energetics, swimming mechanics, gas exchange, cardiac physiology, disease, pollution, hypoxia and temperature. This paper describes a flexible protocol to assess fish swimming performance using equipment in which water velocity can be controlled. The protocol involves one to several stepped increases in flow speed that are intended to cause fish to fatigue. Step speeds and their duration can be set to capture swimming abilities of different physiological and ecological relevance. Most frequently step size is set to determine critical swimming velocity (Ucrit), which is intended to capture maximum sustained swimming ability. Traditionally this test has consisted of approximately ten steps each of 20 min duration. However, steps of shorter duration (e.g. 1 min) are increasingly being utilized to capture acceleration ability or burst swimming performance. Regardless of step size, swimming tests can be repeated over time to gauge individual variation and recovery ability. Endpoints related to swimming such as measures of metabolic rate, fin use, ventilation rate, and of behavior, such as the distance between schooling fish, are often included before, during and after swimming tests. Given the diversity of fish species, the number of unexplored research questions, and the importance of many species to global ecology and economic health, studies of fish swimming performance will remain popular and invaluable for the foreseeable future.
Physiology, Issue 51, fish, swimming, Ucrit, burst, sustained, prolonged, schooling performance
2572
Play Button
Regular Care and Maintenance of a Zebrafish (Danio rerio) Laboratory: An Introduction
Authors: Avdesh Avdesh, Mengqi Chen, Mathew T. Martin-Iverson, Alinda Mondal, Daniel Ong, Stephanie Rainey-Smith, Kevin Taddei, Michael Lardelli, David M. Groth, Giuseppe Verdile, Ralph N. Martins.
Institutions: Edith Cowan University, Graylands Hospital, University of Western Australia, McCusker Alzheimer's Research foundation, University of Western Australia , University of Adelaide, Curtin University of Technology, University of Western Australia .
This protocol describes regular care and maintenance of a zebrafish laboratory. Zebrafish are now gaining popularity in genetics, pharmacological and behavioural research. As a vertebrate, zebrafish share considerable genetic sequence similarity with humans and are being used as an animal model for various human disease conditions. The advantages of zebrafish in comparison to other common vertebrate models include high fecundity, low maintenance cost, transparent embryos, and rapid development. Due to the spur of interest in zebrafish research, the need to establish and maintain a productive zebrafish housing facility is also increasing. Although literature is available for the maintenance of a zebrafish laboratory, a concise video protocol is lacking. This video illustrates the protocol for regular housing, feeding, breeding and raising of zebrafish larvae. This process will help researchers to understand the natural behaviour and optimal conditions of zebrafish husbandry and hence troubleshoot experimental issues that originate from the fish husbandry conditions. This protocol will be of immense help to researchers planning to establish a zebrafish laboratory, and also to graduate students who are intending to use zebrafish as an animal model.
Basic Protocols, Issue 69, Biology, Marine Biology, Zebrafish, Danio rerio, maintenance, breeding, feeding, raising, larvae, animal model, aquarium
4196
Play Button
Cortical Source Analysis of High-Density EEG Recordings in Children
Authors: Joe Bathelt, Helen O'Reilly, Michelle de Haan.
Institutions: UCL Institute of Child Health, University College London.
EEG is traditionally described as a neuroimaging technique with high temporal and low spatial resolution. Recent advances in biophysical modelling and signal processing make it possible to exploit information from other imaging modalities like structural MRI that provide high spatial resolution to overcome this constraint1. This is especially useful for investigations that require high resolution in the temporal as well as spatial domain. In addition, due to the easy application and low cost of EEG recordings, EEG is often the method of choice when working with populations, such as young children, that do not tolerate functional MRI scans well. However, in order to investigate which neural substrates are involved, anatomical information from structural MRI is still needed. Most EEG analysis packages work with standard head models that are based on adult anatomy. The accuracy of these models when used for children is limited2, because the composition and spatial configuration of head tissues changes dramatically over development3.  In the present paper, we provide an overview of our recent work in utilizing head models based on individual structural MRI scans or age specific head models to reconstruct the cortical generators of high density EEG. This article describes how EEG recordings are acquired, processed, and analyzed with pediatric populations at the London Baby Lab, including laboratory setup, task design, EEG preprocessing, MRI processing, and EEG channel level and source analysis. 
Behavior, Issue 88, EEG, electroencephalogram, development, source analysis, pediatric, minimum-norm estimation, cognitive neuroscience, event-related potentials 
51705
Play Button
Non-radioactive in situ Hybridization Protocol Applicable for Norway Spruce and a Range of Plant Species
Authors: Anna Karlgren, Jenny Carlsson, Niclas Gyllenstrand, Ulf Lagercrantz, Jens F. Sundström.
Institutions: Uppsala University, Swedish University of Agricultural Sciences.
The high-throughput expression analysis technologies available today give scientists an overflow of expression profiles but their resolution in terms of tissue specific expression is limited because of problems in dissecting individual tissues. Expression data needs to be confirmed and complemented with expression patterns using e.g. in situ hybridization, a technique used to localize cell specific mRNA expression. The in situ hybridization method is laborious, time-consuming and often requires extensive optimization depending on species and tissue. In situ experiments are relatively more difficult to perform in woody species such as the conifer Norway spruce (Picea abies). Here we present a modified DIG in situ hybridization protocol, which is fast and applicable on a wide range of plant species including P. abies. With just a few adjustments, including altered RNase treatment and proteinase K concentration, we could use the protocol to study tissue specific expression of homologous genes in male reproductive organs of one gymnosperm and two angiosperm species; P. abies, Arabidopsis thaliana and Brassica napus. The protocol worked equally well for the species and genes studied. AtAP3 and BnAP3 were observed in second and third whorl floral organs in A. thaliana and B. napus and DAL13 in microsporophylls of male cones from P. abies. For P. abies the proteinase K concentration, used to permeablize the tissues, had to be increased to 3 g/ml instead of 1 g/ml, possibly due to more compact tissues and higher levels of phenolics and polysaccharides. For all species the RNase treatment was removed due to reduced signal strength without a corresponding increase in specificity. By comparing tissue specific expression patterns of homologous genes from both flowering plants and a coniferous tree we demonstrate that the DIG in situ protocol presented here, with only minute adjustments, can be applied to a wide range of plant species. Hence, the protocol avoids both extensive species specific optimization and the laborious use of radioactively labeled probes in favor of DIG labeled probes. We have chosen to illustrate the technically demanding steps of the protocol in our film. Anna Karlgren and Jenny Carlsson contributed equally to this study. Corresponding authors: Anna Karlgren at Anna.Karlgren@ebc.uu.se and Jens F. Sundström at Jens.Sundstrom@vbsg.slu.se
Plant Biology, Issue 26, RNA, expression analysis, Norway spruce, Arabidopsis, rapeseed, conifers
1205
Play Button
A Proboscis Extension Response Protocol for Investigating Behavioral Plasticity in Insects: Application to Basic, Biomedical, and Agricultural Research
Authors: Brian H. Smith, Christina M. Burden.
Institutions: Arizona State University.
Insects modify their responses to stimuli through experience of associating those stimuli with events important for survival (e.g., food, mates, threats). There are several behavioral mechanisms through which an insect learns salient associations and relates them to these events. It is important to understand this behavioral plasticity for programs aimed toward assisting insects that are beneficial for agriculture. This understanding can also be used for discovering solutions to biomedical and agricultural problems created by insects that act as disease vectors and pests. The Proboscis Extension Response (PER) conditioning protocol was developed for honey bees (Apis mellifera) over 50 years ago to study how they perceive and learn about floral odors, which signal the nectar and pollen resources a colony needs for survival. The PER procedure provides a robust and easy-to-employ framework for studying several different ecologically relevant mechanisms of behavioral plasticity. It is easily adaptable for use with several other insect species and other behavioral reflexes. These protocols can be readily employed in conjunction with various means for monitoring neural activity in the CNS via electrophysiology or bioimaging, or for manipulating targeted neuromodulatory pathways. It is a robust assay for rapidly detecting sub-lethal effects on behavior caused by environmental stressors, toxins or pesticides. We show how the PER protocol is straightforward to implement using two procedures. One is suitable as a laboratory exercise for students or for quick assays of the effect of an experimental treatment. The other provides more thorough control of variables, which is important for studies of behavioral conditioning. We show how several measures for the behavioral response ranging from binary yes/no to more continuous variable like latency and duration of proboscis extension can be used to test hypotheses. And, we discuss some pitfalls that researchers commonly encounter when they use the procedure for the first time.
Neuroscience, Issue 91, PER, conditioning, honey bee, olfaction, olfactory processing, learning, memory, toxin assay
51057
Play Button
Training Synesthetic Letter-color Associations by Reading in Color
Authors: Olympia Colizoli, Jaap M. J. Murre, Romke Rouw.
Institutions: University of Amsterdam.
Synesthesia is a rare condition in which a stimulus from one modality automatically and consistently triggers unusual sensations in the same and/or other modalities. A relatively common and well-studied type is grapheme-color synesthesia, defined as the consistent experience of color when viewing, hearing and thinking about letters, words and numbers. We describe our method for investigating to what extent synesthetic associations between letters and colors can be learned by reading in color in nonsynesthetes. Reading in color is a special method for training associations in the sense that the associations are learned implicitly while the reader reads text as he or she normally would and it does not require explicit computer-directed training methods. In this protocol, participants are given specially prepared books to read in which four high-frequency letters are paired with four high-frequency colors. Participants receive unique sets of letter-color pairs based on their pre-existing preferences for colored letters. A modified Stroop task is administered before and after reading in order to test for learned letter-color associations and changes in brain activation. In addition to objective testing, a reading experience questionnaire is administered that is designed to probe for differences in subjective experience. A subset of questions may predict how well an individual learned the associations from reading in color. Importantly, we are not claiming that this method will cause each individual to develop grapheme-color synesthesia, only that it is possible for certain individuals to form letter-color associations by reading in color and these associations are similar in some aspects to those seen in developmental grapheme-color synesthetes. The method is quite flexible and can be used to investigate different aspects and outcomes of training synesthetic associations, including learning-induced changes in brain function and structure.
Behavior, Issue 84, synesthesia, training, learning, reading, vision, memory, cognition
50893
Play Button
Methods to Assess Subcellular Compartments of Muscle in C. elegans
Authors: Christopher J. Gaffney, Joseph J. Bass, Thomas F. Barratt, Nathaniel J. Szewczyk.
Institutions: University of Nottingham.
Muscle is a dynamic tissue that responds to changes in nutrition, exercise, and disease state. The loss of muscle mass and function with disease and age are significant public health burdens. We currently understand little about the genetic regulation of muscle health with disease or age. The nematode C. elegans is an established model for understanding the genomic regulation of biological processes of interest. This worm’s body wall muscles display a large degree of homology with the muscles of higher metazoan species. Since C. elegans is a transparent organism, the localization of GFP to mitochondria and sarcomeres allows visualization of these structures in vivo. Similarly, feeding animals cationic dyes, which accumulate based on the existence of a mitochondrial membrane potential, allows the assessment of mitochondrial function in vivo. These methods, as well as assessment of muscle protein homeostasis, are combined with assessment of whole animal muscle function, in the form of movement assays, to allow correlation of sub-cellular defects with functional measures of muscle performance. Thus, C. elegans provides a powerful platform with which to assess the impact of mutations, gene knockdown, and/or chemical compounds upon muscle structure and function. Lastly, as GFP, cationic dyes, and movement assays are assessed non-invasively, prospective studies of muscle structure and function can be conducted across the whole life course and this at present cannot be easily investigated in vivo in any other organism.
Developmental Biology, Issue 93, Physiology, C. elegans, muscle, mitochondria, sarcomeres, ageing
52043
Play Button
Barnes Maze Testing Strategies with Small and Large Rodent Models
Authors: Cheryl S. Rosenfeld, Sherry A. Ferguson.
Institutions: University of Missouri, Food and Drug Administration.
Spatial learning and memory of laboratory rodents is often assessed via navigational ability in mazes, most popular of which are the water and dry-land (Barnes) mazes. Improved performance over sessions or trials is thought to reflect learning and memory of the escape cage/platform location. Considered less stressful than water mazes, the Barnes maze is a relatively simple design of a circular platform top with several holes equally spaced around the perimeter edge. All but one of the holes are false-bottomed or blind-ending, while one leads to an escape cage. Mildly aversive stimuli (e.g. bright overhead lights) provide motivation to locate the escape cage. Latency to locate the escape cage can be measured during the session; however, additional endpoints typically require video recording. From those video recordings, use of automated tracking software can generate a variety of endpoints that are similar to those produced in water mazes (e.g. distance traveled, velocity/speed, time spent in the correct quadrant, time spent moving/resting, and confirmation of latency). Type of search strategy (i.e. random, serial, or direct) can be categorized as well. Barnes maze construction and testing methodologies can differ for small rodents, such as mice, and large rodents, such as rats. For example, while extra-maze cues are effective for rats, smaller wild rodents may require intra-maze cues with a visual barrier around the maze. Appropriate stimuli must be identified which motivate the rodent to locate the escape cage. Both Barnes and water mazes can be time consuming as 4-7 test trials are typically required to detect improved learning and memory performance (e.g. shorter latencies or path lengths to locate the escape platform or cage) and/or differences between experimental groups. Even so, the Barnes maze is a widely employed behavioral assessment measuring spatial navigational abilities and their potential disruption by genetic, neurobehavioral manipulations, or drug/ toxicant exposure.
Behavior, Issue 84, spatial navigation, rats, Peromyscus, mice, intra- and extra-maze cues, learning, memory, latency, search strategy, escape motivation
51194
Play Button
Using the optokinetic response to study visual function of zebrafish
Authors: Su-Qi Zou, Wu Yin, Ming-Jing Zhang, Chun-Rui Hu, Yu-Bin Huang, Bing Hu.
Institutions: University of Science and Technology of China (USTC).
Optokinetic response (OKR) is a behavior that an animal vibrates its eyes to follow a rotating grating around it. It has been widely used to assess the visual functions of larval zebrafish1-5. Nevertheless, the standard protocol for larval fish is not yet readily applicable in adult zabrafish. Here, we introduce how to measure the OKR of adult zebrafish with our simple custom-built apparatus using a new protocol which is established in our lab. Both our apparatus and step-by-step procedure of OKR in adult zebrafish are illustrated in this video. In addition, the measurements of the larval OKR, as well as the optomotor response (OMR) test of adult zebrafish, are also demonstrated in this video. This OKR assay of adult zebrafish in our experiment may last for up to 4 hours. Such OKR test applied in adult fish will benefit to visual function investigation more efficiently when the adult fish vision system is manipulated. Su-Qi Zou and Wu Yin contributed equally to this paper.
Neuroscience, Issue 36, Zebrafish, OKR, OMR, behavior, optokinetic, vision
1742
Play Button
Simultaneous Multicolor Imaging of Biological Structures with Fluorescence Photoactivation Localization Microscopy
Authors: Nikki M. Curthoys, Michael J. Mlodzianoski, Dahan Kim, Samuel T. Hess.
Institutions: University of Maine.
Localization-based super resolution microscopy can be applied to obtain a spatial map (image) of the distribution of individual fluorescently labeled single molecules within a sample with a spatial resolution of tens of nanometers. Using either photoactivatable (PAFP) or photoswitchable (PSFP) fluorescent proteins fused to proteins of interest, or organic dyes conjugated to antibodies or other molecules of interest, fluorescence photoactivation localization microscopy (FPALM) can simultaneously image multiple species of molecules within single cells. By using the following approach, populations of large numbers (thousands to hundreds of thousands) of individual molecules are imaged in single cells and localized with a precision of ~10-30 nm. Data obtained can be applied to understanding the nanoscale spatial distributions of multiple protein types within a cell. One primary advantage of this technique is the dramatic increase in spatial resolution: while diffraction limits resolution to ~200-250 nm in conventional light microscopy, FPALM can image length scales more than an order of magnitude smaller. As many biological hypotheses concern the spatial relationships among different biomolecules, the improved resolution of FPALM can provide insight into questions of cellular organization which have previously been inaccessible to conventional fluorescence microscopy. In addition to detailing the methods for sample preparation and data acquisition, we here describe the optical setup for FPALM. One additional consideration for researchers wishing to do super-resolution microscopy is cost: in-house setups are significantly cheaper than most commercially available imaging machines. Limitations of this technique include the need for optimizing the labeling of molecules of interest within cell samples, and the need for post-processing software to visualize results. We here describe the use of PAFP and PSFP expression to image two protein species in fixed cells. Extension of the technique to living cells is also described.
Basic Protocol, Issue 82, Microscopy, Super-resolution imaging, Multicolor, single molecule, FPALM, Localization microscopy, fluorescent proteins
50680
Play Button
Automated, Quantitative Cognitive/Behavioral Screening of Mice: For Genetics, Pharmacology, Animal Cognition and Undergraduate Instruction
Authors: C. R. Gallistel, Fuat Balci, David Freestone, Aaron Kheifets, Adam King.
Institutions: Rutgers University, Koç University, New York University, Fairfield University.
We describe a high-throughput, high-volume, fully automated, live-in 24/7 behavioral testing system for assessing the effects of genetic and pharmacological manipulations on basic mechanisms of cognition and learning in mice. A standard polypropylene mouse housing tub is connected through an acrylic tube to a standard commercial mouse test box. The test box has 3 hoppers, 2 of which are connected to pellet feeders. All are internally illuminable with an LED and monitored for head entries by infrared (IR) beams. Mice live in the environment, which eliminates handling during screening. They obtain their food during two or more daily feeding periods by performing in operant (instrumental) and Pavlovian (classical) protocols, for which we have written protocol-control software and quasi-real-time data analysis and graphing software. The data analysis and graphing routines are written in a MATLAB-based language created to simplify greatly the analysis of large time-stamped behavioral and physiological event records and to preserve a full data trail from raw data through all intermediate analyses to the published graphs and statistics within a single data structure. The data-analysis code harvests the data several times a day and subjects it to statistical and graphical analyses, which are automatically stored in the "cloud" and on in-lab computers. Thus, the progress of individual mice is visualized and quantified daily. The data-analysis code talks to the protocol-control code, permitting the automated advance from protocol to protocol of individual subjects. The behavioral protocols implemented are matching, autoshaping, timed hopper-switching, risk assessment in timed hopper-switching, impulsivity measurement, and the circadian anticipation of food availability. Open-source protocol-control and data-analysis code makes the addition of new protocols simple. Eight test environments fit in a 48 in x 24 in x 78 in cabinet; two such cabinets (16 environments) may be controlled by one computer.
Behavior, Issue 84, genetics, cognitive mechanisms, behavioral screening, learning, memory, timing
51047
Play Button
Long-term Behavioral Tracking of Freely Swimming Weakly Electric Fish
Authors: James J. Jun, André Longtin, Leonard Maler.
Institutions: University of Ottawa, University of Ottawa, University of Ottawa.
Long-term behavioral tracking can capture and quantify natural animal behaviors, including those occurring infrequently. Behaviors such as exploration and social interactions can be best studied by observing unrestrained, freely behaving animals. Weakly electric fish (WEF) display readily observable exploratory and social behaviors by emitting electric organ discharge (EOD). Here, we describe three effective techniques to synchronously measure the EOD, body position, and posture of a free-swimming WEF for an extended period of time. First, we describe the construction of an experimental tank inside of an isolation chamber designed to block external sources of sensory stimuli such as light, sound, and vibration. The aquarium was partitioned to accommodate four test specimens, and automated gates remotely control the animals' access to the central arena. Second, we describe a precise and reliable real-time EOD timing measurement method from freely swimming WEF. Signal distortions caused by the animal's body movements are corrected by spatial averaging and temporal processing stages. Third, we describe an underwater near-infrared imaging setup to observe unperturbed nocturnal animal behaviors. Infrared light pulses were used to synchronize the timing between the video and the physiological signal over a long recording duration. Our automated tracking software measures the animal's body position and posture reliably in an aquatic scene. In combination, these techniques enable long term observation of spontaneous behavior of freely swimming weakly electric fish in a reliable and precise manner. We believe our method can be similarly applied to the study of other aquatic animals by relating their physiological signals with exploratory or social behaviors.
Neuroscience, Issue 85, animal tracking, weakly electric fish, electric organ discharge, underwater infrared imaging, automated image tracking, sensory isolation chamber, exploratory behavior
50962
Play Button
Viability Assays for Cells in Culture
Authors: Jessica M. Posimo, Ajay S. Unnithan, Amanda M. Gleixner, Hailey J. Choi, Yiran Jiang, Sree H. Pulugulla, Rehana K. Leak.
Institutions: Duquesne University.
Manual cell counts on a microscope are a sensitive means of assessing cellular viability but are time-consuming and therefore expensive. Computerized viability assays are expensive in terms of equipment but can be faster and more objective than manual cell counts. The present report describes the use of three such viability assays. Two of these assays are infrared and one is luminescent. Both infrared assays rely on a 16 bit Odyssey Imager. One infrared assay uses the DRAQ5 stain for nuclei combined with the Sapphire stain for cytosol and is visualized in the 700 nm channel. The other infrared assay, an In-Cell Western, uses antibodies against cytoskeletal proteins (α-tubulin or microtubule associated protein 2) and labels them in the 800 nm channel. The third viability assay is a commonly used luminescent assay for ATP, but we use a quarter of the recommended volume to save on cost. These measurements are all linear and correlate with the number of cells plated, but vary in sensitivity. All three assays circumvent time-consuming microscopy and sample the entire well, thereby reducing sampling error. Finally, all of the assays can easily be completed within one day of the end of the experiment, allowing greater numbers of experiments to be performed within short timeframes. However, they all rely on the assumption that cell numbers remain in proportion to signal strength after treatments, an assumption that is sometimes not met, especially for cellular ATP. Furthermore, if cells increase or decrease in size after treatment, this might affect signal strength without affecting cell number. We conclude that all viability assays, including manual counts, suffer from a number of caveats, but that computerized viability assays are well worth the initial investment. Using all three assays together yields a comprehensive view of cellular structure and function.
Cellular Biology, Issue 83, In-cell Western, DRAQ5, Sapphire, Cell Titer Glo, ATP, primary cortical neurons, toxicity, protection, N-acetyl cysteine, hormesis
50645
Play Button
Detection of the Genome and Transcripts of a Persistent DNA Virus in Neuronal Tissues by Fluorescent In situ Hybridization Combined with Immunostaining
Authors: Frédéric Catez, Antoine Rousseau, Marc Labetoulle, Patrick Lomonte.
Institutions: CNRS UMR 5534, Université de Lyon 1, LabEX DEVweCAN, CNRS UPR 3296, CNRS UMR 5286.
Single cell codetection of a gene, its RNA product and cellular regulatory proteins is critical to study gene expression regulation. This is a challenge in the field of virology; in particular for nuclear-replicating persistent DNA viruses that involve animal models for their study. Herpes simplex virus type 1 (HSV-1) establishes a life-long latent infection in peripheral neurons. Latent virus serves as reservoir, from which it reactivates and induces a new herpetic episode. The cell biology of HSV-1 latency remains poorly understood, in part due to the lack of methods to detect HSV-1 genomes in situ in animal models. We describe a DNA-fluorescent in situ hybridization (FISH) approach efficiently detecting low-copy viral genomes within sections of neuronal tissues from infected animal models. The method relies on heat-based antigen unmasking, and directly labeled home-made DNA probes, or commercially available probes. We developed a triple staining approach, combining DNA-FISH with RNA-FISH and immunofluorescence, using peroxidase based signal amplification to accommodate each staining requirement. A major improvement is the ability to obtain, within 10 µm tissue sections, low-background signals that can be imaged at high resolution by confocal microscopy and wide-field conventional epifluorescence. Additionally, the triple staining worked with a wide range of antibodies directed against cellular and viral proteins. The complete protocol takes 2.5 days to accommodate antibody and probe penetration within the tissue.
Neuroscience, Issue 83, Life Sciences (General), Virology, Herpes Simplex Virus (HSV), Latency, In situ hybridization, Nuclear organization, Gene expression, Microscopy
51091
Play Button
Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney
Authors: Kristen K. McCampbell, Kristin N. Springer, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
Cellular Biology, Issue 90, zebrafish; kidney; nephron; nephrology; renal; regeneration; proximal tubule; distal tubule; segment; mesonephros; physiology; acute kidney injury (AKI)
51644
Play Button
Using an Automated 3D-tracking System to Record Individual and Shoals of Adult Zebrafish
Authors: Hans Maaswinkel, Liqun Zhu, Wei Weng.
Institutions: xyZfish.
Like many aquatic animals, zebrafish (Danio rerio) moves in a 3D space. It is thus preferable to use a 3D recording system to study its behavior. The presented automatic video tracking system accomplishes this by using a mirror system and a calibration procedure that corrects for the considerable error introduced by the transition of light from water to air. With this system it is possible to record both single and groups of adult zebrafish. Before use, the system has to be calibrated. The system consists of three modules: Recording, Path Reconstruction, and Data Processing. The step-by-step protocols for calibration and using the three modules are presented. Depending on the experimental setup, the system can be used for testing neophobia, white aversion, social cohesion, motor impairments, novel object exploration etc. It is especially promising as a first-step tool to study the effects of drugs or mutations on basic behavioral patterns. The system provides information about vertical and horizontal distribution of the zebrafish, about the xyz-components of kinematic parameters (such as locomotion, velocity, acceleration, and turning angle) and it provides the data necessary to calculate parameters for social cohesions when testing shoals.
Behavior, Issue 82, neuroscience, Zebrafish, Danio rerio, anxiety, Shoaling, Pharmacology, 3D-tracking, MK801
50681
Play Button
Production of Haploid Zebrafish Embryos by In Vitro Fertilization
Authors: Paul T. Kroeger Jr., Shahram Jevin Poureetezadi, Robert McKee, Jonathan Jou, Rachel Miceli, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish has become a mainstream vertebrate model that is relevant for many disciplines of scientific study. Zebrafish are especially well suited for forward genetic analysis of developmental processes due to their external fertilization, embryonic size, rapid ontogeny, and optical clarity – a constellation of traits that enable the direct observation of events ranging from gastrulation to organogenesis with a basic stereomicroscope. Further, zebrafish embryos can survive for several days in the haploid state. The production of haploid embryos in vitro is a powerful tool for mutational analysis, as it enables the identification of recessive mutant alleles present in first generation (F1) female carriers following mutagenesis in the parental (P) generation. This approach eliminates the necessity to raise multiple generations (F2, F3, etc.) which involves breeding of mutant families, thus saving the researcher time along with reducing the needs for zebrafish colony space, labor, and the husbandry costs. Although zebrafish have been used to conduct forward screens for the past several decades, there has been a steady expansion of transgenic and genome editing tools. These tools now offer a plethora of ways to create nuanced assays for next generation screens that can be used to further dissect the gene regulatory networks that drive vertebrate ontogeny. Here, we describe how to prepare haploid zebrafish embryos. This protocol can be implemented for novel future haploid screens, such as in enhancer and suppressor screens, to address the mechanisms of development for a broad number of processes and tissues that form during early embryonic stages.
Developmental Biology, Issue 89, zebrafish, haploid, in vitro fertilization, forward genetic screen, saturation, recessive mutation, mutagenesis
51708
Play Button
Microgavage of Zebrafish Larvae
Authors: Jordan L. Cocchiaro, John F. Rawls.
Institutions: University of North Carolina at Chapel Hill .
The zebrafish has emerged as a powerful model organism for studying intestinal development1-5, physiology6-11, disease12-16, and host-microbe interactions17-25. Experimental approaches for studying intestinal biology often require the in vivo introduction of selected materials into the lumen of the intestine. In the larval zebrafish model, this is typically accomplished by immersing fish in a solution of the selected material, or by injection through the abdominal wall. Using the immersion method, it is difficult to accurately monitor or control the route or timing of material delivery to the intestine. For this reason, immersion exposure can cause unintended toxicity and other effects on extraintestinal tissues, limiting the potential range of material amounts that can be delivered into the intestine. Also, the amount of material ingested during immersion exposure can vary significantly between individual larvae26. Although these problems are not encountered during direct injection through the abdominal wall, proper injection is difficult and causes tissue damage which could influence experimental results. We introduce a method for microgavage of zebrafish larvae. The goal of this method is to provide a safe, effective, and consistent way to deliver material directly to the lumen of the anterior intestine in larval zebrafish with controlled timing. Microgavage utilizes standard embryo microinjection and stereomicroscopy equipment common to most laboratories that perform zebrafish research. Once fish are properly positioned in methylcellulose, gavage can be performed quickly at a rate of approximately 7-10 fish/ min, and post-gavage survival approaches 100% depending on the gavaged material. We also show that microgavage can permit loading of the intestinal lumen with high concentrations of materials that are lethal to fish when exposed by immersion. To demonstrate the utility of this method, we present a fluorescent dextran microgavage assay that can be used to quantify transit from the intestinal lumen to extraintestinal spaces. This test can be used to verify proper execution of the microgavage procedure, and also provides a novel zebrafish assay to examine intestinal epithelial barrier integrity under different experimental conditions (e.g. genetic manipulation, drug treatment, or exposure to environmental factors). Furthermore, we show how gavage can be used to evaluate intestinal motility by gavaging fluorescent microspheres and monitoring their subsequent transit. Microgavage can be applied to deliver diverse materials such as live microorganisms, secreted microbial factors/toxins, pharmacological agents, and physiological probes. With these capabilities, the larval zebrafish microgavage method has the potential to enhance a broad range of research fields using the zebrafish model system.
Biochemistry, Issue 72, Molecular Biology, Anatomy, Physiology, Basic Protocols, Surgery, Zebrafish, Danio rerio, intestine, lumen, larvae, gavage, microgavage, epithelium, barrier function, gut motility, microsurgery, microscopy, animal model
4434
Play Button
Determination of Protein-ligand Interactions Using Differential Scanning Fluorimetry
Authors: Mirella Vivoli, Halina R. Novak, Jennifer A. Littlechild, Nicholas J. Harmer.
Institutions: University of Exeter.
A wide range of methods are currently available for determining the dissociation constant between a protein and interacting small molecules. However, most of these require access to specialist equipment, and often require a degree of expertise to effectively establish reliable experiments and analyze data. Differential scanning fluorimetry (DSF) is being increasingly used as a robust method for initial screening of proteins for interacting small molecules, either for identifying physiological partners or for hit discovery. This technique has the advantage that it requires only a PCR machine suitable for quantitative PCR, and so suitable instrumentation is available in most institutions; an excellent range of protocols are already available; and there are strong precedents in the literature for multiple uses of the method. Past work has proposed several means of calculating dissociation constants from DSF data, but these are mathematically demanding. Here, we demonstrate a method for estimating dissociation constants from a moderate amount of DSF experimental data. These data can typically be collected and analyzed within a single day. We demonstrate how different models can be used to fit data collected from simple binding events, and where cooperative binding or independent binding sites are present. Finally, we present an example of data analysis in a case where standard models do not apply. These methods are illustrated with data collected on commercially available control proteins, and two proteins from our research program. Overall, our method provides a straightforward way for researchers to rapidly gain further insight into protein-ligand interactions using DSF.
Biophysics, Issue 91, differential scanning fluorimetry, dissociation constant, protein-ligand interactions, StepOne, cooperativity, WcbI.
51809
Play Button
Gavaging Adult Zebrafish
Authors: Chereen Collymore, Skye Rasmussen, Ravi J. Tolwani.
Institutions: The Rockefeller University, The Rockefeller University.
The zebrafish has become an important in vivo model in biomedical research. Effective methods must be developed and utilized to deliver compounds or agents in solutions for scientific research. Current methods for administering compounds orally to adult zebrafish are inaccurate due to variability in voluntary consumption by the fish. A gavage procedure was developed to deliver precise quantities of infectious agents to zebrafish for study in biomedical research. Adult zebrafish over 6 months of age were anesthetized with 150 mg/L of buffered MS-222 and gavaged with 5 μl of solution using flexible catheter implantation tubing attached to a cut 22-G needle tip. The flexible tubing was lowered into the oral cavity of the zebrafish until the tip of the tubing extended past the gills (approximately 1 cm). The solution was then injected slowly into the intestinal tract. This method was effective 88% of the time, with fish recovering uneventfully. This procedure is also efficient as one person can gavage 20-30 fish in one hour. This method can be used to precisely administer agents for infectious diseases studies, or studies of other compounds in adult zebrafish.
Basic Protocols, Issue 78, Developmental Biology, Anatomy, Physiology, Molecular Biology, Biomedical Engineering, Intestines, animal biology, animal models, zebrafish, gavage, Danio rerio, medaka, animal model
50691
Play Button
A Noninvasive Method For In situ Determination of Mating Success in Female American Lobsters (Homarus americanus)
Authors: Jason S Goldstein, Tracy L Pugh, Elizabeth A Dubofsky, Kari L Lavalli, Michael Clancy, Winsor H Watson III.
Institutions: University of New Hampshire, Massachusetts Division of Marine Fisheries, Boston University, Middle College.
Despite being one of the most productive fisheries in the Northwest Atlantic, much remains unknown about the natural reproductive dynamics of American lobsters. Recent work in exploited crustacean populations (crabs and lobsters) suggests that there are circumstances where mature females are unable to achieve their full reproductive potential due to sperm limitation. To examine this possibility in different regions of the American lobster fishery, a reliable and noninvasive method was developed for sampling large numbers of female lobsters at sea. This method involves inserting a blunt-tipped needle into the female's seminal receptacle to determine the presence or absence of a sperm plug and to withdraw a sample that can be examined for the presence of sperm. A series of control studies were conducted at the dock and in the laboratory to test the reliability of this technique. These efforts entailed sampling 294 female lobsters to confirm that the presence of a sperm plug was a reliable indicator of sperm within the receptacle and thus, mating. This paper details the methodology and the results obtained from a subset of the total females sampled. Of the 230 female lobsters sampled from George's Bank and Cape Ann, MA (size range = 71-145 mm in carapace length), 90.3% were positive for sperm. Potential explanations for the absence of sperm in some females include: immaturity (lack of physiological maturity), breakdown of the sperm plug after being used to fertilize a clutch of eggs, and lack of mating activity. The surveys indicate that this technique for examining the mating success of female lobsters is a reliable proxy that can be used in the field to document reproductive activity in natural populations.
Environmental Sciences, Issue 84, sperm limitation, spermatophore, lobster fishery, sex ratios, sperm receptacle, mating, American lobster, Homarus americanus
50498
Play Button
Testing Nicotine Tolerance in Aphids Using an Artificial Diet Experiment
Authors: John Sawyer Ramsey, Georg Jander.
Institutions: Cornell University.
Plants may upregulate the production of many different seconday metabolites in response to insect feeding. One of these metabolites, nicotine, is well know to have insecticidal properties. One response of tobacco plants to herbivory, or being gnawed upon by insects, is to increase the production of this neurotoxic alkaloid. Here, we will demonstrate how to set up an experiment to address this question of whether a tobacco-adapted strain of the green peach aphid, Myzus persicae, can tolerate higher levels of nicotine than the a strain of this insect that does not infest tobacco in the field.
Plant Biology, Issue 15, Annual Review, Nicotine, Aphids, Plant Feeding Resistance, Tobacco
701
Play Button
Transplantation of Whole Kidney Marrow in Adult Zebrafish
Authors: Jocelyn LeBlanc, Teresa Venezia Bowman, Leonard Zon.
Institutions: Harvard Medical School.
Hematopoietic stem cells (HSC) are a rare population of pluripotent cells that maintain all the differentiated blood lineages throughout the life of an organism. The functional definition of a HSC is a transplanted cell that has the ability to reconstitute all the blood lineages of an irradiated recipient long term. This designation was established by decades of seminal work in mammalian systems. Using hematopoietic cell transplantation (HCT) and reverse genetic manipulations in the mouse, the underlying regulatory factors of HSC biology are beginning to be unveiled, but are still largely under-explored. Recently, the zebrafish has emerged as a powerful genetic model to study vertebrate hematopoiesis. Establishing HCT in zebrafish will allow scientists to utilize the large-scale genetic and chemical screening methodologies available in zebrafish to reveal novel mechanisms underlying HSC regulation. In this article, we demonstrate a method to perform HCT in adult zebrafish. We show the dissection and preparation of zebrafish whole kidney marrow, the site of adult hematopoiesis in the zebrafish, and the introduction of these donor cells into the circulation of irradiated recipient fish via intracardiac injection. Additionally, we describe the post-transplant care of fish in an "ICU" to increase their long-term health. In general, gentle care of the fish before, during, and after the transplant is critical to increase the number of fish that will survive more than one month following the procedure, which is essential for assessment of long term (<3 month) engraftment. The experimental data used to establish this protocol will be published elsewhere. The establishment of this protocol will allow for the merger of large-scale zebrafish genetics and transplant biology.
Developmental Biology, Issue 2, zebrafish, HSC, stem cells, transplant
159
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.