JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Stable small animal ventilation for dynamic lung imaging to support computational fluid dynamics models.
PUBLISHED: 06-29-2011
Pulmonary computational fluid dynamics models require that three-dimensional images be acquired over multiple points in the dynamic breathing cycle without breath holds or changes in ventilatory mechanics. With small animals, these requirements can result in long imaging times (?90 minutes), over which lung mechanics, such as compliance, may gradually change if not carefully monitored and controlled. These changes, caused by derecruitment of parenchymal tissue, are manifested as an upward drift in peak inspiratory pressure (PIP) or by changes in the pressure waveform and/or lung volume over the course of the experiment. We demonstrate highly repeatable mechanical ventilation in anesthetized rats over a long duration for dynamic lung x-ray computed tomography (CT) imaging. We describe significant updates to a basic commercial ventilator that was acquired for these experiments. Key to achieving consistent results was the implementation of periodic deep breaths, or sighs, of extended duration to maintain lung recruitment. In addition, continuous monitoring of breath-to-breath pressure and volume waveforms and long-term trends in PIP and flow provide diagnostics of changes in breathing mechanics.
Authors: Toby K. McGovern, Annette Robichaud, Liah Fereydoonzad, Thomas F. Schuessler, James G. Martin.
Published: 05-15-2013
The forced oscillation technique (FOT) is a powerful, integrative and translational tool permitting the experimental assessment of lung function in mice in a comprehensive, detailed, precise and reproducible manner. It provides measurements of respiratory system mechanics through the analysis of pressure and volume signals acquired in reaction to predefined, small amplitude, oscillatory airflow waveforms, which are typically applied at the subject's airway opening. The present protocol details the steps required to adequately execute forced oscillation measurements in mice using a computer-controlled piston ventilator (flexiVent; SCIREQ Inc, Montreal, Qc, Canada). The description is divided into four parts: preparatory steps, mechanical ventilation, lung function measurements, and data analysis. It also includes details of how to assess airway responsiveness to inhaled methacholine in anesthetized mice, a common application of this technique which also extends to other outcomes and various lung pathologies. Measurements obtained in naïve mice as well as from an oxidative-stress driven model of airway damage are presented to illustrate how this tool can contribute to a better characterization and understanding of studied physiological changes or disease models as well as to applications in new research areas.
19 Related JoVE Articles!
Play Button
Procedure for Lung Engineering
Authors: Elizabeth A. Calle, Thomas H. Petersen, Laura E. Niklason.
Institutions: Yale University, Duke University, Yale University.
Lung tissue, including lung cancer and chronic lung diseases such as chronic obstructive pulmonary disease, cumulatively account for some 280,000 deaths annually; chronic obstructive pulmonary disease is currently the fourth leading cause of death in the United States1. Contributing to this mortality is the fact that lungs do not generally repair or regenerate beyond the microscopic, cellular level. Therefore, lung tissue that is damaged by degeneration or infection, or lung tissue that is surgically resected is not functionally replaced in vivo. To explore whether lung tissue can be generated in vitro, we treated lungs from adult rats using a procedure that removes cellular components to produce an acellular lung extracellular matrix scaffold. This scaffold retains the hierarchical branching structures of airways and vasculature, as well as a largely intact basement membrane, which comprises collagen IV, laminin, and fibronectin. The scaffold is mounted in a bioreactor designed to mimic critical aspects of lung physiology, such as negative pressure ventilation and pulsatile vascular perfusion. By culturing pulmonary epithelium and vascular endothelium within the bioreactor-mounted scaffold, we are able to generate lung tissue that is phenotypically comparable to native lung tissue and that is able to participate in gas exchange for short time intervals (45-120 minutes). These results are encouraging, and suggest that repopulation of lung matrix is a viable strategy for lung regeneration. This possibility presents an opportunity not only to work toward increasing the supply of lung tissue for transplantation, but also to study respiratory cell and molecular biology in vitro for longer time periods and in a more accurate microenvironment than has previously been possible.
Bioengineering, Issue 49, Decellularization, tissue engineering, lung engineering, lung tissue, extracellular matrix
Play Button
Measuring Respiratory Function in Mice Using Unrestrained Whole-body Plethysmography
Authors: Rebecca Lim, Marcus J. Zavou, Phillipa-Louise Milton, Siow Teng Chan, Jean L. Tan, Hayley Dickinson, Sean V. Murphy, Graham Jenkin, Euan M. Wallace.
Institutions: Monash Institute of Medical Research, Monash Medical Centre, Animal Resource Centre, Perth, Australia, Wake Forest Institute for Regenerative Medicine.
Respiratory dysfunction is one of the leading causes of morbidity and mortality in the world and the rates of mortality continue to rise. Quantitative assessment of lung function in rodent models is an important tool in the development of future therapies. Commonly used techniques for assessing respiratory function including invasive plethysmography and forced oscillation. While these techniques provide valuable information, data collection can be fraught with artefacts and experimental variability due to the need for anesthesia and/or invasive instrumentation of the animal. In contrast, unrestrained whole-body plethysmography (UWBP) offers a precise, non-invasive, quantitative way by which to analyze respiratory parameters. This technique avoids the use of anesthesia and restraints, which is common to traditional plethysmography techniques. This video will demonstrate the UWBP procedure including the equipment set up, calibration and lung function recording. It will explain how to analyze the collected data, as well as identify experimental outliers and artefacts that results from animal movement. The respiratory parameters obtained using this technique include tidal volume, minute volume, inspiratory duty cycle, inspiratory flow rate and the ratio of inspiration time to expiration time. UWBP does not rely on specialized skills and is inexpensive to perform. A key feature of UWBP, and most appealing to potential users, is the ability to perform repeated measures of lung function on the same animal.
Physiology, Issue 90, Unrestrained Whole Body Plethysmography, Lung function, Respiratory Disease, Rodents
Play Button
A Reversible, Non-invasive Method for Airway Resistance Measurements and Bronchoalveolar Lavage Fluid Sampling in Mice
Authors: Sumanth Polikepahad, Wade T. Barranco, Paul Porter, Bruce Anderson, Farrah Kheradmand, David B. Corry.
Institutions: Baylor College of Medicine (BCM), Millenium Premier Group, Baylor College of Medicine (BCM).
Airway hyperreactivity (AHR) measurements and bronchoalveolar lavage (BAL) fluid sampling are essential to experimental asthma models, but repeated procedures to obtain such measurements in the same animal are generally not feasible. Here, we demonstrate protocols for obtaining from mice repeated measurements of AHR and bronchoalveolar lavage fluid samples. Mice were challenged intranasally seven times over 14 days with a potent allergen or sham treated. Prior to the initial challenge, and within 24 hours following each intranasal challenge, the same animals were anesthetized, orally intubated and mechanically ventilated. AHR, assessed by comparing dose response curves of respiratory system resistance (RRS) induced by increasing intravenous doses of acetylcholine (Ach) chloride between sham and allergen-challenged animals, were determined. Afterwards, and via the same intubation, the left lung was lavaged so that differential enumeration of airway cells could be performed. These studies reveal that repeated measurements of AHR and BAL fluid collection are possible from the same animals and that maximal airway hyperresponsiveness and airway eosinophilia are achieved within 7-10 days of initiating allergen challenge. This novel technique significantly reduces the number of mice required for longitudinal experimentation and is applicable to diverse rodent species, disease models and airway physiology instruments.
Physiology, Issue 38, Airway resistance, intubation, airway hyperreactivity, acetylcholine
Play Button
Endotracheal Intubation in Mice via Direct Laryngoscopy Using an Otoscope
Authors: Joanna L. Thomas, Justin Dumouchel, Jinghong Li, Jenna Magat, Dana Balitzer, Timothy D. Bigby.
Institutions: VA San Diego Healthcare System, University of California, San Diego, University of California, San Diego.
Mice, both wildtype and transgenic, are the principal mammalian model in biomedical research currently. Intubation and mechanical ventilation are necessary for whole animal experiments that require surgery under deep anesthesia or measurements of lung function. Tracheostomy has been the standard for intubating the airway in these mice to allow mechanical ventilation. Orotracheal intubation has been reported but has not been successfully used in many studies because of the substantial technical difficulty or a requirement for highly specialized and expensive equipment. Here we report a technique of direct laryngoscopy using an otoscope fitted with a 2.0 mm speculum and using a 20 G intravenous catheter as an endotracheal tube. We have used this technique extensively and reliably to intubate and conduct accurate assessments of lung function in mice. This technique has proven safe, with essentially no animal loss in experienced hands. Moreover, this technique can be used for repeated studies of mice in chronic models.
Medicine, Issue 86, lung physiology, endotracheal intubation, laryngoscopy, airway resistance, intubation technique
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (, a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
Play Button
In vivo Measurement of the Mouse Pulmonary Endothelial Surface Layer
Authors: Yimu Yang, Gaoqing Yang, Eric P. Schmidt.
Institutions: University of Colorado School of Medicine.
The endothelial glycocalyx is a layer of proteoglycans and associated glycosaminoglycans lining the vascular lumen. In vivo, the glycocalyx is highly hydrated, forming a substantial endothelial surface layer (ESL) that contributes to the maintenance of endothelial function. As the endothelial glycocalyx is often aberrant in vitro and is lost during standard tissue fixation techniques, study of the ESL requires use of intravital microscopy. To best approximate the complex physiology of the alveolar microvasculature, pulmonary intravital imaging is ideally performed on a freely-moving lung. These preparations, however, typically suffer from extensive motion artifact. We demonstrate how closed-chest intravital microscopy of a freely-moving mouse lung can be used to measure glycocalyx integrity via ESL exclusion of fluorescently-labeled high molecular weight dextrans from the endothelial surface. This non-recovery surgical technique, which requires simultaneous brightfield and fluorescent imaging of the mouse lung, allows for longitudinal observation of the subpleural microvasculature without evidence of inducing confounding lung injury.
Medicine, Issue 72, Cellular Biology, Anatomy, Physiology, Biomedical Engineering, Biophysics, Surgery, Endothelium, Vascular, Inflammation, Pulmonary Circulation, Intravital Microscopy, endothelial surface layer, endothelial, glycocalyx, pulmonary microvasculature, catheter, tracheostomy, venous, catheterization, lung injury, mouse, animal model
Play Button
The Bovine Lung in Biomedical Research: Visually Guided Bronchoscopy, Intrabronchial Inoculation and In Vivo Sampling Techniques
Authors: Annette Prohl, Carola Ostermann, Markus Lohr, Petra Reinhold.
Institutions: Friedrich-Loeffler-Institut.
There is an ongoing search for alternative animal models in research of respiratory medicine. Depending on the goal of the research, large animals as models of pulmonary disease often resemble the situation of the human lung much better than mice do. Working with large animals also offers the opportunity to sample the same animal repeatedly over a certain course of time, which allows long-term studies without sacrificing the animals. The aim was to establish in vivo sampling methods for the use in a bovine model of a respiratory Chlamydia psittaci infection. Sampling should be performed at various time points in each animal during the study, and the samples should be suitable to study the host response, as well as the pathogen under experimental conditions. Bronchoscopy is a valuable diagnostic tool in human and veterinary medicine. It is a safe and minimally invasive procedure. This article describes the intrabronchial inoculation of calves as well as sampling methods for the lower respiratory tract. Videoendoscopic, intrabronchial inoculation leads to very consistent clinical and pathological findings in all inoculated animals and is, therefore, well-suited for use in models of infectious lung disease. The sampling methods described are bronchoalveolar lavage, bronchial brushing and transbronchial lung biopsy. All of these are valuable diagnostic tools in human medicine and could be adapted for experimental purposes to calves aged 6-8 weeks. The samples obtained were suitable for both pathogen detection and characterization of the severity of lung inflammation in the host.
Medicine, Issue 89, translational medicine, respiratory models, bovine lung, bronchoscopy, transbronchial lung biopsy, bronchoalveolar lavage, bronchial brushing, cytology brush
Play Button
Cortical Source Analysis of High-Density EEG Recordings in Children
Authors: Joe Bathelt, Helen O'Reilly, Michelle de Haan.
Institutions: UCL Institute of Child Health, University College London.
EEG is traditionally described as a neuroimaging technique with high temporal and low spatial resolution. Recent advances in biophysical modelling and signal processing make it possible to exploit information from other imaging modalities like structural MRI that provide high spatial resolution to overcome this constraint1. This is especially useful for investigations that require high resolution in the temporal as well as spatial domain. In addition, due to the easy application and low cost of EEG recordings, EEG is often the method of choice when working with populations, such as young children, that do not tolerate functional MRI scans well. However, in order to investigate which neural substrates are involved, anatomical information from structural MRI is still needed. Most EEG analysis packages work with standard head models that are based on adult anatomy. The accuracy of these models when used for children is limited2, because the composition and spatial configuration of head tissues changes dramatically over development3.  In the present paper, we provide an overview of our recent work in utilizing head models based on individual structural MRI scans or age specific head models to reconstruct the cortical generators of high density EEG. This article describes how EEG recordings are acquired, processed, and analyzed with pediatric populations at the London Baby Lab, including laboratory setup, task design, EEG preprocessing, MRI processing, and EEG channel level and source analysis. 
Behavior, Issue 88, EEG, electroencephalogram, development, source analysis, pediatric, minimum-norm estimation, cognitive neuroscience, event-related potentials 
Play Button
Characterization of the Isolated, Ventilated, and Instrumented Mouse Lung Perfused with Pulsatile Flow
Authors: Rebecca R. Vanderpool, Naomi C. Chesler.
Institutions: University of Wisconsin – Madison.
The isolated, ventilated and instrumented mouse lung preparation allows steady and pulsatile pulmonary vascular pressure-flow relationships to be measured with independent control over pulmonary arterial flow rate, flow rate waveform, airway pressure and left atrial pressure. Pulmonary vascular resistance is calculated based on multi-point, steady pressure-flow curves; pulmonary vascular impedance is calculated from pulsatile pressure-flow curves obtained at a range of frequencies. As now recognized clinically, impedance is a superior measure of right ventricular afterload than resistance because it includes the effects of vascular compliance, which are not negligible, especially in the pulmonary circulation. Three important metrics of impedance - the zero hertz impedance Z0, the characteristic impedance ZC, and the index of wave reflection RW - provide insight into distal arterial cross-sectional area available for flow, proximal arterial stiffness and the upstream-downstream impedance mismatch, respectively. All results obtained in isolated, ventilated and perfused lungs are independent of sympathetic nervous system tone, volume status and the effects of anesthesia. We have used this technique to quantify the impact of pulmonary emboli and chronic hypoxia on resistance and impedance, and to differentiate between sites of action (i.e., proximal vs. distal) of vasoactive agents and disease using the pressure dependency of ZC. Furthermore, when these techniques are used with the lungs of genetically engineered strains of mice, the effects of molecular-level defects on pulmonary vascular structure and function can be determined.
Medicine, Issue 50, ex-vivo, mouse, lung, pulmonary vascular impedance, characteristic impedance
Play Button
A Simple Method of Mouse Lung Intubation
Authors: Sandhya Das, Kelvin MacDonald, Herng-Yu Sucie Chang, Wayne Mitzner.
Institutions: Johns Hopkins Bloomberg School of Public Health, Oregon Health Sciences University.
A simple procedure to intubate mice for pulmonary function measurements would have several advantages in longitudinal studies with limited numbers or expensive animal. One of the reasons that this is not done more routinely is that it is relatively difficult, despite there being several published studies that describe ways to achieve it. In this paper we demonstrate a procedure that eliminates one of the major hurdles associated with this intubation, that of visualizing the trachea during the entire time of intubation. The approach uses a 0.5 mm fiberoptic light source that serves as an introducer to direct the intubation cannula into the mouse trachea. We show that it is possible to use this procedure to measure lung mechanics in individual mice over a time course of at least several weeks. The technique can be set up with relatively little expense and expertise, and it can be routinely accomplished with relatively little training. This should make it possible for any laboratory to routinely carry out this intubation, thereby allowing longitudinal studies in individual mice, thereby minimizing the number of mice needed and increasing the statistical power by using each mouse as its own control.
Medicine, Issue 73, Biomedical Engineering, Anatomy, Physiology, Surgery, Respiratory System, Respiratory Tract Diseases, pulmonary function, chronic, longitudinal studies, airway resistance, trachea, lung, clinical techniques, intubation, cannula, animal model
Play Button
The Utilization of Oropharyngeal Intratracheal PAMP Administration and Bronchoalveolar Lavage to Evaluate the Host Immune Response in Mice
Authors: Irving C. Allen.
Institutions: Virginia Polytechnic Institute and State University.
The host immune response to pathogens is a complex biological process. The majority of in vivo studies classically employed to characterize host-pathogen interactions take advantage of intraperitoneal injections of select bacteria or pathogen associated molecular patterns (PAMPs) in mice. While these techniques have yielded tremendous data associated with infectious disease pathobiology, intraperitoneal injection models are not always appropriate for host-pathogen interaction studies in the lung. Utilizing an acute lung inflammation model in mice, it is possible to conduct a high resolution analysis of the host innate immune response utilizing lipopolysaccharide (LPS). Here, we describe the methods to administer LPS using nonsurgical oropharyngeal intratracheal administration, monitor clinical parameters associated with disease pathogenesis, and utilize bronchoalveolar lavage fluid to evaluate the host immune response. The techniques that are described are widely applicable for studying the host innate immune response to a diverse range of PAMPs and pathogens. Likewise, with minor modifications, these techniques can also be applied in studies evaluating allergic airway inflammation and in pharmacological applications.
Infection, Issue 86, LPS, Lipopolysaccharide, mouse, pneumonia, gram negative bacteria, inflammation, acute lung inflammation, innate immunity, host pathogen interaction, lung, respiratory disease
Play Button
Osteopathic Manipulative Treatment as a Useful Adjunctive Tool for Pneumonia
Authors: Sheldon Yao, John Hassani, Martin Gagne, Gebe George, Wolfgang Gilliar.
Institutions: New York Institute of Technology College of Osteopathic Medicine.
Pneumonia, the inflammatory state of lung tissue primarily due to microbial infection, claimed 52,306 lives in the United States in 20071 and resulted in the hospitalization of 1.1 million patients2. With an average length of in-patient hospital stay of five days2, pneumonia and influenza comprise significant financial burden costing the United States $40.2 billion in 20053. Under the current Infectious Disease Society of America/American Thoracic Society guidelines, standard-of-care recommendations include the rapid administration of an appropriate antibiotic regiment, fluid replacement, and ventilation (if necessary). Non-standard therapies include the use of corticosteroids and statins; however, these therapies lack conclusive supporting evidence4. (Figure 1) Osteopathic Manipulative Treatment (OMT) is a cost-effective adjunctive treatment of pneumonia that has been shown to reduce patients’ length of hospital stay, duration of intravenous antibiotics, and incidence of respiratory failure or death when compared to subjects who received conventional care alone5. The use of manual manipulation techniques for pneumonia was first recorded as early as the Spanish influenza pandemic of 1918, when patients treated with standard medical care had an estimated mortality rate of 33%, compared to a 10% mortality rate in patients treated by osteopathic physicians6. When applied to the management of pneumonia, manual manipulation techniques bolster lymphatic flow, respiratory function, and immunological defense by targeting anatomical structures involved in the these systems7,8, 9, 10. The objective of this review video-article is three-fold: a) summarize the findings of randomized controlled studies on the efficacy of OMT in adult patients with diagnosed pneumonia, b) demonstrate established protocols utilized by osteopathic physicians treating pneumonia, c) elucidate the physiological mechanisms behind manual manipulation of the respiratory and lymphatic systems. Specifically, we will discuss and demonstrate four routine techniques that address autonomics, lymph drainage, and rib cage mobility: 1) Rib Raising, 2) Thoracic Pump, 3) Doming of the Thoracic Diaphragm, and 4) Muscle Energy for Rib 1.5,11
Medicine, Issue 87, Pneumonia, osteopathic manipulative medicine (OMM) and techniques (OMT), lymphatic, rib raising, thoracic pump, muscle energy, doming diaphragm, alternative treatment
Play Button
Analysis of Tubular Membrane Networks in Cardiac Myocytes from Atria and Ventricles
Authors: Eva Wagner, Sören Brandenburg, Tobias Kohl, Stephan E. Lehnart.
Institutions: Heart Research Center Goettingen, University Medical Center Goettingen, German Center for Cardiovascular Research (DZHK) partner site Goettingen, University of Maryland School of Medicine.
In cardiac myocytes a complex network of membrane tubules - the transverse-axial tubule system (TATS) - controls deep intracellular signaling functions. While the outer surface membrane and associated TATS membrane components appear to be continuous, there are substantial differences in lipid and protein content. In ventricular myocytes (VMs), certain TATS components are highly abundant contributing to rectilinear tubule networks and regular branching 3D architectures. It is thought that peripheral TATS components propagate action potentials from the cell surface to thousands of remote intracellular sarcoendoplasmic reticulum (SER) membrane contact domains, thereby activating intracellular Ca2+ release units (CRUs). In contrast to VMs, the organization and functional role of TATS membranes in atrial myocytes (AMs) is significantly different and much less understood. Taken together, quantitative structural characterization of TATS membrane networks in healthy and diseased myocytes is an essential prerequisite towards better understanding of functional plasticity and pathophysiological reorganization. Here, we present a strategic combination of protocols for direct quantitative analysis of TATS membrane networks in living VMs and AMs. For this, we accompany primary cell isolations of mouse VMs and/or AMs with critical quality control steps and direct membrane staining protocols for fluorescence imaging of TATS membranes. Using an optimized workflow for confocal or superresolution TATS image processing, binarized and skeletonized data are generated for quantitative analysis of the TATS network and its components. Unlike previously published indirect regional aggregate image analysis strategies, our protocols enable direct characterization of specific components and derive complex physiological properties of TATS membrane networks in living myocytes with high throughput and open access software tools. In summary, the combined protocol strategy can be readily applied for quantitative TATS network studies during physiological myocyte adaptation or disease changes, comparison of different cardiac or skeletal muscle cell types, phenotyping of transgenic models, and pharmacological or therapeutic interventions.
Bioengineering, Issue 92, cardiac myocyte, atria, ventricle, heart, primary cell isolation, fluorescence microscopy, membrane tubule, transverse-axial tubule system, image analysis, image processing, T-tubule, collagenase
Play Button
Automated Measurement of Microcirculatory Blood Flow Velocity in Pulmonary Metastases of Rats
Authors: Gert Blueschke, Gabi Hanna, Andrew N. Fontanella, Gregory M. Palmer, Alina Boico, Hooney Min, Mark W. Dewhirst, David C. Irwin, Yulin Zhao, Thies Schroeder.
Institutions: Duke University Medical Center, Duke University Medical Center, University of Colorado Denver, University of Mainz.
Because the lung is a major target organ of metastatic disease, animal models to study the physiology of pulmonary metastases are of great importance. However, very few methods exist to date to investigate lung metastases in a dynamic fashion at the microcirculatory level, due to the difficulty to access the lung with a microscope. Here, an intravital microscopy method is presented to functionally image and quantify the microcirculation of superficial pulmonary metastases in rats, using a closed-chest pulmonary window and automated analysis of blood flow velocity and direction. The utility of this method is demonstrated to measure increases in blood flow velocity in response to pharmacological intervention, and to image the well-known tortuous vasculature of solid tumors. This is the first demonstration of intravital microscopy on pulmonary metastases in a closed-chest model. Because of its minimized invasiveness, as well as due to its relative ease and practicality, this technology has the potential to experience widespread use in laboratories that specialize on pulmonary tumor research.
Cancer Biology, Issue 93, Lung metastases, intravital microscopy, tumor blood flow, tumor vasculature, blood flow velocity, sarcoma metastasis, breast cancer metastasis
Play Button
Nonhuman Primate Lung Decellularization and Recellularization Using a Specialized Large-organ Bioreactor
Authors: Ryan W. Bonvillain, Michelle E. Scarritt, Nicholas C. Pashos, Jacques P. Mayeux, Christopher L. Meshberger, Aline M. Betancourt, Deborah E. Sullivan, Bruce A. Bunnell.
Institutions: Tulane University School of Medicine, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University School of Medicine.
There are an insufficient number of lungs available to meet current and future organ transplantation needs. Bioartificial tissue regeneration is an attractive alternative to classic organ transplantation. This technology utilizes an organ's natural biological extracellular matrix (ECM) as a scaffold onto which autologous or stem/progenitor cells may be seeded and cultured in such a way that facilitates regeneration of the original tissue. The natural ECM is isolated by a process called decellularization. Decellularization is accomplished by treating tissues with a series of detergents, salts, and enzymes to achieve effective removal of cellular material while leaving the ECM intact. Studies conducted utilizing decellularization and subsequent recellularization of rodent lungs demonstrated marginal success in generating pulmonary-like tissue which is capable of gas exchange in vivo. While offering essential proof-of-concept, rodent models are not directly translatable to human use. Nonhuman primates (NHP) offer a more suitable model in which to investigate the use of bioartificial organ production for eventual clinical use. The protocols for achieving complete decellularization of lungs acquired from the NHP rhesus macaque are presented. The resulting acellular lungs can be seeded with a variety of cells including mesenchymal stem cells and endothelial cells. The manuscript also describes the development of a bioreactor system in which cell-seeded macaque lungs can be cultured under conditions of mechanical stretch and strain provided by negative pressure ventilation as well as pulsatile perfusion through the vasculature; these forces are known to direct differentiation along pulmonary and endothelial lineages, respectively. Representative results of decellularization and cell seeding are provided.
Bioengineering, Issue 82, rhesus macaque, decellularization, recellularization, detergent, matrix, scaffold, large-organ bioreactor, mesenchymal stem cells
Play Button
Voluntary Breath-hold Technique for Reducing Heart Dose in Left Breast Radiotherapy
Authors: Frederick R. Bartlett, Ruth M. Colgan, Ellen M. Donovan, Karen Carr, Steven Landeg, Nicola Clements, Helen A. McNair, Imogen Locke, Philip M. Evans, Joanne S. Haviland, John R. Yarnold, Anna M. Kirby.
Institutions: Royal Marsden NHS Foundation Trust, University of Surrey, Institute of Cancer Research, Sutton, UK, Institute of Cancer Research, Sutton, UK.
Breath-holding techniques reduce the amount of radiation received by cardiac structures during tangential-field left breast radiotherapy. With these techniques, patients hold their breath while radiotherapy is delivered, pushing the heart down and away from the radiotherapy field. Despite clear dosimetric benefits, these techniques are not yet in widespread use. One reason for this is that commercially available solutions require specialist equipment, necessitating not only significant capital investment, but often also incurring ongoing costs such as a need for daily disposable mouthpieces. The voluntary breath-hold technique described here does not require any additional specialist equipment. All breath-holding techniques require a surrogate to monitor breath-hold consistency and whether breath-hold is maintained. Voluntary breath-hold uses the distance moved by the anterior and lateral reference marks (tattoos) away from the treatment room lasers in breath-hold to monitor consistency at CT-planning and treatment setup. Light fields are then used to monitor breath-hold consistency prior to and during radiotherapy delivery.
Medicine, Issue 89, breast, radiotherapy, heart, cardiac dose, breath-hold
Play Button
Magnetic Resonance Imaging Quantification of Pulmonary Perfusion using Calibrated Arterial Spin Labeling
Authors: Tatsuya J. Arai, G. Kim Prisk, Sebastiaan Holverda, Rui Carlos Sá, Rebecca J. Theilmann, A. Cortney Henderson, Matthew V. Cronin, Richard B. Buxton, Susan R. Hopkins.
Institutions: University of California San Diego - UCSD, University of California San Diego - UCSD, University of California San Diego - UCSD.
This demonstrates a MR imaging method to measure the spatial distribution of pulmonary blood flow in healthy subjects during normoxia (inspired O2, fraction (FIO2) = 0.21) hypoxia (FIO2 = 0.125), and hyperoxia (FIO2 = 1.00). In addition, the physiological responses of the subject are monitored in the MR scan environment. MR images were obtained on a 1.5 T GE MRI scanner during a breath hold from a sagittal slice in the right lung at functional residual capacity. An arterial spin labeling sequence (ASL-FAIRER) was used to measure the spatial distribution of pulmonary blood flow 1,2 and a multi-echo fast gradient echo (mGRE) sequence 3 was used to quantify the regional proton (i.e. H2O) density, allowing the quantification of density-normalized perfusion for each voxel (milliliters blood per minute per gram lung tissue). With a pneumatic switching valve and facemask equipped with a 2-way non-rebreathing valve, different oxygen concentrations were introduced to the subject in the MR scanner through the inspired gas tubing. A metabolic cart collected expiratory gas via expiratory tubing. Mixed expiratory O2 and CO2 concentrations, oxygen consumption, carbon dioxide production, respiratory exchange ratio, respiratory frequency and tidal volume were measured. Heart rate and oxygen saturation were monitored using pulse-oximetry. Data obtained from a normal subject showed that, as expected, heart rate was higher in hypoxia (60 bpm) than during normoxia (51) or hyperoxia (50) and the arterial oxygen saturation (SpO2) was reduced during hypoxia to 86%. Mean ventilation was 8.31 L/min BTPS during hypoxia, 7.04 L/min during normoxia, and 6.64 L/min during hyperoxia. Tidal volume was 0.76 L during hypoxia, 0.69 L during normoxia, and 0.67 L during hyperoxia. Representative quantified ASL data showed that the mean density normalized perfusion was 8.86 ml/min/g during hypoxia, 8.26 ml/min/g during normoxia and 8.46 ml/min/g during hyperoxia, respectively. In this subject, the relative dispersion4, an index of global heterogeneity, was increased in hypoxia (1.07 during hypoxia, 0.85 during normoxia, and 0.87 during hyperoxia) while the fractal dimension (Ds), another index of heterogeneity reflecting vascular branching structure, was unchanged (1.24 during hypoxia, 1.26 during normoxia, and 1.26 during hyperoxia). Overview. This protocol will demonstrate the acquisition of data to measure the distribution of pulmonary perfusion noninvasively under conditions of normoxia, hypoxia, and hyperoxia using a magnetic resonance imaging technique known as arterial spin labeling (ASL). Rationale: Measurement of pulmonary blood flow and lung proton density using MR technique offers high spatial resolution images which can be quantified and the ability to perform repeated measurements under several different physiological conditions. In human studies, PET, SPECT, and CT are commonly used as the alternative techniques. However, these techniques involve exposure to ionizing radiation, and thus are not suitable for repeated measurements in human subjects.
Medicine, Issue 51, arterial spin labeling, lung proton density, functional lung imaging, hypoxic pulmonary vasoconstriction, oxygen consumption, ventilation, magnetic resonance imaging
Play Button
Oscillation and Reaction Board Techniques for Estimating Inertial Properties of a Below-knee Prosthesis
Authors: Jeremy D. Smith, Abbie E. Ferris, Gary D. Heise, Richard N. Hinrichs, Philip E. Martin.
Institutions: University of Northern Colorado, Arizona State University, Iowa State University.
The purpose of this study was two-fold: 1) demonstrate a technique that can be used to directly estimate the inertial properties of a below-knee prosthesis, and 2) contrast the effects of the proposed technique and that of using intact limb inertial properties on joint kinetic estimates during walking in unilateral, transtibial amputees. An oscillation and reaction board system was validated and shown to be reliable when measuring inertial properties of known geometrical solids. When direct measurements of inertial properties of the prosthesis were used in inverse dynamics modeling of the lower extremity compared with inertial estimates based on an intact shank and foot, joint kinetics at the hip and knee were significantly lower during the swing phase of walking. Differences in joint kinetics during stance, however, were smaller than those observed during swing. Therefore, researchers focusing on the swing phase of walking should consider the impact of prosthesis inertia property estimates on study outcomes. For stance, either one of the two inertial models investigated in our study would likely lead to similar outcomes with an inverse dynamics assessment.
Bioengineering, Issue 87, prosthesis inertia, amputee locomotion, below-knee prosthesis, transtibial amputee
Play Button
Tracheotomy: A Method for Transplantation of Stem Cells to the Lung
Authors: Yakov Peter.
Institutions: Harvard Medical School.
Lung disease is a leading cause of death and likely to become an epidemic given increases in pollution and smoking worldwide. Advances in stem cell therapy may alleviate many of the symptoms associated with lung disease and induce alveolar repair in adults. Concurrent with the ongoing search for stem cells applicable for human treatment, precise delivery and homing (to the site of disease) must be reassured for successful therapy. Here, I report that stem cells can safely be instilled via the trachea opening a non-stop route to the lung. This method involves a skin incision, caudal insertion of a cannula into and along the tracheal lumen, and injection of a stem cell vehicle mixture into airways of the lung. A broad range of media solutions and stabilizers can be instilled via tracheotomy, resulting in the ability to deliver a wider range of cell types. With alveolar epithelium confining these cells to the lumen, lung expansion and negative pressure during inhalation may also assist in stem cell integration. Tracheal delivery of stem cells, with a quick uptake and the ability to handle a large range of treatments, could accelerate the development of cell-based therapies, opening new avenues for treatment of lung disease.
Cellular Biology, Issue 2, lung, stem cells, transplantation, trachea
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.