JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Stanniocalcin-1 regulates re-epithelialization in human keratinocytes.
PUBLISHED: 06-21-2011
Stanniocalcin-1 (STC1), a glycoprotein hormone, is believed to be involved in various biological processes such as inflammation, oxidative responses and cell migration. Riding on these emerging evidences, we hypothesized that STC1 may participate in the re-epithelialization during wound healing. Re-epithelialization is a critical step that involves keratinocyte lamellipodia (e-lam) formation, followed by cell migration. In this study, staurosporine (STS) treatment induced human keratinocyte (HaCaT) e-lam formation on fibronectin matrix and migration via the activation of focal adhesion kinase (FAK), the surge of intracellular calcium level [Ca²?]i and the inactivation of Akt. In accompanied with these migratory features, a time- and dose-dependent increase in STC1 expression was detected. STC1 gene expression was found not the downstream target of FAK-signaling as illustrated by FAK inhibition using PF573228. The reduction of [Ca²?]i by BAPTA/AM blocked the STS-mediated keratinocyte migration and STC1 gene expression. Alternatively the increase of [Ca²?]i by ionomycin exerted promotional effect on STS-induced STC1 gene expression. The inhibition of Akt by SH6 and GSK3? by lithium chloride (LiCl) could respectively induce and inhibit the STS-mediated e-lam formation, cell migration and STC1 gene expression. The STS-mediated e-lam formation and cell migration were notably hindered or induced respectively by STC1 knockdown or overexpression. This notion was further supported by the scratched wound assay. Collectively the findings provide the first evidence that STC1 promotes re-epithelialization in wound healing.
Authors: Hsin-ya Yang, Thi Dinh La, R. Rivkah Isseroff.
Published: 12-07-2014
The physiological electric field serves specific biological functions, such as directing cell migration in embryo development, neuronal outgrowth and epithelial wound healing. Applying a direct current electric field to cultured cells in vitro induces directional cell migration, or galvanotaxis. The 2-dimensional galvanotaxis method we demonstrate here is modified with custom-made poly(vinyl chloride) (PVC) chambers, glass surface, platinum electrodes and the use of a motorized stage on which the cells are imaged. The PVC chambers and platinum electrodes exhibit low cytotoxicity and are affordable and re-useable. The glass surface and the motorized microscope stage improve quality of images and allow possible modifications to the glass surface and treatments to the cells. We filmed the galvanotaxis of two non-tumorigenic, SV40-immortalized prostate cell lines, pRNS-1-1 and PNT2. These two cell lines show similar migration speeds and both migrate toward the cathode, but they do show a different degree of directionality in galvanotaxis. The results obtained via this protocol suggest that the pRNS-1-1 and the PNT2 cell lines may have different intrinsic features that govern their directional migratory responses.
24 Related JoVE Articles!
Play Button
Human T Lymphocyte Isolation, Culture and Analysis of Migration In Vitro
Authors: Craig T. Lefort, Minsoo Kim.
Institutions: University of Rochester.
The migration of T lymphocytes involves the adhesive interaction of cell surface integrins with ligands expressed on other cells or with extracellular matrix proteins. The precise spatiotemporal activation of integrins from a low affinity state to a high affinity state at the cell leading edge is important for T lymphocyte migration 1. Likewise, retraction of the cell trailing edge, or uropod, is a necessary step in maintaining persistent integrin-dependent T lymphocyte motility 2. Many therapeutic approaches to autoimmune or inflammatory diseases target integrins as a means to inhibit the excessive recruitment and migration of leukocytes 3. To study the molecular events that regulate human T lymphocyte migration, we have utilized an in vitro system to analyze cell migration on a two-dimensional substrate that mimics the environment that a T lymphocyte encounters during recruitment from the vasculature. T lymphocytes are first isolated from human donors and are then stimulated and cultured for seven to ten days. During the assay, T lymphocytes are allowed to adhere and migrate on a substrate coated with intercellular adhesion molecule-1 (ICAM-1), a ligand for integrin LFA-1, and stromal cell-derived factor-1 (SDF-1). Our data show that T lymphocytes exhibit a migratory velocity of ~15 μm/min. T lymphocyte migration can be inhibited by integrin blockade 1 or by inhibitors of the cellular actomyosin machinery that regulates cell migration 2.
Immunology, Issue 40, T lymphocyte, Migration, Integrin, LFA-1, ICAM-1, Chemokine
Play Button
In vivo Electroporation of Morpholinos into the Regenerating Adult Zebrafish Tail Fin
Authors: David R. Hyde, Alan R. Godwin, Ryan Thummel.
Institutions: University of Notre Dame , Colorado State University , Wayne State University School of Medicine.
Certain species of urodeles and teleost fish can regenerate their tissues. Zebrafish have become a widely used model to study the spontaneous regeneration of adult tissues, such as the heart1, retina2, spinal cord3, optic nerve4, sensory hair cells5, and fins6. The zebrafish fin is a relatively simple appendage that is easily manipulated to study multiple stages in epimorphic regeneration. Classically, fin regeneration was characterized by three distinct stages: wound healing, blastema formation, and fin outgrowth. After amputating part of the fin, the surrounding epithelium proliferates and migrates over the wound. At 33 °C, this process occurs within six hours post-amputation (hpa, Figure 1B)6,7. Next, underlying cells from different lineages (ex. bone, blood, glia, fibroblast) re-enter the cell cycle to form a proliferative blastema, while the overlying epidermis continues to proliferate (Figure 1D)8. Outgrowth occurs as cells proximal to the blastema re-differentiate into their respective lineages to form new tissue (Figure 1E)8. Depending on the level of the amputation, full regeneration is completed in a week to a month. The expression of a large number of gene families, including wnt, hox, fgf, msx, retinoic acid, shh, notch, bmp, and activin-betaA genes, is up-regulated during specific stages of fin regeneration9-16. However, the roles of these genes and their encoded proteins during regeneration have been difficult to assess, unless a specific inhibitor for the protein exists13, a temperature-sensitive mutant exists or a transgenic animal (either overexpressing the wild-type protein or a dominant-negative protein) was generated7,12. We developed a reverse genetic technique to quickly and easily test the function of any gene during fin regeneration. Morpholino oligonucleotides are widely used to study loss of specific proteins during zebrafish, Xenopus, chick, and mouse development17-19. Morpholinos basepair with a complementary RNA sequence to either block pre-mRNA splicing or mRNA translation. We describe a method to efficiently introduce fluorescein-tagged antisense morpholinos into regenerating zebrafish fins to knockdown expression of the target protein. The morpholino is micro-injected into each blastema of the regenerating zebrafish tail fin and electroporated into the surrounding cells. Fluorescein provides the charge to electroporate the morpholino and to visualize the morpholino in the fin tissue. This protocol permits conditional protein knockdown to examine the role of specific proteins during regenerative fin outgrowth. In the Discussion, we describe how this approach can be adapted to study the role of specific proteins during wound healing or blastema formation, as well as a potential marker of cell migration during blastema formation.
Developmental Biology, Issue 61, Electroporation, morpholino, zebrafish, fin, regeneration
Play Button
A Matrigel-Based Tube Formation Assay to Assess the Vasculogenic Activity of Tumor Cells
Authors: Ralph A. Francescone III, Michael Faibish, Rong Shao.
Institutions: University of Massachusetts, University of Massachusetts, University of Massachusetts.
Over the past several decades, a tube formation assay using growth factor-reduced Matrigel has been typically employed to demonstrate the angiogenic activity of vascular endothelial cells in vitro1-5. However, recently growing evidence has shown that this assay is not limited to test vascular behavior for endothelial cells. Instead, it also has been used to test the ability of a number of tumor cells to develop a vascular phenotype6-8. This capability was consistent with their vasculogenic behavior identified in xenotransplanted animals, a process known as vasculogenic mimicry (VM)9. There is a multitude of evidence demonstrating that tumor cell-mediated VM plays a vital role in the tumor development, independent of endothelial cell angiogenesis6, 10-13. For example, tumor cells were found to participate in the blood perfused, vascular channel formation in tissue samples from melanoma and glioblastoma patients8, 10, 11. Here, we described this tubular network assay as a useful tool in evaluation of vasculogenic activity of tumor cells. We found that some tumor cell lines such as melanoma B16F1 cells, glioblastoma U87 cells, and breast cancer MDA-MB-435 cells are able to form vascular tubules; but some do not such as colon cancer HCT116 cells. Furthermore, this vascular phenotype is dependent on cell numbers plated on the Matrigel. Therefore, this assay may serve as powerful utility to screen the vascular potential of a variety of cell types including vascular cells, tumor cells as well as other cells.
Cancer Biology, Issue 55, tumor, vascular, endothelial, tube formation, Matrigel, in vitro
Play Button
Rapid Genetic Analysis of Epithelial-Mesenchymal Signaling During Hair Regeneration
Authors: Wei-Meng Woo, Scott X. Atwood, Hanson H. Zhen, Anthony E. Oro.
Institutions: Stanford University School of Medicine .
Hair follicle morphogenesis, a complex process requiring interaction between epithelia-derived keratinocytes and the underlying mesenchyme, is an attractive model system to study organ development and tissue-specific signaling. Although hair follicle development is genetically tractable, fast and reproducible analysis of factors essential for this process remains a challenge. Here we describe a procedure to generate targeted overexpression or shRNA-mediated knockdown of factors using lentivirus in a tissue-specific manner. Using a modified version of a hair regeneration model 5, 6, 11, we can achieve robust gain- or loss-of-function analysis in primary mouse keratinocytes or dermal cells to facilitate study of epithelial-mesenchymal signaling pathways that lead to hair follicle morphogenesis. We describe how to isolate fresh primary mouse keratinocytes and dermal cells, which contain dermal papilla cells and their precursors, deliver lentivirus containing either shRNA or cDNA to one of the cell populations, and combine the cells to generate fully formed hair follicles on the backs of nude mice. This approach allows analysis of tissue-specific factors required to generate hair follicles within three weeks and provides a fast and convenient companion to existing genetic models.
Genetics, Issue 72, Tissue Engineering, Medicine, Biomedical Engineering, Cellular Biology, Surgery, Epithelial Biology, regeneration, chamber, hair, follicle, dermis, dermal cells, keratinocyte, graft, epithelial, cell culture, lentivirus, knockdown, shRNA-mediated knockdown, overexpression, mice, transgenic mice, animal model
Play Button
Generation of Organotypic Raft Cultures from Primary Human Keratinocytes
Authors: Daniel Anacker, Cary Moody.
Institutions: University of North Carolina-Chapel Hill, University of North Carolina-Chapel Hill.
The development of organotypic epithelial raft cultures has provided researchers with an efficient in vitro system that faithfully recapitulates epithelial differentiation. There are many uses for this system. For instance, the ability to grow three-dimensional organotypic raft cultures of keratinocytes has been an important milestone in the study of human papillomavirus (HPV)1. The life cycle of HPV is tightly linked to the differentiation of squamous epithelium2. Organotypic epithelial raft cultures as demonstrated here reproduce the entire papillomavirus life cycle, including virus production3,4,5. In addition, these raft cultures exhibit dysplastic lesions similar to those observed upon in vivo infection with HPV. Hence this system can also be used to study epithelial cell cancers, as well as the effect of drugs on epithelial cell differentiation in general. Originally developed by Asselineau and Prunieras6 and modified by Kopan et al.7, the organotypic epithelial raft culture system has matured into a general, relatively easy culture model, which involves the growth of cells on collagen plugs maintained at an air-liquid interface (Figure 1A). Over the course of 10-14 days, the cells stratify and differentiate, forming a full thickness epithelium that produces differentiation-specific cytokeratins. Harvested rafts can be examined histologically, as well as by standard molecular and biochemical techniques. In this article, we describe a method for the generation of raft cultures from primary human keratinocytes. The same technique can be used with established epithelial cell lines, and can easily be adapted for use with epithelial tissue from normal or diseased biopsies8. Many viruses target either the cutaneous or mucosal epithelium as part of their replicative life cycle. Over the past several years, the feasibility of using organotypic raft cultures as a method of studying virus-host cell interactions has been shown for several herpesviruses, as well as adenoviruses, parvoviruses, and poxviruses9. Organotypic raft cultures can thus be adapted to examine viral pathogenesis, and are the only means to test novel antiviral agents for those viruses that are not cultivable in permanent cell lines.
Immunology, Issue 60, Epithelium, organotypic raft culture, virus, keratinocytes, papillomavirus
Play Button
The Three-Dimensional Human Skin Reconstruct Model: a Tool to Study Normal Skin and Melanoma Progression
Authors: Ling Li, Mizuho Fukunaga-Kalabis, Meenhard Herlyn.
Institutions: The Wistar Institute.
Most in vitro studies in experimental skin biology have been done in 2-dimensional (2D) monocultures, while accumulating evidence suggests that cells behave differently when they are grown within a 3D extra-cellular matrix and also interact with other cells (1-5). Mouse models have been broadly utilized to study tissue morphogenesis in vivo. However mouse and human skin have significant differences in cellular architecture and physiology, which makes it difficult to extrapolate mouse studies to humans. Since melanocytes in mouse skin are mostly localized in hair follicles, they have distinct biological properties from those of humans, which locate primarily at the basal layer of the epidermis. The recent development of 3D human skin reconstruct models has enabled the field to investigate cell-matrix and cell-cell interactions between different cell types. The reconstructs consist of a "dermis" with fibroblasts embedded in a collagen I matrix, an "epidermis", which is comprised of stratified, differentiated keratinocytes and a functional basement membrane, which separates epidermis from dermis. Collagen provides scaffolding, nutrient delivery, and potential for cell-to-cell interaction. The 3D skin models incorporating melanocytic cells recapitulate natural features of melanocyte homeostasis and melanoma progression in human skin. As in vivo, melanocytes in reconstructed skin are localized at the basement membrane interspersed with basal layer keratinocytes. Melanoma cells exhibit the same characteristics reflecting the original tumor stage (RGP, VGP and metastatic melanoma cells) in vivo. Recently, dermal stem cells have been identified in the human dermis (6). These multi-potent stem cells can migrate to the epidermis and differentiate to melanocytes.
Bioengineering, Issue 54, 3D model, melanocyte, melanoma, skin
Play Button
Engineering a Bilayered Hydrogel to Control ASC Differentiation
Authors: Shanmugasundaram Natesan, David O. Zamora, Laura J. Suggs, Robert J. Christy.
Institutions: United States Army Institute of Surgical Research, The University of Texas at Austin.
Natural polymers over the years have gained more importance because of their host biocompatibility and ability to interact with cells in vitro and in vivo. An area of research that holds promise in regenerative medicine is the combinatorial use of novel biomaterials and stem cells. A fundamental strategy in the field of tissue engineering is the use of three-dimensional scaffold (e.g., decellularized extracellular matrix, hydrogels, micro/nano particles) for directing cell function. This technology has evolved from the discovery that cells need a substrate upon which they can adhere, proliferate, and express their differentiated cellular phenotype and function 2-3. More recently, it has also been determined that cells not only use these substrates for adherence, but also interact and take cues from the matrix substrate (e.g., extracellular matrix, ECM)4. Therefore, the cells and scaffolds have a reciprocal connection that serves to control tissue development, organization, and ultimate function. Adipose-derived stem cells (ASCs) are mesenchymal, non-hematopoetic stem cells present in adipose tissue that can exhibit multi-lineage differentiation and serve as a readily available source of cells (i.e. pre-vascular endothelia and pericytes). Our hypothesis is that adipose-derived stem cells can be directed toward differing phenotypes simultaneously by simply co-culturing them in bilayered matrices1. Our laboratory is focused on dermal wound healing. To this end, we created a single composite matrix from the natural biomaterials, fibrin, collagen, and chitosan that can mimic the characteristics and functions of a dermal-specific wound healing ECM environment.
Bioengineering, Issue 63, Biomedical Engineering, Tissue Engineering, chitosan, microspheres, collagen, hydrogel, PEG fibrin, cell delivery, adipose-derived stem cells, ASC, CSM
Play Button
Clonogenic Assay: Adherent Cells
Authors: Haloom Rafehi, Christian Orlowski, George T. Georgiadis, Katherine Ververis, Assam El-Osta, Tom C. Karagiannis.
Institutions: The Alfred Medical Research and Education Precinct, The University of Melbourne, The Alfred Medical Research and Education Precinct, The University of Melbourne.
The clonogenic (or colony forming) assay has been established for more than 50 years; the original paper describing the technique was published in 19561. Apart from documenting the method, the initial landmark study generated the first radiation-dose response curve for X-ray irradiated mammalian (HeLa) cells in culture1. Basically, the clonogenic assay enables an assessment of the differences in reproductive viability (capacity of cells to produce progeny; i.e. a single cell to form a colony of 50 or more cells) between control untreated cells and cells that have undergone various treatments such as exposure to ionising radiation, various chemical compounds (e.g. cytotoxic agents) or in other cases genetic manipulation. The assay has become the most widely accepted technique in radiation biology and has been widely used for evaluating the radiation sensitivity of different cell lines. Further, the clonogenic assay is commonly used for monitoring the efficacy of radiation modifying compounds and for determining the effects of cytotoxic agents and other anti-cancer therapeutics on colony forming ability, in different cell lines. A typical clonogenic survival experiment using adherent cells lines involves three distinct components, 1) treatment of the cell monolayer in tissue culture flasks, 2) preparation of single cell suspensions and plating an appropriate number of cells in petri dishes and 3) fixing and staining colonies following a relevant incubation period, which could range from 1-3 weeks, depending on the cell line. Here we demonstrate the general procedure for performing the clonogenic assay with adherent cell lines with the use of an immortalized human keratinocyte cell line (FEP-1811)2. Also, our aims are to describe common features of clonogenic assays including calculation of the plating efficiency and survival fractions after exposure of cells to radiation, and to exemplify modification of radiation-response with the use of a natural antioxidant formulation.
Cellular Biology, Issue 49, clonogenic assay, clonogenic survival, colony staining, colony counting, radiation sensitivity, radiation modification
Play Button
Isolation and Culture of Dental Epithelial Stem Cells from the Adult Mouse Incisor
Authors: Miquella G. Chavez, Jimmy Hu, Kerstin Seidel, Chunying Li, Andrew Jheon, Adrien Naveau, Orapin Horst, Ophir D. Klein.
Institutions: University of California, San Francisco, University of California, San Francisco, Zhongshan Hospital of Dalian University, Université Paris Descartes, Sorbonne Paris Cite, UMR S872, Université Pierre et Marie Curie, UMR S872, INSERM U872, University of California, San Francisco, University of California, San Francisco.
Understanding the cellular and molecular mechanisms that underlie tooth regeneration and renewal has become a topic of great interest1-4, and the mouse incisor provides a model for these processes. This remarkable organ grows continuously throughout the animal's life and generates all the necessary cell types from active pools of adult stem cells housed in the labial (toward the lip) and lingual (toward the tongue) cervical loop (CL) regions. Only the dental stem cells from the labial CL give rise to ameloblasts that generate enamel, the outer covering of teeth, on the labial surface. This asymmetric enamel formation allows abrasion at the incisor tip, and progenitors and stem cells in the proximal incisor ensure that the dental tissues are constantly replenished. The ability to isolate and grow these progenitor or stem cells in vitro allows their expansion and opens doors to numerous experiments not achievable in vivo, such as high throughput testing of potential stem cell regulatory factors. Here, we describe and demonstrate a reliable and consistent method to culture cells from the labial CL of the mouse incisor.
Stem Cell Biology, Issue 87, Epithelial Stem Cells, Adult Stem Cells, Incisor, Cervical Loop, Cell Culture
Play Button
Non-contact, Label-free Monitoring of Cells and Extracellular Matrix using Raman Spectroscopy
Authors: Miriam Votteler, Daniel A. Carvajal Berrio, Marieke Pudlas, Heike Walles, Katja Schenke-Layland.
Institutions: Eberhard Karls University, Tübingen, Fraunhofer Institute of Interfacial Engineering and Biotechnology (IGB) Stuttgart, Germany, University of Stuttgart, Germany, Julius-Maximillians University, Würzburg, Germany.
Non-destructive, non-contact and label-free technologies to monitor cell and tissue cultures are needed in the field of biomedical research.1-5 However, currently available routine methods require processing steps and alter sample integrity. Raman spectroscopy is a fast method that enables the measurement of biological samples without the need for further processing steps. This laser-based technology detects the inelastic scattering of monochromatic light.6 As every chemical vibration is assigned to a specific Raman band (wavenumber in cm-1), each biological sample features a typical spectral pattern due to their inherent biochemical composition.7-9 Within Raman spectra, the peak intensities correlate with the amount of the present molecular bonds.1 Similarities and differences of the spectral data sets can be detected by employing a multivariate analysis (e.g. principal component analysis (PCA)).10 Here, we perform Raman spectroscopy of living cells and native tissues. Cells are either seeded on glass bottom dishes or kept in suspension under normal cell culture conditions (37 °C, 5% CO2) before measurement. Native tissues are dissected and stored in phosphate buffered saline (PBS) at 4 °C prior measurements. Depending on our experimental set up, we then either focused on the cell nucleus or extracellular matrix (ECM) proteins such as elastin and collagen. For all studies, a minimum of 30 cells or 30 random points of interest within the ECM are measured. Data processing steps included background subtraction and normalization.
Bioengineering, Issue 63, Raman spectroscopy, label-free analysis, living cells, extracellular matrix, tissue engineering
Play Button
Induction and Analysis of Epithelial to Mesenchymal Transition
Authors: Yixin Tang, Greg Herr, Wade Johnson, Ernesto Resnik, Joy Aho.
Institutions: R&D Systems, Inc., R&D Systems, Inc..
Epithelial to mesenchymal transition (EMT) is essential for proper morphogenesis during development. Misregulation of this process has been implicated as a key event in fibrosis and the progression of carcinomas to a metastatic state. Understanding the processes that underlie EMT is imperative for the early diagnosis and clinical control of these disease states. Reliable induction of EMT in vitro is a useful tool for drug discovery as well as to identify common gene expression signatures for diagnostic purposes. Here we demonstrate a straightforward method for the induction of EMT in a variety of cell types. Methods for the analysis of cells pre- and post-EMT induction by immunocytochemistry are also included. Additionally, we demonstrate the effectiveness of this method through antibody-based array analysis and migration/invasion assays.
Molecular Biology, Issue 78, Cellular Biology, Biochemistry, Biomedical Engineering, Stem Cell Biology, Cancer Biology, Medicine, Bioengineering, Anatomy, Physiology, biology (general), Pathological Conditions, Signs and Symptoms, Wounds and Injuries, Neoplasms, Diagnosis, Therapeutics, Epithelial to mesenchymal transition, EMT, cancer, metastasis, cancer stem cell, cell, assay, immunohistochemistry
Play Button
Cell Population Analyses During Skin Carcinogenesis
Authors: Dongsheng Gu, Qipeng Fan, Jingwu Xie.
Institutions: Indiana University.
Cancer development is a multiple-step process involving many cell types including cancer precursor cells, immune cells, fibroblasts and endothelial cells. Each type of cells undergoes signaling and functional changes during carcinogenesis. The current challenge for many cancer researchers is to dissect these changes in each cell type during the multiple-step process in vivo. In the last few years, the authors have developed a set of procedures to isolate different cell populations during skin cancer development using K14creER/R26-SmoM2YFP mice. The procedure is divided into 6 parts: 1) generating appropriate mice for the study (K14creER+ and R26-SmoM2YFP+ mice in this protocol); 2) inducing SmoM2YFP expression in mouse skin; 3) preparing mouse skin biopsies; 4) isolating epidermis from skin; 5) preparing single cells from epidermis; 6) labeling single cell populations for flow cytometry analysis. Generation of sufficient number of mice with the right genotype is the limiting step in this protocol, which may take up to two months. The rest of steps take a few hours to a few days. Within this protocol, we also include a section for troubleshooting. Although we focus on skin cancer, this protocol may be modified to apply for other animal models of human diseases.
Cancer Biology, Issue 78, Medicine, Cellular Biology, Molecular Biology, Biomedical Engineering, Genetics, Anatomy, Physiology, Oncology, Cocarcinogenesis, animal models, Skin cancer, basal cell carcinoma, hedgehog, smoothened, keratinocyte, cancer, carcinogenesis, cells, cell culture, animal model
Play Button
Induction of Adhesion-dependent Signals Using Low-intensity Ultrasound
Authors: James Roper, Andrew Harrison, Mark D. Bass.
Institutions: University of Bristol, Smith and Nephew.
In multicellular organisms, cell behavior is dictated by interactions with the extracellular matrix. Consequences of matrix-engagement range from regulation of cell migration and proliferation, to secretion and even differentiation. The signals underlying each of these complex processes arise from the molecular interactions of extracellular matrix receptors on the surface of the cell. Integrins are the prototypic receptors and provide a mechanical link between extracellular matrix and the cytoskeleton, as well as initiating some of the adhesion-dependent signaling cascades. However, it is becoming increasingly apparent that additional transmembrane receptors function alongside the integrins to regulate both the integrin itself and signals downstream. The most elegant of these examples is the transmembrane proteoglycan, syndecan-4, which cooperates with α5β1-integrin during adhesion to fibronectin. In vivo models demonstrate the importance of syndecan-4 signaling, as syndecan-4-knockout mice exhibit healing retardation due to inefficient fibroblast migration1,2. In wild-type animals, migration of fibroblasts toward a wound is triggered by the appearance of fibronectin that leaks from damaged capillaries and is deposited by macrophages in injured tissue. Therefore there is great interest in discovering strategies that enhance fibronectin-dependent signaling and could accelerate repair processes. The integrin-mediated and syndecan-4-mediated components of fibronectin-dependent signaling can be separated by stimulating cells with recombinant fibronectin fragments. Although integrin engagement is essential for cell adhesion, certain fibronectin-dependent signals are regulated by syndecan-4. Syndecan-4 activates the Rac1 protrusive signal3, causes integrin redistribution1, triggers recruitment of cytoskeletal molecules, such as vinculin, to focal adhesions4, and thereby induces directional migration3. We have looked for alternative strategies for activating such signals and found that low-intensity pulsed ultrasound (LIPUS) can mimic the effects of syndecan-4 engagement5. In this protocol we describe the method by which 30 mW/cm2, 1.5 MHz ultrasound, pulsed at 1 kHz (Fig. 1) can be applied to fibroblasts in culture (Fig. 2) to induce Rac1 activation and focal adhesion formation. Ultrasound stimulation is applied for a maximum of 20 minutes, as this combination of parameters has been found to be most efficacious for acceleration of clinical fracture repair6. The method uses recombinant fibronectin fragments to engage α5β1-integrin, without engagement of syndecan-4, and requires inhibition of protein synthesis by cycloheximide to block deposition of additional matrix by the fibroblasts., The positive effect of ultrasound on repair mechanisms is well documented7,8, and by understanding the molecular effect of ultrasound in culture we should be able to refine the therapeutic technique to improve clinical outcomes.
Biomedical Engineering, Issue 63, Ultrasound, LIPUS, Focal Adhesion, Syndecan-4, Wound Healing, Extracellular Matrix, Rac1, bioengineering
Play Button
Analysis of Cell Migration within a Three-dimensional Collagen Matrix
Authors: Nadine Rommerswinkel, Bernd Niggemann, Silvia Keil, Kurt S. Zänker, Thomas Dittmar.
Institutions: Witten/Herdecke University.
The ability to migrate is a hallmark of various cell types and plays a crucial role in several physiological processes, including embryonic development, wound healing, and immune responses. However, cell migration is also a key mechanism in cancer enabling these cancer cells to detach from the primary tumor to start metastatic spreading. Within the past years various cell migration assays have been developed to analyze the migratory behavior of different cell types. Because the locomotory behavior of cells markedly differs between a two-dimensional (2D) and three-dimensional (3D) environment it can be assumed that the analysis of the migration of cells that are embedded within a 3D environment would yield in more significant cell migration data. The advantage of the described 3D collagen matrix migration assay is that cells are embedded within a physiological 3D network of collagen fibers representing the major component of the extracellular matrix. Due to time-lapse video microscopy real cell migration is measured allowing the determination of several migration parameters as well as their alterations in response to pro-migratory factors or inhibitors. Various cell types could be analyzed using this technique, including lymphocytes/leukocytes, stem cells, and tumor cells. Likewise, also cell clusters or spheroids could be embedded within the collagen matrix concomitant with analysis of the emigration of single cells from the cell cluster/ spheroid into the collagen lattice. We conclude that the 3D collagen matrix migration assay is a versatile method to analyze the migration of cells within a physiological-like 3D environment.
Bioengineering, Issue 92, cell migration, 3D collagen matrix, cell tracking
Play Button
In vitro Cell Migration and Invasion Assays
Authors: Calvin R. Justus, Nancy Leffler, Maria Ruiz-Echevarria, Li V. Yang.
Institutions: East Carolina University.
Migration is a key property of live cells and critical for normal development, immune response, and disease processes such as cancer metastasis and inflammation. Methods to examine cell migration are very useful and important for a wide range of biomedical research such as cancer biology, immunology, vascular biology, cell biology and developmental biology. Here we use tumor cell migration and invasion as an example and describe two related assays to illustrate the commonly used, easily accessible methods to measure these processes. The first method is the cell culture wound closure assay in which a scratch is generated on a confluent cell monolayer. The speed of wound closure and cell migration can be quantified by taking snapshot pictures with a regular inverted microscope at several time intervals. More detailed cell migratory behavior can be documented using the time-lapse microscopy system. The second method described in this paper is the transwell cell migration and invasion assay that measures the capacity of cell motility and invasiveness toward a chemo-attractant gradient. It is our goal to describe these methods in a highly accessible manner so that the procedures can be successfully performed in research laboratories even just with basic cell biology setup.
Bioengineering, Issue 88, Cell migration, cell invasion, chemotaxis, transwell assay, wound closure assay, time-lapse microscopy
Play Button
Murine Model of Wound Healing
Authors: Louise Dunn, Hamish C. G Prosser, Joanne T. M. Tan, Laura Z. Vanags, Martin K. C. Ng, Christina A. Bursill.
Institutions: The Heart Research Institute, University of Sydney , Royal Prince Alfred Hospital .
Wound healing and repair are the most complex biological processes that occur in human life. After injury, multiple biological pathways become activated. Impaired wound healing, which occurs in diabetic patients for example, can lead to severe unfavorable outcomes such as amputation. There is, therefore, an increasing impetus to develop novel agents that promote wound repair. The testing of these has been limited to large animal models such as swine, which are often impractical. Mice represent the ideal preclinical model, as they are economical and amenable to genetic manipulation, which allows for mechanistic investigation. However, wound healing in a mouse is fundamentally different to that of humans as it primarily occurs via contraction. Our murine model overcomes this by incorporating a splint around the wound. By splinting the wound, the repair process is then dependent on epithelialization, cellular proliferation and angiogenesis, which closely mirror the biological processes of human wound healing. Whilst requiring consistency and care, this murine model does not involve complicated surgical techniques and allows for the robust testing of promising agents that may, for example, promote angiogenesis or inhibit inflammation. Furthermore, each mouse acts as its own control as two wounds are prepared, enabling the application of both the test compound and the vehicle control on the same animal. In conclusion, we demonstrate a practical, easy-to-learn, and robust model of wound healing, which is comparable to that of humans.
Medicine, Issue 75, Anatomy, Physiology, Biomedical Engineering, Surgery, Tissue, Lacerations, Soft Tissue Injuries, Wound Infection, Wounds, Nonpenetrating, Penetrating, Growth Substances, Angiogenesis Modulating Agents, Wounds and Injuries, Wound healing, mouse, angiogenesis, diabetes mellitus, splint, surgical techniques, animal model
Play Button
A Novel Three-dimensional Flow Chamber Device to Study Chemokine-directed Extravasation of Cells Circulating under Physiological Flow Conditions
Authors: Valentina Goncharova, Sophia K. Khaldoyanidi.
Institutions: Torrey Pines Institute for Molecular Studies, Cascade LifeSciences Inc..
Extravasation of circulating cells from the bloodstream plays a central role in many physiological and pathophysiological processes, including stem cell homing and tumor metastasis. The three-dimensional flow chamber device (hereafter the 3D device) is a novel in vitro technology that recreates physiological shear stress and allows each step of the cell extravasation cascade to be quantified. The 3D device consists of an upper compartment in which the cells of interest circulate under shear stress, and a lower compartment of static wells that contain the chemoattractants of interest. The two compartments are separated by porous inserts coated with a monolayer of endothelial cells (EC). An optional second insert with microenvironmental cells of interest can be placed immediately beneath the EC layer. A gas exchange unit allows the optimal CO2 tension to be maintained and provides an access point to add or withdraw cells or compounds during the experiment. The test cells circulate in the upper compartment at the desired shear stress (flow rate) controlled by a peristaltic pump. At the end of the experiment, the circulating and migrated cells are collected for further analyses. The 3D device can be used to examine cell rolling on and adhesion to EC under shear stress, transmigration in response to chemokine gradients, resistance to shear stress, cluster formation, and cell survival. In addition, the optional second insert allows the effects of crosstalk between EC and microenvironmental cells to be examined. The translational applications of the 3D device include testing of drug candidates that target cell migration and predicting the in vivo behavior of cells after intravenous injection. Thus, the novel 3D device is a versatile and inexpensive tool to study the molecular mechanisms that mediate cellular extravasation.
Bioengineering, Issue 77, Cellular Biology, Biophysics, Physiology, Molecular Biology, Biomedical Engineering, Immunology, Cells, Biological Factors, Equipment and Supplies, Cell Physiological Phenomena, Natural Science Disciplines, Life Sciences (General), circulating cells, extravasation, physiological shear stress, endothelial cells, microenvironment, chemokine gradient, flow, chamber, cell culture, assay
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
Play Button
Visualizing Neuroblast Cytokinesis During C. elegans Embryogenesis
Authors: Denise Wernike, Chloe van Oostende, Alisa Piekny.
Institutions: Concordia University.
This protocol describes the use of fluorescence microscopy to image dividing cells within developing Caenorhabditis elegans embryos. In particular, this protocol focuses on how to image dividing neuroblasts, which are found underneath the epidermal cells and may be important for epidermal morphogenesis. Tissue formation is crucial for metazoan development and relies on external cues from neighboring tissues. C. elegans is an excellent model organism to study tissue morphogenesis in vivo due to its transparency and simple organization, making its tissues easy to study via microscopy. Ventral enclosure is the process where the ventral surface of the embryo is covered by a single layer of epithelial cells. This event is thought to be facilitated by the underlying neuroblasts, which provide chemical guidance cues to mediate migration of the overlying epithelial cells. However, the neuroblasts are highly proliferative and also may act as a mechanical substrate for the ventral epidermal cells. Studies using this experimental protocol could uncover the importance of intercellular communication during tissue formation, and could be used to reveal the roles of genes involved in cell division within developing tissues.
Neuroscience, Issue 85, C. elegans, morphogenesis, cytokinesis, neuroblasts, anillin, microscopy, cell division
Play Button
Electric Cell-substrate Impedance Sensing for the Quantification of Endothelial Proliferation, Barrier Function, and Motility
Authors: Robert Szulcek, Harm Jan Bogaard, Geerten P. van Nieuw Amerongen.
Institutions: Institute for Cardiovascular Research, VU University Medical Center, Institute for Cardiovascular Research, VU University Medical Center.
Electric Cell-substrate Impedance Sensing (ECIS) is an in vitro impedance measuring system to quantify the behavior of cells within adherent cell layers. To this end, cells are grown in special culture chambers on top of opposing, circular gold electrodes. A constant small alternating current is applied between the electrodes and the potential across is measured. The insulating properties of the cell membrane create a resistance towards the electrical current flow resulting in an increased electrical potential between the electrodes. Measuring cellular impedance in this manner allows the automated study of cell attachment, growth, morphology, function, and motility. Although the ECIS measurement itself is straightforward and easy to learn, the underlying theory is complex and selection of the right settings and correct analysis and interpretation of the data is not self-evident. Yet, a clear protocol describing the individual steps from the experimental design to preparation, realization, and analysis of the experiment is not available. In this article the basic measurement principle as well as possible applications, experimental considerations, advantages and limitations of the ECIS system are discussed. A guide is provided for the study of cell attachment, spreading and proliferation; quantification of cell behavior in a confluent layer, with regard to barrier function, cell motility, quality of cell-cell and cell-substrate adhesions; and quantification of wound healing and cellular responses to vasoactive stimuli. Representative results are discussed based on human microvascular (MVEC) and human umbilical vein endothelial cells (HUVEC), but are applicable to all adherent growing cells.
Bioengineering, Issue 85, ECIS, Impedance Spectroscopy, Resistance, TEER, Endothelial Barrier, Cell Adhesions, Focal Adhesions, Proliferation, Migration, Motility, Wound Healing
Play Button
Feeder-free Derivation of Neural Crest Progenitor Cells from Human Pluripotent Stem Cells
Authors: Nadja Zeltner, Fabien G. Lafaille, Faranak Fattahi, Lorenz Studer.
Institutions: Sloan-Kettering Institute for Cancer Research, The Rockefeller University.
Human pluripotent stem cells (hPSCs) have great potential for studying human embryonic development, for modeling human diseases in the dish and as a source of transplantable cells for regenerative applications after disease or accidents. Neural crest (NC) cells are the precursors for a large variety of adult somatic cells, such as cells from the peripheral nervous system and glia, melanocytes and mesenchymal cells. They are a valuable source of cells to study aspects of human embryonic development, including cell fate specification and migration. Further differentiation of NC progenitor cells into terminally differentiated cell types offers the possibility to model human diseases in vitro, investigate disease mechanisms and generate cells for regenerative medicine. This article presents the adaptation of a currently available in vitro differentiation protocol for the derivation of NC cells from hPSCs. This new protocol requires 18 days of differentiation, is feeder-free, easily scalable and highly reproducible among human embryonic stem cell (hESC) lines as well as human induced pluripotent stem cell (hiPSC) lines. Both old and new protocols yield NC cells of equal identity.
Neuroscience, Issue 87, Embryonic Stem Cells (ESCs), Pluripotent Stem Cells, Induced Pluripotent Stem Cells (iPSCs), Neural Crest, Peripheral Nervous System (PNS), pluripotent stem cells, neural crest cells, in vitro differentiation, disease modeling, differentiation protocol, human embryonic stem cells, human pluripotent stem cells
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
Play Button
In vitro Coculture Assay to Assess Pathogen Induced Neutrophil Trans-epithelial Migration
Authors: Mark E. Kusek, Michael A. Pazos, Waheed Pirzai, Bryan P. Hurley.
Institutions: Harvard Medical School, MGH for Children, Massachusetts General Hospital.
Mucosal surfaces serve as protective barriers against pathogenic organisms. Innate immune responses are activated upon sensing pathogen leading to the infiltration of tissues with migrating inflammatory cells, primarily neutrophils. This process has the potential to be destructive to tissues if excessive or held in an unresolved state.  Cocultured in vitro models can be utilized to study the unique molecular mechanisms involved in pathogen induced neutrophil trans-epithelial migration. This type of model provides versatility in experimental design with opportunity for controlled manipulation of the pathogen, epithelial barrier, or neutrophil. Pathogenic infection of the apical surface of polarized epithelial monolayers grown on permeable transwell filters instigates physiologically relevant basolateral to apical trans-epithelial migration of neutrophils applied to the basolateral surface. The in vitro model described herein demonstrates the multiple steps necessary for demonstrating neutrophil migration across a polarized lung epithelial monolayer that has been infected with pathogenic P. aeruginosa (PAO1). Seeding and culturing of permeable transwells with human derived lung epithelial cells is described, along with isolation of neutrophils from whole human blood and culturing of PAO1 and nonpathogenic K12 E. coli (MC1000).  The emigrational process and quantitative analysis of successfully migrated neutrophils that have been mobilized in response to pathogenic infection is shown with representative data, including positive and negative controls. This in vitro model system can be manipulated and applied to other mucosal surfaces. Inflammatory responses that involve excessive neutrophil infiltration can be destructive to host tissues and can occur in the absence of pathogenic infections. A better understanding of the molecular mechanisms that promote neutrophil trans-epithelial migration through experimental manipulation of the in vitro coculture assay system described herein has significant potential to identify novel therapeutic targets for a range of mucosal infectious as well as inflammatory diseases.
Infection, Issue 83, Cellular Biology, Epithelium, Neutrophils, Pseudomonas aeruginosa, Respiratory Tract Diseases, Neutrophils, epithelial barriers, pathogens, transmigration
Play Button
An In vitro FluoroBlok Tumor Invasion Assay
Authors: Jeff Partridge, Paula Flaherty.
Institutions: Discovery Labware.
The hallmark of metastatic cells is their ability to invade through the basement membrane and migrate to other parts of the body. Cells must be able to both secrete proteases that break down the basement membrane as well as migrate in order to be invasive. BD BioCoat Tumor Invasion System provides cells with conditions that allow assessment of their invasive property in vitro1,2. It consists of a BD Falcon FluoroBlok 24-Multiwell Insert Plate with an 8.0 micron pore size PET membrane that has been uniformly coated with BD Matrigel Matrix. This uniform layer of BD Matrigel Matrix serves as a reconstituted basement membrane in vitro providing a true barrier to non-invasive cells while presenting an appropriate protein structure to study invasion. The coating process occludes the pores of the membrane, blocking non-invasive cells from migrating through the membrane. In contrast, invasive cells are able to detach themselves from and migrate through the coated membrane. Quantitation of cell invasion can be achieved by either pre- or post-cell invasion labeling with a fluorescent dye such as DiIC12(3) or calcein AM, respectively, and measuring the fluorescence of invading cells. Since the BD FluoroBlok membrane effectively blocks the passage of light from 490-700 nm at >99% efficiency, fluorescently-labeled cells that have not invaded are not detected by a bottom-reading fluorescence plate reader. However, cells that have invaded to the underside of the membrane are no longer shielded from the light source and are detected with the respective plate reader. This video demonstrates an endpoint cell invasion assay, using calcein AM to detect invaded cells.
Cellular Biology, Issue 29, Tumor Invasion Assay, Chemotaxis, Calcein-AM, Matrigel, Falcon, Fluoroblok, Migration, Invasion, Tumor, BD, Matrigel, Boyden chamber, Motility, Haptotaxis
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.