JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Capsomer vaccines protect mice from vaginal challenge with human papillomavirus.
PUBLISHED: 08-12-2011
Capsomers were produced in bacteria as glutathione-S-transferase (GST) fusion proteins with human papillomavirus type 16 L1 lacking the first nine and final 29 residues (GST-HPV16L1?) alone or linked with residues 13-47 of HPV18, HPV31 and HPV45 L2 in tandem (GST-HPV16L1?-L2x3). Subcutaneous immunization of mice with GST-HPV16L1? or GST-HPV16L1?-L2x3 in alum and monophosphoryl lipid A induced similarly high titers of HPV16 neutralizing antibodies. GST-HPV16L1?-L2x3 also elicited moderate L2-specific antibody titers. Intravaginal challenge studies showed that immunization of mice with GST-HPV16 L1? or GST-HPV16L1?-L2x3 capsomers, like Cervarix®, provided complete protection against HPV16. Conversely, vaccination with GST-HPV16 L1? capsomers failed to protect against HPV18 challenge, whereas mice immunized with either GST-HPV16L1?-L2x3 capsomers or Cervarix® were each completely protected. Thus, while the L2-specific response was moderate, it did not interfere with immunity to L1 in the context of GST-HPV16L1?-L2x3 and is sufficient to mediate L2-dependent protection against an experimental vaginal challenge with HPV18.
Authors: Ranjan Maity, Joris Pauty, Jana Krietsch, Rémi Buisson, Marie-Michelle Genois, Jean-Yves Masson.
Published: 10-29-2013
Key assays in enzymology for the biochemical characterization of proteins in vitro necessitate high concentrations of the purified protein of interest. Protein purification protocols should combine efficiency, simplicity and cost effectiveness1. Here, we describe the GST-His method as a new small-scale affinity purification system for recombinant proteins, based on a N-terminal Glutathione Sepharose Tag (GST)2,3 and a C-terminal 10xHis tag4, which are both fused to the protein of interest. The latter construct is used to generate baculoviruses, for infection of Sf9 infected cells for protein expression5. GST is a rather long tag (29 kDa) which serves to ensure purification efficiency. However, it might influence physiological properties of the protein. Hence, it is subsequently cleaved off the protein using the PreScission enzyme6. In order to ensure maximum purity and to remove the cleaved GST, we added a second affinity purification step based on the comparatively small His-Tag. Importantly, our technique is based on two different tags flanking the two ends of the protein, which is an efficient tool to remove degraded proteins and, therefore, enriches full-length proteins. The method presented here does not require an expensive instrumental setup, such as FPLC. Additionally, we incorporated MgCl2 and ATP washes to remove heat shock protein impurities and nuclease treatment to abolish contaminating nucleic acids. In summary, the combination of two different tags flanking the N- and the C-terminal and the capability to cleave off one of the tags, guaranties the recovery of a highly purified and full-length protein of interest.
22 Related JoVE Articles!
Play Button
Protocols for Vaginal Inoculation and Sample Collection in the Experimental Mouse Model of Candida vaginitis
Authors: Junko Yano, Paul L. Fidel, Jr..
Institutions: Louisiana State University Health Sciences Center.
Vulvovaginal candidiasis (VVC), caused by Candida species, is a fungal infection of the lower female genital tract that affects approximately 75% of otherwise healthy women during their reproductive years18,32-34. Predisposing factors include antibiotic usage, uncontrolled diabetes and disturbance in reproductive hormone levels due to pregnancy, oral contraceptives or hormone replacement therapies33,34. Recurrent VVC (RVVC), defined as three or more episodes per year, affects a separate 5 to 8% of women with no predisposing factors33. An experimental mouse model of VVC has been established and used to study the pathogenesis and mucosal host response to Candida3,4,11,16,17,19,21,25,37. This model has also been employed to test potential antifungal therapies in vivo13,24. The model requires that the animals be maintained in a state of pseudoestrus for optimal Candida colonization/infection6,14,23. Under such conditions, inoculated animals will have detectable vaginal fungal burden for weeks to months. Past studies show an extremely high parallel between the animal model and human infection relative to immunological and physiological properties3,16,21. Differences, however, include a lack of Candida as normal vaginal flora and a neutral vaginal pH in the mice. Here, we demonstrate a series of key methods in the mouse vaginitis model that include vaginal inoculation, rapid collection of vaginal specimens, assessment of vaginal fungal burden, and tissue preparations for cellular extraction/isolation. This is followed by representative results for constituents of vaginal lavage fluid, fungal burden, and draining lymph node leukocyte yields. With the use of anesthetics, lavage samples can be collected at multiple time points on the same mice for longitudinal evaluation of infection/colonization. Furthermore, this model requires no immunosuppressive agents to initiate infection, allowing immunological studies under defined host conditions. Finally, the model and each technique introduced here could potentially give rise to use of the methodologies to examine other infectious diseases of the lower female genital tract (bacterial, parasitic, viral) and respective local or systemic host defenses.
Immunology, Issue 58, Candida albicans, vaginitis, mouse, lumbar lymph nodes, vaginal tissues, vaginal lavage
Play Button
Intralymphatic Immunotherapy and Vaccination in Mice
Authors: Pål Johansen, Thomas M. Kündig.
Institutions: University Hospital Zurich.
Vaccines are typically injected subcutaneously or intramuscularly for stimulation of immune responses. The success of this requires efficient drainage of vaccine to lymph nodes where antigen presenting cells can interact with lymphocytes for generation of the wanted immune responses. The strength and the type of immune responses induced also depend on the density or frequency of interactions as well as the microenvironment, especially the content of cytokines. As only a minute fraction of peripherally injected vaccines reaches the lymph nodes, vaccinations of mice and humans were performed by direct injection of vaccine into inguinal lymph nodes, i.e. intralymphatic injection. In man, the procedure is guided by ultrasound. In mice, a small (5-10 mm) incision is made in the inguinal region of anesthetized animals, the lymph node is localized and immobilized with forceps, and a volume of 10-20 μl of the vaccine is injected under visual control. The incision is closed with a single stitch using surgical sutures. Mice were vaccinated with plasmid DNA, RNA, peptide, protein, particles, and bacteria as well as adjuvants, and strong improvement of immune responses against all type of vaccines was observed. The intralymphatic method of vaccination is especially appropriate in situations where conventional vaccination produces insufficient immunity or where the amount of available vaccine is limited.
Immunology, Issue 84, Vaccination, Immunization, intralymphatic immunotherapy, Lymph node injection, vaccines, adjuvants, surgery, anesthesia
Play Button
Sublingual Immunotherapy as an Alternative to Induce Protection Against Acute Respiratory Infections
Authors: Natalia Muñoz-Wolf, Analía Rial, José M. Saavedra, José A. Chabalgoity.
Institutions: Universidad de la República, Trinity College Dublin.
Sublingual route has been widely used to deliver small molecules into the bloodstream and to modulate the immune response at different sites. It has been shown to effectively induce humoral and cellular responses at systemic and mucosal sites, namely the lungs and urogenital tract. Sublingual vaccination can promote protection against infections at the lower and upper respiratory tract; it can also promote tolerance to allergens and ameliorate asthma symptoms. Modulation of lung’s immune response by sublingual immunotherapy (SLIT) is safer than direct administration of formulations by intranasal route because it does not require delivery of potentially harmful molecules directly into the airways. In contrast to intranasal delivery, side effects involving brain toxicity or facial paralysis are not promoted by SLIT. The immune mechanisms underlying SLIT remain elusive and its use for the treatment of acute lung infections has not yet been explored. Thus, development of appropriate animal models of SLIT is needed to further explore its potential advantages. This work shows how to perform sublingual administration of therapeutic agents in mice to evaluate their ability to protect against acute pneumococcal pneumonia. Technical aspects of mouse handling during sublingual inoculation, precise identification of sublingual mucosa, draining lymph nodes and isolation of tissues, bronchoalveolar lavage and lungs are illustrated. Protocols for single cell suspension preparation for FACS analysis are described in detail. Other downstream applications for the analysis of the immune response are discussed. Technical aspects of the preparation of Streptococcus pneumoniae inoculum and intranasal challenge of mice are also explained. SLIT is a simple technique that allows screening of candidate molecules to modulate lungs’ immune response. Parameters affecting the success of SLIT are related to molecular size, susceptibility to degradation and stability of highly concentrated formulations.
Medicine, Issue 90, Sublingual immunotherapy, Pneumonia, Streptococcus pneumoniae, Lungs, Flagellin, TLR5, NLRC4
Play Button
Use of Interferon-γ Enzyme-linked Immunospot Assay to Characterize Novel T-cell Epitopes of Human Papillomavirus
Authors: Xuelian Wang, William W. Greenfield, Hannah N. Coleman, Lindsey E. James, Mayumi Nakagawa.
Institutions: China Medical University , University of Arkansas for Medical Sciences , University of Arkansas for Medical Sciences .
A protocol has been developed to overcome the difficulties of isolating and characterizing rare T cells specific for pathogens, such as human papillomavirus (HPV), that cause localized infections. The steps involved are identifying region(s) of HPV proteins that contain T-cell epitope(s) from a subject, selecting for the peptide-specific T cells based on interferon-γ (IFN-γ) secretion, and growing and characterizing the T-cell clones (Fig. 1). Subject 1 was a patient who was recently diagnosed with a high-grade squamous intraepithelial lesion by biopsy and underwent loop electrical excision procedure for treatment on the day the T cells were collected1. A region within the human papillomavirus type 16 (HPV 16) E6 and E7 proteins which contained a T-cell epitope was identified using an IFN- g enzyme-linked immunospot (ELISPOT) assay performed with overlapping synthetic peptides (Fig. 2). The data from this assay were used not only to identify a region containing a T-cell epitope, but also to estimate the number of epitope specific T cells and to isolate them on the basis of IFN- γ secretion using commercially available magnetic beads (CD8 T-cell isolation kit, Miltenyi Biotec, Auburn CA). The selected IFN-γ secreting T cells were diluted and grown singly in the presence of an irradiated feeder cell mixture in order to support the growth of a single T-cell per well. These T-cell clones were screened using an IFN- γ ELISPOT assay in the presence of peptides covering the identified region and autologous Epstein-Barr virus transformed B-lymphoblastoid cells (LCLs, obtained how described by Walls and Crawford)2 in order to minimize the number of T-cell clone cells needed. Instead of using 1 x 105 cells per well typically used in ELISPOT assays1,3, 1,000 T-cell clone cells in the presence of 1 x 105 autologous LCLs were used, dramatically reducing the number of T-cell clone cells needed. The autologous LCLs served not only to present peptide antigens to the T-cell clone cells, but also to keep a high cell density in the wells allowing the epitope-specific T-cell clone cells to secrete IFN-γ. This assures successful performance of IFN-γ ELISPOT assay. Similarly, IFN- γ ELISPOT assays were utilized to characterize the minimal and optimal amino acid sequence of the CD8 T-cell epitope (HPV 16 E6 52-61 FAFRDLCIVY) and its HLA class I restriction element (B58). The IFN- γ ELISPOT assay was also performed using autologous LCLs infected with vaccinia virus expressing HPV 16 E6 or E7 protein. The result demonstrated that the E6 T-cell epitope was endogenously processed. The cross-recognition of homologous T-cell epitope of other high-risk HPV types was shown. This method can also be used to describe CD4 T-cell epitopes4.
Immunology, Issue 61, Interferon-γ enzyme-linked immunospot assay, T-cell, epitope, human papillomavirus
Play Button
Culturing and Applications of Rotating Wall Vessel Bioreactor Derived 3D Epithelial Cell Models
Authors: Andrea L. Radtke, Melissa M. Herbst-Kralovetz.
Institutions: University of Arizona College of Medicine - Phoenix.
Cells and tissues in the body experience environmental conditions that influence their architecture, intercellular communications, and overall functions. For in vitro cell culture models to accurately mimic the tissue of interest, the growth environment of the culture is a critical aspect to consider. Commonly used conventional cell culture systems propagate epithelial cells on flat two-dimensional (2-D) impermeable surfaces. Although much has been learned from conventional cell culture systems, many findings are not reproducible in human clinical trials or tissue explants, potentially as a result of the lack of a physiologically relevant microenvironment. Here, we describe a culture system that overcomes many of the culture condition boundaries of 2-D cell cultures, by using the innovative rotating wall vessel (RWV) bioreactor technology. We and others have shown that organotypic RWV-derived models can recapitulate structure, function, and authentic human responses to external stimuli similarly to human explant tissues 1-6. The RWV bioreactor is a suspension culture system that allows for the growth of epithelial cells under low physiological fluid shear conditions. The bioreactors come in two different formats, a high-aspect rotating vessel (HARV) or a slow-turning lateral vessel (STLV), in which they differ by their aeration source. Epithelial cells are added to the bioreactor of choice in combination with porous, collagen-coated microcarrier beads (Figure 1A). The cells utilize the beads as a growth scaffold during the constant free fall in the bioreactor (Figure 1B). The microenvironment provided by the bioreactor allows the cells to form three-dimensional (3-D) aggregates displaying in vivo-like characteristics often not observed under standard 2-D culture conditions (Figure 1D). These characteristics include tight junctions, mucus production, apical/basal orientation, in vivo protein localization, and additional epithelial cell-type specific properties. The progression from a monolayer of epithelial cells to a fully differentiated 3-D aggregate varies based on cell type1, 7-13. Periodic sampling from the bioreactor allows for monitoring of epithelial aggregate formation, cellular differentiation markers and viability (Figure 1D). Once cellular differentiation and aggregate formation is established, the cells are harvested from the bioreactor, and similar assays performed on 2-D cells can be applied to the 3-D aggregates with a few considerations (Figure 1E-G). In this work, we describe detailed steps of how to culture 3-D epithelial cell aggregates in the RWV bioreactor system and a variety of potential assays and analyses that can be executed with the 3-D aggregates. These analyses include, but are not limited to, structural/morphological analysis (confocal, scanning and transmission electron microscopy), cytokine/chemokine secretion and cell signaling (cytometric bead array and Western blot analysis), gene expression analysis (real-time PCR), toxicological/drug analysis and host-pathogen interactions. The utilization of these assays set the foundation for more in-depth and expansive studies such as metabolomics, transcriptomics, proteomics and other array-based applications. Our goal is to present a non-conventional means of culturing human epithelial cells to produce organotypic 3-D models that recapitulate the human in vivo tissue, in a facile and robust system to be used by researchers with diverse scientific interests.
Cellular Biology, Issue 62, Rotating wall vessel bioreactor, female reproductive tract, human epithelial cells, three-dimensional in vitro cell culture, organotypic mucosal models, vaginal epithelial cells, microbicide, herpes simplex virus, toxicology, host-pathogen interactions, hormone receptors
Play Button
In Vitro Analysis of Myd88-mediated Cellular Immune Response to West Nile Virus Mutant Strain Infection
Authors: Guorui Xie, Melissa C. Whiteman, Jason A. Wicker, Alan D.T. Barrett, Tian Wang.
Institutions: The University of Texas Medical Branch, The University of Texas Medical Branch, The University of Texas Medical Branch.
An attenuated West Nile virus (WNV), a nonstructural (NS) 4B-P38G mutant, induced higher innate cytokine and T cell responses than the wild-type WNV in mice. Recently, myeloid differentiation factor 88 (MyD88) signaling was shown to be important for initial T cell priming and memory T cell development during WNV NS4B-P38G mutant infection. In this study, two flow cytometry-based methods – an in vitro T cell priming assay and an intracellular cytokine staining (ICS) – were utilized to assess dendritic cells (DCs) and T cell functions. In the T cell priming assay, cell proliferation was analyzed by flow cytometry following co-culture of DCs from both groups of mice with carboxyfluorescein succinimidyl ester (CFSE) - labeled CD4+ T cells of OTII transgenic mice. This approach provided an accurate determination of the percentage of proliferating CD4+ T cells with significantly improved overall sensitivity than the traditional assays with radioactive reagents. A microcentrifuge tube system was used in both cell culture and cytokine staining procedures of the ICS protocol. Compared to the traditional tissue culture plate-based system, this modified procedure was easier to perform at biosafety level (BL) 3 facilities. Moreover, WNV- infected cells were treated with paraformaldehyde in both assays, which enabled further analysis outside BL3 facilities. Overall, these in vitro immunological assays can be used to efficiently assess cell-mediated immune responses during WNV infection.
Immunology, Issue 93, West Nile Virus, Dendritic cells, T cells, cytokine, proliferation, in vitro
Play Button
A Method to Study the Impact of Chemically-induced Ovarian Failure on Exercise Capacity and Cardiac Adaptation in Mice
Authors: Hao Chen, Jessica N. Perez, Eleni Constantopoulos, Laurel McKee, Jessica Regan, Patricia B. Hoyer, Heddwen L. Brooks, John Konhilas.
Institutions: University of Arizona.
The risk of cardiovascular disease (CVD) increases in post-menopausal women, yet, the role of exercise, as a preventative measure for CVD risk in post-menopausal women has not been adequately studied. Accordingly, we investigated the impact of voluntary cage-wheel exercise and forced treadmill exercise on cardiac adaptation in menopausal mice. The most commonly used inducible model for mimicking menopause in women is the ovariectomized (OVX) rodent. However, the OVX model has a few dissimilarities from menopause in humans. In this study, we administered 4-vinylcyclohexene diepoxide (VCD) to female mice, which accelerates ovarian failure as an alternative menopause model to study the impact of exercise in menopausal mice. VCD selectively accelerates the loss of primary and primordial follicles resulting in an endocrine state that closely mimics the natural progression from pre- to peri- to post-menopause in humans. To determine the impact of exercise on exercise capacity and cardiac adaptation in VCD-treated female mice, two methods were used. First, we exposed a group of VCD-treated and untreated mice to a voluntary cage wheel. Second, we used forced treadmill exercise to determine exercise capacity in a separate group VCD-treated and untreated mice measured as a tolerance to exercise intensity and endurance.
Medicine, Issue 86, VCD, menopause, voluntary wheel running, forced treadmill exercise, exercise capacity, adaptive cardiac adaptation
Play Button
Optimization and Utilization of Agrobacterium-mediated Transient Protein Production in Nicotiana
Authors: Moneim Shamloul, Jason Trusa, Vadim Mett, Vidadi Yusibov.
Institutions: Fraunhofer USA Center for Molecular Biotechnology.
Agrobacterium-mediated transient protein production in plants is a promising approach to produce vaccine antigens and therapeutic proteins within a short period of time. However, this technology is only just beginning to be applied to large-scale production as many technological obstacles to scale up are now being overcome. Here, we demonstrate a simple and reproducible method for industrial-scale transient protein production based on vacuum infiltration of Nicotiana plants with Agrobacteria carrying launch vectors. Optimization of Agrobacterium cultivation in AB medium allows direct dilution of the bacterial culture in Milli-Q water, simplifying the infiltration process. Among three tested species of Nicotiana, N. excelsiana (N. benthamiana × N. excelsior) was selected as the most promising host due to the ease of infiltration, high level of reporter protein production, and about two-fold higher biomass production under controlled environmental conditions. Induction of Agrobacterium harboring pBID4-GFP (Tobacco mosaic virus-based) using chemicals such as acetosyringone and monosaccharide had no effect on the protein production level. Infiltrating plant under 50 to 100 mbar for 30 or 60 sec resulted in about 95% infiltration of plant leaf tissues. Infiltration with Agrobacterium laboratory strain GV3101 showed the highest protein production compared to Agrobacteria laboratory strains LBA4404 and C58C1 and wild-type Agrobacteria strains at6, at10, at77 and A4. Co-expression of a viral RNA silencing suppressor, p23 or p19, in N. benthamiana resulted in earlier accumulation and increased production (15-25%) of target protein (influenza virus hemagglutinin).
Plant Biology, Issue 86, Agroinfiltration, Nicotiana benthamiana, transient protein production, plant-based expression, viral vector, Agrobacteria
Play Button
Performing Vaginal Lavage, Crystal Violet Staining, and Vaginal Cytological Evaluation for Mouse Estrous Cycle Staging Identification
Authors: Ashleigh C. McLean, Nicolas Valenzuela, Stephen Fai, Steffany A.L. Bennett.
Institutions: Neural Regeneration Laboratory and Ottawa Institute of Systems Biology, University of Ottawa , University of Ottawa , Azrieli School of Architecture and Urbanism.
A rapid means of assessing reproductive status in rodents is useful not only in the study of reproductive dysfunction but is also required for the production of new mouse models of disease and investigations into the hormonal regulation of tissue degeneration (or regeneration) following pathological challenge. The murine reproductive (or estrous) cycle is divided into 4 stages: proestrus, estrus, metestrus, and diestrus. Defined fluctuations in circulating levels of the ovarian steroids 17-β-estradiol and progesterone, the gonadotropins luteinizing and follicle stimulating hormones, and the luteotropic hormone prolactin signal transition through these reproductive stages. Changes in cell typology within the murine vaginal canal reflect these underlying endocrine events. Daily assessment of the relative ratio of nucleated epithelial cells, cornified squamous epithelial cells, and leukocytes present in vaginal smears can be used to identify murine estrous stages. The degree of invasiveness, however, employed in collecting these samples can alter reproductive status and elicit an inflammatory response that can confound cytological assessment of smears. Here, we describe a simple, non-invasive protocol that can be used to determine the stage of the estrous cycle of a female mouse without altering her reproductive cycle. We detail how to differentiate between the four stages of the estrous cycle by collection and analysis of predominant cell typology in vaginal smears and we show how these changes can be interpreted with respect to endocrine status.
Medicine, Issue 67, Biochemistry, Immunology, Microbiology, Physiology, Anatomy, estrous cycle, vaginal cytology, hormonal status, murine reproduction, 17-beta-estradiol, progesterone, luteinizing hormone, follicle-stimulating hormone, prolactin
Play Button
Purification and Aggregation of the Amyloid Precursor Protein Intracellular Domain
Authors: Amina El Ayadi, Emily S. Stieren, José M. Barral, Andres F. Oberhauser, Darren Boehning.
Institutions: University of Texas Medical Branch , University of Texas Medical Branch .
Amyloid precursor protein (APP) is a type I transmembrane protein associated with the pathogenesis of Alzheimer's disease (AD). APP is characterized by a large extracellular domain and a short cytosolic domain termed the APP intracellular domain (AICD). During maturation through the secretory pathway, APP can be cleaved by proteases termed α, β, and γ-secretases1. Sequential proteolytic cleavage of APP with β and γ-secretases leads to the production of a small proteolytic peptide, termed Aβ, which is amyloidogenic and the core constituent of senile plaques. The AICD is also liberated from the membrane after secretase processing, and through interactions with Fe65 and Tip60, can translocate to the nucleus to participate in transcription regulation of multiple target genes2,3. Protein-protein interactions involving the AICD may affect trafficking, processing, and cellular functions of holo-APP and its C-terminal fragments. We have recently shown that AICD can aggregate in vitro, and this process is inhibited by the AD-implicated molecular chaperone ubiquilin-14. Consistent with these findings, the AICD has exposed hydrophobic domains and is intrinsically disordered in vitro5,6, however it obtains stable secondary structure when bound to Fe657. We have proposed that ubiquilin-1 prevents inappropriate inter- and intramolecular interactions of AICD, preventing aggregation in vitro and in intact cells4. While most studies focus on the role of APP in the pathogenesis of AD, the role of AICD in this process is not clear. Expression of AICD has been shown to induce apoptosis8, to modulate signaling pathways9, and to regulate calcium signaling10. Over-expression of AICD and Fe65 in a transgenic mouse model induces Alzheimer's like pathology11, and recently AICD has been detected in brain lysates by western blotting when using appropriate antigen retrieval techniques12. To facilitate structural, biochemical, and biophysical studies of the AICD, we have developed a procedure to produce recombinantly large amounts of highly pure AICD protein. We further describe a method for inducing the in vitro thermal aggregation of AICD and analysis by atomic force microscopy. The methods described are useful for biochemical, biophysical, and structural characterization of the AICD and the effects of molecular chaperones on AICD aggregation.
Medicine, Issue 66, Neuroscience, Cellular Biology, Molecular Biology, Amyloid precursor protein, APP, AICD, Alzheimer's Disease, Atomic Force Microscopy, Aggregation, Ubiquilin-1, Molecular Chaperone
Play Button
Protein Membrane Overlay Assay: A Protocol to Test Interaction Between Soluble and Insoluble Proteins in vitro
Authors: Shoko Ueki, Benoît Lacroix, Vitaly Citovsky.
Institutions: State University of New York .
Validating interactions between different proteins is vital for investigation of their biological functions on the molecular level. There are several methods, both in vitro and in vivo, to evaluate protein binding, and at least two methods that complement the shortcomings of each other should be conducted to obtain reliable insights. For an in vivo assay, the bimolecular fluorescence complementation (BiFC) assay represents the most popular and least invasive approach that enables to detect protein-protein interaction within living cells, as well as identify the intracellular localization of the interacting proteins 1,2. In this assay, non-fluorescent N- and C-terminal halves of GFP or its variants are fused to tested proteins, and when the two fusion proteins are brought together due to the tested proteins’ interactions, the fluorescent signal is reconstituted3-6. Because its signal is readily detectable by epifluorescence or confocal microscopy, BiFC has emerged as a powerful tool of choice among cell biologists for studying about protein-protein interactions in living cells 3. This assay, however, can sometimes produce false positive results. For example, the fluorescent signal can be reconstituted by two GFP fragments arranged as far as 7 nm from each other due to close packing in a small subcellular compartment, rather that due to specific interactions7. Due to these limitations, the results obtained from live cell imaging technologies should be confirmed by an independent approach based on a different principle for detecting protein interactions. Co-immunoprecipitation (Co-IP) or glutathione transferase (GST) pull-down assays represent such alternative methods that are commonly used to analyze protein-protein interactions in vitro. However, iIn these assays, however, the tested proteins must be readily soluble in the buffer that supportsused for the binding reaction. Therefore, specific interactions involving an insoluble protein cannot be assessed by these techniques. Here, we illustrate the protocol for the protein membrane overlay binding assay, which circumvents this difficulty. In this technique, interaction between soluble and insoluble proteins can be reliably tested because one of the proteins is immobilized on a membrane matrix. This method, in combination with in vivo experiments, such as BiFC, provides a reliable approach to investigate and characterize interactions faithfully between soluble and insoluble proteins. In this article, binding between Tobacco mosaic virus (TMV) movement protein (MP), which exerts multiple functions during viral cell-to-cell transport8-14, and a recently identified plant cellular interactor, tobacco ankyrin repeat-containing protein (ANK) 15, is demonstrated using this technique.
Molecular Biology, Issue 54, protein-protein interactions, overlay, in vitro, western blotting, nitrocellulose membrane, insoluble protein
Play Button
RhoC GTPase Activation Assay
Authors: Michelle Lucey, Heather Unger, Kenneth L. van Golen.
Institutions: University of Delaware.
RhoC GTPase has 91% homology to RhoA GTPase. Because of its prevalence in cells, many reagents and techniques for RhoA GTPase have been developed. However, RhoC GTPase is expressed in metastatic cancer cells at relatively low levels. Therefore, few RhoC-specific reagents have been developed. We have adapted a Rho activation assay to detect RhoC GTPase. This technique utilizes a GST-Rho binding domain fusion protein to pull out active RhoC GTPase. In addition, we can harvest total protein at the beginning of the assay to determine levels of total (GTP and GDP bound) RhoC GTPase. This allows for the determination of active versus total RhoC GTPase in the cell. Several commercial versions of this procedure have been developed however, the commercial kits are optimized for RhoA GTPase and typically do not work well for RhoC GTPase. Parts of the assay have been modified as well as development of a RhoC-specific antibody.
neuroscience, Issue 42, brain, mouse, transplantation, labeling
Play Button
In vitro Methylation Assay to Study Protein Arginine Methylation
Authors: Rama Kamesh Bikkavilli, Sreedevi Avasarala, Michelle Van Scoyk, Manoj Kumar Karuppusamy Rathinam, Jordi Tauler, Stanley Borowicz, Robert A. Winn.
Institutions: University of Illinois at Chicago, University of Illinois at Chicago, Jesse Brown Veterans Affairs Medical Center.
Protein arginine methylation is one of the most abundant post-translational modifications in the nucleus. Protein arginine methylation can be identified and/or determined via proteomic approaches, and/or immunoblotting with methyl-arginine specific antibodies. However, these techniques sometimes can be misleading and often provide false positive results. Most importantly, these techniques cannot provide direct evidence in support of the PRMT substrate specificity. In vitro methylation assays, on the other hand, are useful biochemical assays, which are sensitive, and consistently reveal if the identified proteins are indeed PRMT substrates. A typical in vitro methylation assay includes purified, active PRMTs, purified substrate and a radioisotope labeled methyl donor (S-adenosyl-L-[methyl-3H] methionine). Here we describe a step-by-step protocol to isolate catalytically active PRMT1, a ubiquitously expressed PRMT family member. The methyl transferase activities of the purified PRMT1 were later tested on Ras-GTPase activating protein binding protein 1 (G3BP1), a known PRMT substrate, in the presence of S-adenosyl-L-[methyl-3H] methionine as the methyl donor. This protocol can be employed not only for establishing the methylation status of novel physiological PRMT1 substrates, but also for understanding the basic mechanism of protein arginine methylation.
Genetics, Issue 92, PRMT, protein methylation, SAMe, arginine, methylated proteins, methylation assay
Play Button
Microfluidic On-chip Capture-cycloaddition Reaction to Reversibly Immobilize Small Molecules or Multi-component Structures for Biosensor Applications
Authors: Carlos Tassa, Monty Liong, Scott Hilderbrand, Jason E. Sandler, Thomas Reiner, Edmund J. Keliher, Ralph Weissleder, Stanley Y. Shaw.
Institutions: Massachusetts General Hospital.
Methods for rapid surface immobilization of bioactive small molecules with control over orientation and immobilization density are highly desirable for biosensor and microarray applications. In this Study, we use a highly efficient covalent bioorthogonal [4+2] cycloaddition reaction between trans-cyclooctene (TCO) and 1,2,4,5-tetrazine (Tz) to enable the microfluidic immobilization of TCO/Tz-derivatized molecules. We monitor the process in real-time under continuous flow conditions using surface plasmon resonance (SPR). To enable reversible immobilization and extend the experimental range of the sensor surface, we combine a non-covalent antigen-antibody capture component with the cycloaddition reaction. By alternately presenting TCO or Tz moieties to the sensor surface, multiple capture-cycloaddition processes are now possible on one sensor surface for on-chip assembly and interaction studies of a variety of multi-component structures. We illustrate this method with two different immobilization experiments on a biosensor chip; a small molecule, AP1497 that binds FK506-binding protein 12 (FKBP12); and the same small molecule as part of an immobilized and in situ-functionalized nanoparticle.
Chemistry, Issue 79, Organic Chemicals, Macromolecular Substances, Chemistry and Materials (General), Surface Plasmon Resonance, Bioorthogonal Chemistry, Diels-Alder Cycloaddition Reaction, Small Molecule Immobilization, Binding Kinetics, Immobilized Nanoparticles
Play Button
In vivo and in vitro Studies of Adaptor-clathrin Interaction
Authors: Daniel Feliciano, Jarred J. Bultema, Andrea L. Ambrosio, Santiago M. Di Pietro.
Institutions: Colorado State University.
A major endocytic pathway initiates with the formation of clathrin-coated vesicles (CCVs) that transport cargo from the cell surface to endosomes1-6. CCVs are distinguished by a polyhedral lattice of clathrin that coats the vesicle membrane and serves as a mechanical scaffold. Clathrin coats are assembled during vesicle formation from individual clathrin triskelia , the soluble form of clathrin composed of three heavy and three light chain subunits7,8. Because the triskelion does not have the ability to bind to the membrane directly, clathrin-binding adaptors are critical to link the forming clathrin lattice to the membrane through association with lipids and/or membrane proteins9. Adaptors also package transmembrane protein cargo, such as receptors, and can interact with each other and with other components of the CCV formation machinery9. Over twenty clathrin adaptors have been described, several are involved in clathrin mediated endocytosis and others localize to the trans Golgi network or endosomes9. With the exception of HIP1R (yeast Sla2p), all known clathrin adaptors bind to the N-terminal -propeller domain of the clathrin heavy chain9. Clathrin adaptors are modular proteins consisting of folded domains connected by unstructured flexible linkers. Within these linker regions, short binding motifs mediate interactions with the clathrin N-terminal domain or other components of the vesicle formation machinery9. Two distinct clathrin-binding motifs have been defined: the clathrin-box and the W-box9. The consensus clathrin-box sequence was originally defined as L[L/I][D/E/N][L/F][D/E]10 but variants have been subsequently discovered11. The W-box conforms to the sequence PWxxW (where x is any residue). Sla1p (Synthetic Lethal with Actin binding protein-1) was originally identified as an actin associated protein and is necessary for normal actin cytoskeleton structure and dynamics at endocytic sites in yeast cells12. Sla1p also binds the NPFxD endocytic sorting signal and is critical for endocytosis of cargo bearing the NPFxD signal13,14. More recently, Sla1p was demonstrated to bind clathrin through a motif similar to the clathrin box, LLDLQ, termed a variant clathrin-box (vCB), and to function as an endocytic clathrin adaptor15. In addition, Sla1p has become a widely used marker for the endocytic coat in live cell fluorescence microscopy studies16. Here we use Sla1p as a model to describe approaches for adaptor-clathrin interaction studies. We focus on live cell fluorescence microscopy, GST-pull down, and co-immunoprecipitation methods.
Cell Biology, Issue 47, clathrin, adaptor, Sla1p, pull down, immunoprecipitation, GFP, fluorescence microscopy
Play Button
Proteomics to Identify Proteins Interacting with P2X2 Ligand-Gated Cation Channels
Authors: Harpreet Singh, Sarah Warburton, Thomas M. Vondriska, Baljit S. Khakh.
Institutions: David Geffen School of Medicine, University of California, Los Angeles, David Geffen School of Medicine, University of California, Los Angeles, David Geffen School of Medicine, University of California, Los Angeles.
Ligand-gated ion channels underlie synaptic communication in the nervous system1. In mammals there are three families of ligand-gated channels: the cys loop, the glutamate-gated and the P2X receptor channels2. In each case binding of transmitter leads to the opening of a pore through which ions flow down their electrochemical gradients. Many ligand-gated channels are also permeable to calcium ions3, 4, which have downstream signaling roles5 (e.g. gene regulation) that may exceed the duration of channel opening. Thus ligand-gated channels can signal over broad time scales ranging from a few milliseconds to days. Given these important roles it is necessary to understand how ligand-gated ion channels themselves are regulated by proteins, and how these proteins may tune signaling. Recent studies suggest that many, if not all, channels may be part of protein signaling complexes6. In this article we explain how to identify the proteins that bind to the C-terminal aspects of the P2X2 receptor cytosolic domain. P2X receptors are ATP-gated cation channels and consist of seven subunits (P2X1-P2X7). P2X receptors are widely expressed in the brain, where they mediate excitatory synaptic transmission and presynaptic facilitation of neurotransmitter release7. P2X receptors are found in excitable and non-excitable cells and mediate key roles in neuronal signaling, inflammation and cardiovascular function8. P2X2 receptors are abundant in the nervous system9 and are the focus of this study. Each P2X subunit is thought to possess two membrane spanning segments (TM1 & TM2) separated by an extracellular region7 and intracellular N and C termini (Fig 1a)7. P2X subunits10 (P2X1-P2X7) show 30-50% sequence homology at the amino acid level11. P2X receptors contain only three subunits, which is the simplest stoichiometry among ionotropic receptors. The P2X2 C-terminus consists of 120 amino acids (Fig 1b) and contains several protein docking consensus sites, supporting the hypothesis that P2X2 receptor may be part of signaling complexes. However, although several functions have been attributed to the C-terminus of P2X2 receptors9 no study has described the molecular partners that couple to the intracellular side of this protein via the full length C-terminus. In this methods paper we describe a proteomic approach to identify the proteins which interact with the full length C-terminus of P2X2 receptors.
Neuroscience, Issue 27, Pull down, recombinant protein, GST, brain, rat, mass spectrometry, protein interactions, P2X2, macromolecular complex, channel, receptor, purinergic
Play Button
Affinity Precipitation of Active Rho-GEFs Using a GST-tagged Mutant Rho Protein (GST-RhoA(G17A)) from Epithelial Cell Lysates
Authors: Faiza Waheed, Pamela Speight, Qinghong Dan, Rafael Garcia-Mata, Katalin Szaszi.
Institutions: St. Michael's Hospital , University of Toronto, University of North Carolina at Chapel Hill .
Proteins of the Rho family of small GTPases are central regulators of the cytoskeleton, and control a large variety of cellular processes, including cell migration, gene expression, cell cycle progression and cell adhesion 1. Rho proteins are molecular switches that are active in GTP-bound and inactive in GDP-bound state. Their activation is mediated by a family of Guanine-nucleotide Exchange Factor (GEF) proteins. Rho-GEFs constitute a large family, with overlapping specificities 2. Although a lot of progress has been made in identifying the GEFs activated by specific signals, there are still many questions remaining regarding the pathway-specific regulation of these proteins. The number of Rho-GEFs exceeds 70, and each cell expresses more than one GEF protein. In addition, many of these proteins activate not only Rho, but other members of the family, contributing further to the complexity of the regulatory networks. Importantly, exploring how GEFs are regulated requires a method to follow the active pool of individual GEFs in cells activated by different stimuli. Here we provide a step-by-step protocol for a method used to assess and quantify the available active Rho-specific GEFs using an affinity precipitation assay. This assay was developed a few years ago in the Burridge lab 3,4 and we have used it in kidney tubular cell lines 5,6,7. The assay takes advantage of a "nucleotide free" mutant RhoA, with a high affinity for active GEFs. The mutation (G17A) renders the protein unable to bind GDP or GTP and this state mimics the intermediate state that is bound to the GEF. A GST-tagged version of this mutant protein is expressed and purified from E. coli, bound to glutathione sepharose beads and used to precipitate active GEFs from lysates of untreated and stimulated cells. As most GEFs are activated via posttranslational modifications or release from inhibitory bindings, their active state is preserved in cell lysates, and they can be detected by this assay8. Captured proteins can be probed for known GEFs by detection with specific antibodies using Western blotting, or analyzed by Mass Spectrometry to identify unknown GEFs activated by certain stimuli.
Molecular Biology, Issue 61, Rho Family Small GTPases, Guanine-nucleotide exchange factor (GEFs), Affinity Precipitation Assay, expression of proteins in E. Coli, Purification of GST-tagged Protein, microbead assay
Play Button
In Vitro Analysis of PDZ-dependent CFTR Macromolecular Signaling Complexes
Authors: Yanning Wu, Shuo Wang, Chunying Li.
Institutions: Wayne State University School of Medicine, Wayne State University School of Medicine, Wayne State University School of Medicine.
Cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel located primarily at the apical membranes of epithelial cells, plays a crucial role in transepithelial fluid homeostasis1-3. CFTR has been implicated in two major diseases: cystic fibrosis (CF)4 and secretory diarrhea5. In CF, the synthesis or functional activity of the CFTR Cl- channel is reduced. This disorder affects approximately 1 in 2,500 Caucasians in the United States6. Excessive CFTR activity has also been implicated in cases of toxin-induced secretory diarrhea (e.g., by cholera toxin and heat stable E. coli enterotoxin) that stimulates cAMP or cGMP production in the gut7. Accumulating evidence suggest the existence of physical and functional interactions between CFTR and a growing number of other proteins, including transporters, ion channels, receptors, kinases, phosphatases, signaling molecules, and cytoskeletal elements, and these interactions between CFTR and its binding proteins have been shown to be critically involved in regulating CFTR-mediated transepithelial ion transport in vitro and also in vivo8-19. In this protocol, we focus only on the methods that aid in the study of the interactions between CFTR carboxyl terminal tail, which possesses a protein-binding motif [referred to as PSD95/Dlg1/ZO-1 (PDZ) motif], and a group of scaffold proteins, which contain a specific binding module referred to as PDZ domains. So far, several different PDZ scaffold proteins have been reported to bind to the carboxyl terminal tail of CFTR with various affinities, such as NHERF1, NHERF2, PDZK1, PDZK2, CAL (CFTR-associated ligand), Shank2, and GRASP20-27. The PDZ motif within CFTR that is recognized by PDZ scaffold proteins is the last four amino acids at the C terminus (i.e., 1477-DTRL-1480 in human CFTR)20. Interestingly, CFTR can bind more than one PDZ domain of both NHERFs and PDZK1, albeit with varying affinities22. This multivalency with respect to CFTR binding has been shown to be of functional significance, suggesting that PDZ scaffold proteins may facilitate formation of CFTR macromolecular signaling complexes for specific/selective and efficient signaling in cells16-18. Multiple biochemical assays have been developed to study CFTR-involving protein interactions, such as co-immunoprecipitation, pull-down assay, pair-wise binding assay, colorimetric pair-wise binding assay, and macromolecular complex assembly assay16-19,28,29. Here we focus on the detailed procedures of assembling a PDZ motif-dependent CFTR-containing macromolecular complex in vitro, which is used extensively by our laboratory to study protein-protein or domain-domain interactions involving CFTR16-19,28,29.
Biochemistry, Issue 66, Molecular Biology, Chemistry, CFTR, macromolecular complex, protein interaction, PDZ scaffold protein, epithelial cell, cystic fibrosis
Play Button
Budding Yeast Protein Extraction and Purification for the Study of Function, Interactions, and Post-translational Modifications
Authors: Eva Paige Szymanski, Oliver Kerscher.
Institutions: The College of William & Mary.
Homogenization by bead beating is a fast and efficient way to release DNA, RNA, proteins, and metabolites from budding yeast cells, which are notoriously hard to disrupt. Here we describe the use of a bead mill homogenizer for the extraction of proteins into buffers optimized to maintain the functions, interactions and post-translational modifications of proteins. Logarithmically growing cells expressing the protein of interest are grown in a liquid growth media of choice. The growth media may be supplemented with reagents to induce protein expression from inducible promoters (e.g. galactose), synchronize cell cycle stage (e.g. nocodazole), or inhibit proteasome function (e.g. MG132). Cells are then pelleted and resuspended in a suitable buffer containing protease and/or phosphatase inhibitors and are either processed immediately or frozen in liquid nitrogen for later use. Homogenization is accomplished by six cycles of 20 sec bead-beating (5.5 m/sec), each followed by one minute incubation on ice. The resulting homogenate is cleared by centrifugation and small particulates can be removed by filtration. The resulting cleared whole cell extract (WCE) is precipitated using 20% TCA for direct analysis of total proteins by SDS-PAGE followed by Western blotting. Extracts are also suitable for affinity purification of specific proteins, the detection of post-translational modifications, or the analysis of co-purifying proteins. As is the case for most protein purification protocols, some enzymes and proteins may require unique conditions or buffer compositions for their purification and others may be unstable or insoluble under the conditions stated. In the latter case, the protocol presented may provide a useful starting point to empirically determine the best bead-beating strategy for protein extraction and purification. We show the extraction and purification of an epitope-tagged SUMO E3 ligase, Siz1, a cell cycle regulated protein that becomes both sumoylated and phosphorylated, as well as a SUMO-targeted ubiquitin ligase subunit, Slx5.
Basic Protocol, Issue 80, Life Sciences (General), budding yeast, protein extracts, bead beating, sumo, Ubiquitin, post-translational modifications, 6xHis affinity tag
Play Button
Simultaneous Multicolor Imaging of Biological Structures with Fluorescence Photoactivation Localization Microscopy
Authors: Nikki M. Curthoys, Michael J. Mlodzianoski, Dahan Kim, Samuel T. Hess.
Institutions: University of Maine.
Localization-based super resolution microscopy can be applied to obtain a spatial map (image) of the distribution of individual fluorescently labeled single molecules within a sample with a spatial resolution of tens of nanometers. Using either photoactivatable (PAFP) or photoswitchable (PSFP) fluorescent proteins fused to proteins of interest, or organic dyes conjugated to antibodies or other molecules of interest, fluorescence photoactivation localization microscopy (FPALM) can simultaneously image multiple species of molecules within single cells. By using the following approach, populations of large numbers (thousands to hundreds of thousands) of individual molecules are imaged in single cells and localized with a precision of ~10-30 nm. Data obtained can be applied to understanding the nanoscale spatial distributions of multiple protein types within a cell. One primary advantage of this technique is the dramatic increase in spatial resolution: while diffraction limits resolution to ~200-250 nm in conventional light microscopy, FPALM can image length scales more than an order of magnitude smaller. As many biological hypotheses concern the spatial relationships among different biomolecules, the improved resolution of FPALM can provide insight into questions of cellular organization which have previously been inaccessible to conventional fluorescence microscopy. In addition to detailing the methods for sample preparation and data acquisition, we here describe the optical setup for FPALM. One additional consideration for researchers wishing to do super-resolution microscopy is cost: in-house setups are significantly cheaper than most commercially available imaging machines. Limitations of this technique include the need for optimizing the labeling of molecules of interest within cell samples, and the need for post-processing software to visualize results. We here describe the use of PAFP and PSFP expression to image two protein species in fixed cells. Extension of the technique to living cells is also described.
Basic Protocol, Issue 82, Microscopy, Super-resolution imaging, Multicolor, single molecule, FPALM, Localization microscopy, fluorescent proteins
Play Button
Fluorescence-based Monitoring of PAD4 Activity via a Pro-fluorescence Substrate Analog
Authors: Mary J. Sabulski, Jonathan M. Fura, Marcos M. Pires.
Institutions: Lehigh University.
Post-translational modifications may lead to altered protein functional states by increasing the covalent variations on the side chains of many protein substrates. The histone tails represent one of the most heavily modified stretches within all human proteins. Peptidyl-arginine deiminase 4 (PAD4) has been shown to convert arginine residues into the non-genetically encoded citrulline residue. Few assays described to date have been operationally facile with satisfactory sensitivity. Thus, the lack of adequate assays has likely contributed to the absence of potent non-covalent PAD4 inhibitors. Herein a novel fluorescence-based assay that allows for the monitoring of PAD4 activity is described. A pro-fluorescent substrate analog was designed to link PAD4 enzymatic activity to fluorescence liberation upon the addition of the protease trypsin. It was shown that the assay is compatible with high-throughput screening conditions and has a strong signal-to-noise ratio. Furthermore, the assay can also be performed with crude cell lysates containing over-expressed PAD4.
Chemistry, Issue 93, PAD4, PADI4, citrullination, arginine, post-translational modification, HTS, assay, fluorescence, citrulline
Play Button
Intra-lymph Node Injection of Biodegradable Polymer Particles
Authors: James I. Andorko, Lisa H. Tostanoski, Eduardo Solano, Maryam Mukhamedova, Christopher M. Jewell.
Institutions: University of Maryland, College Park.
Generation of adaptive immune response relies on efficient drainage or trafficking of antigen to lymph nodes for processing and presentation of these foreign molecules to T and B lymphocytes. Lymph nodes have thus become critical targets for new vaccines and immunotherapies. A recent strategy for targeting these tissues is direct lymph node injection of soluble vaccine components, and clinical trials involving this technique have been promising. Several biomaterial strategies have also been investigated to improve lymph node targeting, for example, tuning particle size for optimal drainage of biomaterial vaccine particles. In this paper we present a new method that combines direct lymph node injection with biodegradable polymer particles that can be laden with antigen, adjuvant, or other vaccine components. In this method polymeric microparticles or nanoparticles are synthesized by a modified double emulsion protocol incorporating lipid stabilizers. Particle properties (e.g. size, cargo loading) are confirmed by laser diffraction and fluorescent microscopy, respectively. Mouse lymph nodes are then identified by peripheral injection of a nontoxic tracer dye that allows visualization of the target injection site and subsequent deposition of polymer particles in lymph nodes. This technique allows direct control over the doses and combinations of biomaterials and vaccine components delivered to lymph nodes and could be harnessed in the development of new biomaterial-based vaccines.
Bioengineering, Issue 83, biomaterial, immunology, microparticle, nanoparticle, vaccine, adjuvant, lymph node, targeting, polymer
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.