JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
AcrB trimer stability and efflux activity, insight from mutagenesis studies.
PLoS ONE
PUBLISHED: 08-11-2011
The multidrug transporter AcrB in Escherichia coli exists and functions as a homo-trimer. The assembly process of obligate membrane protein oligomers, including AcrB, remains poorly understood. In a previous study, we have shown that individual AcrB subunit is capable of folding independently, suggesting that trimerization of AcrB follows a three-stage pathway in which monomers first fold, and then assemble. Here we destabilized the AcrB trimer through mutating a single Pro (P223) in the protruding loop of AcrB, which drastically reduced the protein activity. We replaced P223 separately with five residues, including Ala, Val, Tyr, Asn, and Gly, and found that AcrB(P223G) was the least active. Detailed characterization of AcrB(P223G) revealed that the protein existed as a well-folded monomer after purification, but formed a trimer in vivo. The function of the mutant could be partly restored through strengthening the stability of the trimer using an inter-subunit disulfide bond. Our results also suggested that the protruding loop is well structured during AcrB assembly with P223 served as a "wedge" close to the tip to stabilize the AcrB trimer structure. When this wedge is disrupted, the stability of the trimer is reduced, accompanied by a decrease of drug efflux activity.
Authors: Alice Verchère, Manuela Dezi, Isabelle Broutin, Martin Picard.
Published: 02-17-2014
ABSTRACT
There is an emerging scientific need for reliable tools for monitoring membrane protein transport. We present a methodology leading to the reconstitution of efflux pumps from the Gram-negative bacteria Pseudomonas aeruginosa in a biomimetic environment that allows for an accurate investigation of their activity of transport. Three prerequisites are fulfilled: compartmentation in a lipidic environment, use of a relevant index for transport, and generation of a proton gradient. The membrane protein transporter is reconstituted into liposomes together with bacteriorhodopsin, a light-activated proton pump that generates a proton gradient that is robust as well as reversible and tunable. The activity of the protein is deduced from the pH variations occurring within the liposome, using pyranin, a pH-dependent fluorescent probe. We describe a step-by-step procedure where membrane protein purification, liposome formation, protein reconstitution, and transport analysis are addressed. Although they were specifically designed for an RND transporter, the described methods could potentially be adapted for use with any other membrane protein transporter energized by a proton gradient.
21 Related JoVE Articles!
Play Button
Split-and-pool Synthesis and Characterization of Peptide Tertiary Amide Library
Authors: Yu Gao, Thomas Kodadek.
Institutions: The Scripps Research Institute.
Peptidomimetics are great sources of protein ligands. The oligomeric nature of these compounds enables us to access large synthetic libraries on solid phase by using combinatorial chemistry. One of the most well studied classes of peptidomimetics is peptoids. Peptoids are easy to synthesize and have been shown to be proteolysis-resistant and cell-permeable. Over the past decade, many useful protein ligands have been identified through screening of peptoid libraries. However, most of the ligands identified from peptoid libraries do not display high affinity, with rare exceptions. This may be due, in part, to the lack of chiral centers and conformational constraints in peptoid molecules. Recently, we described a new synthetic route to access peptide tertiary amides (PTAs). PTAs are a superfamily of peptidomimetics that include but are not limited to peptides, peptoids and N-methylated peptides. With side chains on both α-carbon and main chain nitrogen atoms, the conformation of these molecules are greatly constrained by sterical hindrance and allylic 1,3 strain. (Figure 1) Our study suggests that these PTA molecules are highly structured in solution and can be used to identify protein ligands. We believe that these molecules can be a future source of high-affinity protein ligands. Here we describe the synthetic method combining the power of both split-and-pool and sub-monomer strategies to synthesize a sample one-bead one-compound (OBOC) library of PTAs.
Chemistry, Issue 88, Split-and-pool synthesis, peptide tertiary amide, PTA, peptoid, high-throughput screening, combinatorial library, solid phase, triphosgene (BTC), one-bead one-compound, OBOC
51299
Play Button
Synthesis of an Intein-mediated Artificial Protein Hydrogel
Authors: Miguel A. Ramirez, Zhilei Chen.
Institutions: Texas A&M University, College Station, Texas A&M University, College Station.
We present the synthesis of a highly stable protein hydrogel mediated by a split-intein-catalyzed protein trans-splicing reaction. The building blocks of this hydrogel are two protein block-copolymers each containing a subunit of a trimeric protein that serves as a crosslinker and one half of a split intein. A highly hydrophilic random coil is inserted into one of the block-copolymers for water retention. Mixing of the two protein block copolymers triggers an intein trans-splicing reaction, yielding a polypeptide unit with crosslinkers at either end that rapidly self-assembles into a hydrogel. This hydrogel is very stable under both acidic and basic conditions, at temperatures up to 50 °C, and in organic solvents. The hydrogel rapidly reforms after shear-induced rupture. Incorporation of a "docking station peptide" into the hydrogel building block enables convenient incorporation of "docking protein"-tagged target proteins. The hydrogel is compatible with tissue culture growth media, supports the diffusion of 20 kDa molecules, and enables the immobilization of bioactive globular proteins. The application of the intein-mediated protein hydrogel as an organic-solvent-compatible biocatalyst was demonstrated by encapsulating the horseradish peroxidase enzyme and corroborating its activity.
Bioengineering, Issue 83, split-intein, self-assembly, shear-thinning, enzyme, immobilization, organic synthesis
51202
Play Button
Assessment of Immunologically Relevant Dynamic Tertiary Structural Features of the HIV-1 V3 Loop Crown R2 Sequence by ab initio Folding
Authors: David Almond, Timothy Cardozo.
Institutions: School of Medicine, New York University.
The antigenic diversity of HIV-1 has long been an obstacle to vaccine design, and this variability is especially pronounced in the V3 loop of the virus' surface envelope glycoprotein. We previously proposed that the crown of the V3 loop, although dynamic and sequence variable, is constrained throughout the population of HIV-1 viruses to an immunologically relevant β-hairpin tertiary structure. Importantly, there are thousands of different V3 loop crown sequences in circulating HIV-1 viruses, making 3D structural characterization of trends across the diversity of viruses difficult or impossible by crystallography or NMR. Our previous successful studies with folding of the V3 crown1, 2 used the ab initio algorithm 3 accessible in the ICM-Pro molecular modeling software package (Molsoft LLC, La Jolla, CA) and suggested that the crown of the V3 loop, specifically from positions 10 to 22, benefits sufficiently from the flexibility and length of its flanking stems to behave to a large degree as if it were an unconstrained peptide freely folding in solution. As such, rapid ab initio folding of just this portion of the V3 loop of any individual strain of the 60,000+ circulating HIV-1 strains can be informative. Here, we folded the V3 loop of the R2 strain to gain insight into the structural basis of its unique properties. R2 bears a rare V3 loop sequence thought to be responsible for the exquisite sensitivity of this strain to neutralization by patient sera and monoclonal antibodies4, 5. The strain mediates CD4-independent infection and appears to elicit broadly neutralizing antibodies. We demonstrate how evaluation of the results of the folding can be informative for associating observed structures in the folding with the immunological activities observed for R2.
Infection, Issue 43, HIV-1, structure-activity relationships, ab initio simulations, antibody-mediated neutralization, vaccine design
2118
Play Button
Thermodynamics of Membrane Protein Folding Measured by Fluorescence Spectroscopy
Authors: Diana E. Schlamadinger, Judy E. Kim.
Institutions: University of California San Diego - UCSD.
Membrane protein folding is an emerging topic with both fundamental and health-related significance. The abundance of membrane proteins in cells underlies the need for comprehensive study of the folding of this ubiquitous family of proteins. Additionally, advances in our ability to characterize diseases associated with misfolded proteins have motivated significant experimental and theoretical efforts in the field of protein folding. Rapid progress in this important field is unfortunately hindered by the inherent challenges associated with membrane proteins and the complexity of the folding mechanism. Here, we outline an experimental procedure for measuring the thermodynamic property of the Gibbs free energy of unfolding in the absence of denaturant, ΔH2O, for a representative integral membrane protein from E. coli. This protocol focuses on the application of fluorescence spectroscopy to determine equilibrium populations of folded and unfolded states as a function of denaturant concentration. Experimental considerations for the preparation of synthetic lipid vesicles as well as key steps in the data analysis procedure are highlighted. This technique is versatile and may be pursued with different types of denaturant, including temperature and pH, as well as in various folding environments of lipids and micelles. The current protocol is one that can be generalized to any membrane or soluble protein that meets the set of criteria discussed below.
Bioengineering, Issue 50, tryptophan, peptides, Gibbs free energy, protein stability, vesicles
2669
Play Button
Preparation of Oligomeric β-amyloid1-42 and Induction of Synaptic Plasticity Impairment on Hippocampal Slices
Authors: Mauro Fa, Ian J. Orozco, Yitshak I. Francis, Faisal Saeed, Yimin Gong, Ottavio Arancio.
Institutions: Columbia University.
Impairment of synaptic connections is likely to underlie the subtle amnesic changes occurring at the early stages of Alzheimer s Disease (AD). β-amyloid (Aβ), a peptide produced in high amounts in AD, is known to reduce Long-Term Potentiation (LTP), a cellular correlate of learning and memory. Indeed, LTP impairment caused by Aβ is a useful experimental paradigm for studying synaptic dysfunctions in AD models and for screening drugs capable of mitigating or reverting such synaptic impairments. Studies have shown that Aβ produces the LTP disruption preferentially via its oligomeric form. Here we provide a detailed protocol for impairing LTP by perfusion of oligomerized synthetic Aβ1-42 peptide onto acute hippocampal slices. In this video, we outline a step-by-step procedure for the preparation of oligomeric Aβ1-42. Then, we follow an individual experiment in which LTP is reduced in hippocampal slices exposed to oligomerized Aβ1-42 compared to slices in a control experiment where no Aβ1-42 exposure had occurred.
JoVE Neuroscience, Issue 41, brain, mouse, hippocampus, plasticity, LTP, amyloid
1884
Play Button
Measuring Fluxes of Mineral Nutrients and Toxicants in Plants with Radioactive Tracers
Authors: Devrim Coskun, Dev T. Britto, Ahmed M. Hamam, Herbert J. Kronzucker.
Institutions: University of Toronto.
Unidirectional influx and efflux of nutrients and toxicants, and their resultant net fluxes, are central to the nutrition and toxicology of plants. Radioisotope tracing is a major technique used to measure such fluxes, both within plants, and between plants and their environments. Flux data obtained with radiotracer protocols can help elucidate the capacity, mechanism, regulation, and energetics of transport systems for specific mineral nutrients or toxicants, and can provide insight into compartmentation and turnover rates of subcellular mineral and metabolite pools. Here, we describe two major radioisotope protocols used in plant biology: direct influx (DI) and compartmental analysis by tracer efflux (CATE). We focus on flux measurement of potassium (K+) as a nutrient, and ammonia/ammonium (NH3/NH4+) as a toxicant, in intact seedlings of the model species barley (Hordeum vulgare L.). These protocols can be readily adapted to other experimental systems (e.g., different species, excised plant material, and other nutrients/toxicants). Advantages and limitations of these protocols are discussed.
Environmental Sciences, Issue 90, influx, efflux, net flux, compartmental analysis, radiotracers, potassium, ammonia, ammonium
51877
Play Button
A New Screening Method for the Directed Evolution of Thermostable Bacteriolytic Enzymes
Authors: Ryan D. Heselpoth, Daniel C. Nelson.
Institutions: University of Maryland .
Directed evolution is defined as a method to harness natural selection in order to engineer proteins to acquire particular properties that are not associated with the protein in nature. Literature has provided numerous examples regarding the implementation of directed evolution to successfully alter molecular specificity and catalysis1. The primary advantage of utilizing directed evolution instead of more rational-based approaches for molecular engineering relates to the volume and diversity of variants that can be screened2. One possible application of directed evolution involves improving structural stability of bacteriolytic enzymes, such as endolysins. Bacteriophage encode and express endolysins to hydrolyze a critical covalent bond in the peptidoglycan (i.e. cell wall) of bacteria, resulting in host cell lysis and liberation of progeny virions. Notably, these enzymes possess the ability to extrinsically induce lysis to susceptible bacteria in the absence of phage and furthermore have been validated both in vitro and in vivo for their therapeutic potential3-5. The subject of our directed evolution study involves the PlyC endolysin, which is composed of PlyCA and PlyCB subunits6. When purified and added extrinsically, the PlyC holoenzyme lyses group A streptococci (GAS) as well as other streptococcal groups in a matter of seconds and furthermore has been validated in vivo against GAS7. Significantly, monitoring residual enzyme kinetics after elevated temperature incubation provides distinct evidence that PlyC loses lytic activity abruptly at 45 °C, suggesting a short therapeutic shelf life, which may limit additional development of this enzyme. Further studies reveal the lack of thermal stability is only observed for the PlyCA subunit, whereas the PlyCB subunit is stable up to ~90 °C (unpublished observation). In addition to PlyC, there are several examples in literature that describe the thermolabile nature of endolysins. For example, the Staphylococcus aureus endolysin LysK and Streptococcus pneumoniae endolysins Cpl-1 and Pal lose activity spontaneously at 42 °C, 43.5 °C and 50.2 °C, respectively8-10. According to the Arrhenius equation, which relates the rate of a chemical reaction to the temperature present in the particular system, an increase in thermostability will correlate with an increase in shelf life expectancy11. Toward this end, directed evolution has been shown to be a useful tool for altering the thermal activity of various molecules in nature, but never has this particular technology been exploited successfully for the study of bacteriolytic enzymes. Likewise, successful accounts of progressing the structural stability of this particular class of antimicrobials altogether are nonexistent. In this video, we employ a novel methodology that uses an error-prone DNA polymerase followed by an optimized screening process using a 96 well microtiter plate format to identify mutations to the PlyCA subunit of the PlyC streptococcal endolysin that correlate to an increase in enzyme kinetic stability (Figure 1). Results after just one round of random mutagenesis suggest the methodology is generating PlyC variants that retain more than twice the residual activity when compared to wild-type (WT) PlyC after elevated temperature treatment.
Immunology, Issue 69, Molecular Biology, Genetics, Microbiology, directed evolution, thermal behavior, thermostability, endolysin, enzybiotic, bacteriolytic, antimicrobial, therapeutic, PlyC
4216
Play Button
Cholesterol Efflux Assay
Authors: Hann Low, Anh Hoang, Dmitri Sviridov.
Institutions: Baker IDI Heart and Diabetes Institute.
Cholesterol content of cells must be maintained within the very tight limits, too much or too little cholesterol in a cell results in disruption of cellular membranes, apoptosis and necrosis 1. Cells can source cholesterol from intracellular synthesis and from plasma lipoproteins, both sources are sufficient to fully satisfy cells' requirements for cholesterol. The processes of cholesterol synthesis and uptake are tightly regulated and deficiencies of cholesterol are rare 2. Excessive cholesterol is more common problem 3. With the exception of hepatocytes and to some degree adrenocortical cells, cells are unable to degrade cholesterol. Cells have two options to reduce their cholesterol content: to convert cholesterol into cholesteryl esters, an option with limited capacity as overloading cells with cholesteryl esters is also toxic, and cholesterol efflux, an option with potentially unlimited capacity. Cholesterol efflux is a specific process that is regulated by a number of intracellular transporters, such as ATP binding cassette transporter proteins A1 (ABCA1) and G1 (ABCG1) and scavenger receptor type B1. The natural acceptor of cholesterol in plasma is high density lipoprotein (HDL) and apolipoprotein A-I. The cholesterol efflux assay is designed to quantitate the rate of cholesterol efflux from cultured cells. It measures the capacity of cells to maintain cholesterol efflux and/or the capacity of plasma acceptors to accept cholesterol released from cells. The assay consists of the following steps. Step 1: labelling cellular cholesterol by adding labelled cholesterol to serum-containing medium and incubating with cells for 24-48 h. This step may be combined with loading of cells with cholesterol. Step 2: incubation of cells in serum-free medium to equilibrate labelled cholesterol among all intracellular cholesterol pools. This stage may be combined with activation of cellular cholesterol transporters. Step 3: incubation of cells with extracellular acceptor and quantitation of movement of labelled cholesterol from cells to the acceptor. If cholesterol precursors were used to label newly synthesized cholesterol, a fourth step, purification of cholesterol, may be required. The assay delivers the following information: (i) how a particular treatment (a mutation, a knock-down, an overexpression or a treatment) affects the capacity of cell to efflux cholesterol and (ii) how the capacity of plasma acceptors to accept cholesterol is affected by a disease or a treatment. This method is often used in context of cardiovascular research, metabolic and neurodegenerative disorders, infectious and reproductive diseases.
Medicine, Issue 61, Lipids, lipoproteins, atherosclerosis, trafficking, cholesterol
3810
Play Button
A Rapid and Specific Microplate Assay for the Determination of Intra- and Extracellular Ascorbate in Cultured Cells
Authors: Darius J. R. Lane, Alfons Lawen.
Institutions: University of Sydney, Monash University.
Vitamin C (ascorbate) plays numerous important roles in cellular metabolism, many of which have only come to light in recent years. For instance, within the brain, ascorbate acts in a neuroprotective and neuromodulatory manner that involves ascorbate cycling between neurons and vicinal astrocytes - a relationship that appears to be crucial for brain ascorbate homeostasis. Additionally, emerging evidence strongly suggests that ascorbate has a greatly expanded role in regulating cellular and systemic iron metabolism than is classically recognized. The increasing recognition of the integral role of ascorbate in normal and deregulated cellular and organismal physiology demands a range of medium-throughput and high-sensitivity analytic techniques that can be executed without the need for highly expensive specialist equipment. Here we provide explicit instructions for a medium-throughput, specific and relatively inexpensive microplate assay for the determination of both intra- and extracellular ascorbate in cell culture.
Biochemistry, Issue 86, Vitamin C, Ascorbate, Cell swelling, Glutamate, Microplate assay, Astrocytes
51322
Play Button
The Synergistic Effect of Visible Light and Gentamycin on Pseudomona aeruginosa Microorganisms
Authors: Yana Reznick, Ehud Banin, Anat Lipovsky, Rachel Lubart, Pazit Polak, Zeev Zalevsky.
Institutions: Bar-Ilan University, Bar-Ilan University, Bar-Ilan University, Bar-Ilan University.
Recently there were several publications on the bactericidal effect of visible light, most of them claiming that blue part of the spectrum (400 nm-500 nm) is responsible for killing various pathogens1-5. The phototoxic effect of blue light was suggested to be a result of light-induced reactive oxygen species (ROS) formation by endogenous bacterial photosensitizers which mostly absorb light in the blue region4,6,7. There are also reports of biocidal effect of red and near infra red8 as well as green light9. In the present study, we developed a method that allowed us to characterize the effect of high power green (wavelength of 532 nm) continuous (CW) and pulsed Q-switched (Q-S) light on Pseudomonas aeruginosa. Using this method we also studied the effect of green light combined with antibiotic treatment (gentamycin) on the bacteria viability. P. aeruginosa is a common noscomial opportunistic pathogen causing various diseases. The strain is fairly resistant to various antibiotics and contains many predicted AcrB/Mex-type RND multidrug efflux systems10. The method utilized free-living stationary phase Gram-negative bacteria (P. aeruginosa strain PAO1), grown in Luria Broth (LB) medium exposed to Q-switched and/or CW lasers with and without the addition of the antibiotic gentamycin. Cell viability was determined at different time points. The obtained results showed that laser treatment alone did not reduce cell viability compared to untreated control and that gentamycin treatment alone only resulted in a 0.5 log reduction in the viable count for P. aeruginosa. The combined laser and gentamycin treatment, however, resulted in a synergistic effect and the viability of P. aeruginosa was reduced by 8 log's. The proposed method can further be implemented via the development of catheter like device capable of injecting an antibiotic solution into the infected organ while simultaneously illuminating the area with light.
Microbiology, Issue 77, Infection, Infectious Diseases, Cellular Biology, Molecular Biology, Biophysics, Chemistry, Biomedical Engineering, Bacteria, Photodynamic therapy, Medical optics, Bacterial viability, Antimicrobial treatment, Laser, Gentamycin, antibiotics, reactive oxygen species, pathogens, microorganisms, cell culture
4370
Play Button
Photo-Induced Cross-Linking of Unmodified Proteins (PICUP) Applied to Amyloidogenic Peptides
Authors: Farid Rahimi, Panchanan Maiti, Gal Bitan.
Institutions: University of California, Los Angeles, University of California, Los Angeles, University of California, Los Angeles.
The assembly of amyloidogenic proteins into toxic oligomers is a seminal event in the pathogenesis of protein misfolding diseases, including Alzheimer's, Parkinson's, and Huntington's diseases, hereditary amyotrophic lateral sclerosis, and type 2 diabetes. Owing to the metastable nature of these protein assemblies, it is difficult to assess their oligomer size distribution quantitatively using classical methods, such as electrophoresis, chromatography, fluorescence, or dynamic light scattering. Oligomers of amyloidogenic proteins exist as metastable mixtures, in which the oligomers dissociate into monomers and associate into larger assemblies simultaneously. PICUP stabilizes oligomer populations by covalent cross-linking and when combined with fractionation methods, such as sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) or size-exclusion chromatography (SEC), PICUP provides snapshots of the oligomer size distributions that existed before cross-linking. Hence, PICUP enables visualization and quantitative analysis of metastable protein populations and can be used to monitor assembly and decipher relationships between sequence modifications and oligomerization1. Mechanistically, PICUP involves photo-oxidation of Ru2+ in a tris(bipyridyl)Ru(II) complex (RuBpy) to Ru3+ by irradiation with visible light in the presence of an electron acceptor. Ru3+ is a strong one-electron oxidizer capable of abstracting an electron from a neighboring protein molecule, generating a protein radical1,2. Radicals are unstable, highly-reactive species and therefore disappear rapidly through a variety of intra- and intermolecular reactions. A radical may utilize the high energy of an unpaired electron to react with another protein monomer forming a dimeric radical, which subsequently loses a hydrogen atom and forms a stable, covalently-linked dimer. The dimer may then react further through a similar mechanism with monomers or other dimers to form higher-order oligomers. Advantages of PICUP relative to other photo- or chemical cross-linking methods3,4 include short (≤1 s) exposure to non-destructive visible light, no need for pre facto modification of the native sequence, and zero-length covalent cross-linking. In addition, PICUP enables cross-linking of proteins within wide pH and temperature ranges, including physiologic parameters. Here, we demonstrate application of PICUP to cross-linking of three amyloidogenic proteins the 40- and 42-residue amyloid β-protein variants (Aβ40 and Aβ42), and calcitonin, and a control protein, growth-hormone releasing factor (GRF).
Cross-linking, Issue 23, PICUP, amyloid β-protein, oligomer, amyloid, protein assembly
1071
Play Button
Expression, Detergent Solubilization, and Purification of a Membrane Transporter, the MexB Multidrug Resistance Protein
Authors: Forum H. Bhatt, Constance J. Jeffery.
Institutions: University of Illinois Chicago - UIC.
Multidrug resistance (MDR), the ability of a cancer cell or pathogen to be resistant to a wide range of structurally and functionally unrelated anti-cancer drugs or antibiotics, is a current serious problem in public health. This multidrug resistance is largely due to energy-dependent drug efflux pumps. The pumps expel anti-cancer drugs or antibiotics into the external medium, lowering their intracellular concentration below a toxic threshold. We are studying multidrug resistance in Pseudomonas aeruginosa, an opportunistic bacterial pathogen that causes infections in patients with many types of injuries or illness, for example, burns or cystic fibrosis, and also in immuno-compromised cancer, dialysis, and transplantation patients. The major MDR efflux pumps in P. aeruginosa are tripartite complexes comprised of an inner membrane proton-drug antiporter (RND), an outer membrane channel (OMF), and a periplasmic linker protein (MFP) 1-8. The RND and OMF proteins are transmembrane proteins. Transmembrane proteins make up more than 30% of all proteins and are 65% of current drug targets. The hydrophobic transmembrane domains make the proteins insoluble in aqueous buffer. Before a transmembrane protein can be purified, it is necessary to find buffer conditions containing a mild detergent that enable the protein to be solubilized as a protein detergent complex (PDC) 9-11. In this example, we use an RND protein, the P. aeruginosa MexB transmembrane transporter, to demonstrate how to express a recombinant form of a transmembrane protein, solubilize it using detergents, and then purify the protein detergent complexes. This general method can be applied to the expression, purification, and solubilization of many other recombinantly expressed membrane proteins. The protein detergent complexes can later be used for biochemical or biophysical characterization including X-ray crystal structure determination or crosslinking studies.
Cellular Biology, Issue 46, multidrug resistance, membrane protein, purification, transmembrane transport, MexB, detergent solubilization, protein detergent complex
2134
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
51278
Play Button
In Vitro Reconstitution of Light-harvesting Complexes of Plants and Green Algae
Authors: Alberto Natali, Laura M. Roy, Roberta Croce.
Institutions: VU University Amsterdam.
In plants and green algae, light is captured by the light-harvesting complexes (LHCs), a family of integral membrane proteins that coordinate chlorophylls and carotenoids. In vivo, these proteins are folded with pigments to form complexes which are inserted in the thylakoid membrane of the chloroplast. The high similarity in the chemical and physical properties of the members of the family, together with the fact that they can easily lose pigments during isolation, makes their purification in a native state challenging. An alternative approach to obtain homogeneous preparations of LHCs was developed by Plumley and Schmidt in 19871, who showed that it was possible to reconstitute these complexes in vitro starting from purified pigments and unfolded apoproteins, resulting in complexes with properties very similar to that of native complexes. This opened the way to the use of bacterial expressed recombinant proteins for in vitro reconstitution. The reconstitution method is powerful for various reasons: (1) pure preparations of individual complexes can be obtained, (2) pigment composition can be controlled to assess their contribution to structure and function, (3) recombinant proteins can be mutated to study the functional role of the individual residues (e.g., pigment binding sites) or protein domain (e.g., protein-protein interaction, folding). This method has been optimized in several laboratories and applied to most of the light-harvesting complexes. The protocol described here details the method of reconstituting light-harvesting complexes in vitro currently used in our laboratory, and examples describing applications of the method are provided.
Biochemistry, Issue 92, Reconstitution, Photosynthesis, Chlorophyll, Carotenoids, Light Harvesting Protein, Chlamydomonas reinhardtii, Arabidopsis thaliana
51852
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (http://www.proteinwisdom.org), a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
50476
Play Button
Protocols for Implementing an Escherichia coli Based TX-TL Cell-Free Expression System for Synthetic Biology
Authors: Zachary Z. Sun, Clarmyra A. Hayes, Jonghyeon Shin, Filippo Caschera, Richard M. Murray, Vincent Noireaux.
Institutions: California Institute of Technology, California Institute of Technology, Massachusetts Institute of Technology, University of Minnesota.
Ideal cell-free expression systems can theoretically emulate an in vivo cellular environment in a controlled in vitro platform.1 This is useful for expressing proteins and genetic circuits in a controlled manner as well as for providing a prototyping environment for synthetic biology.2,3 To achieve the latter goal, cell-free expression systems that preserve endogenous Escherichia coli transcription-translation mechanisms are able to more accurately reflect in vivo cellular dynamics than those based on T7 RNA polymerase transcription. We describe the preparation and execution of an efficient endogenous E. coli based transcription-translation (TX-TL) cell-free expression system that can produce equivalent amounts of protein as T7-based systems at a 98% cost reduction to similar commercial systems.4,5 The preparation of buffers and crude cell extract are described, as well as the execution of a three tube TX-TL reaction. The entire protocol takes five days to prepare and yields enough material for up to 3000 single reactions in one preparation. Once prepared, each reaction takes under 8 hr from setup to data collection and analysis. Mechanisms of regulation and transcription exogenous to E. coli, such as lac/tet repressors and T7 RNA polymerase, can be supplemented.6 Endogenous properties, such as mRNA and DNA degradation rates, can also be adjusted.7 The TX-TL cell-free expression system has been demonstrated for large-scale circuit assembly, exploring biological phenomena, and expression of proteins under both T7- and endogenous promoters.6,8 Accompanying mathematical models are available.9,10 The resulting system has unique applications in synthetic biology as a prototyping environment, or "TX-TL biomolecular breadboard."
Cellular Biology, Issue 79, Bioengineering, Synthetic Biology, Chemistry Techniques, Synthetic, Molecular Biology, control theory, TX-TL, cell-free expression, in vitro, transcription-translation, cell-free protein synthesis, synthetic biology, systems biology, Escherichia coli cell extract, biological circuits, biomolecular breadboard
50762
Play Button
Measuring Cation Transport by Na,K- and H,K-ATPase in Xenopus Oocytes by Atomic Absorption Spectrophotometry: An Alternative to Radioisotope Assays
Authors: Katharina L. Dürr, Neslihan N. Tavraz, Susan Spiller, Thomas Friedrich.
Institutions: Technical University of Berlin, Oregon Health & Science University.
Whereas cation transport by the electrogenic membrane transporter Na+,K+-ATPase can be measured by electrophysiology, the electroneutrally operating gastric H+,K+-ATPase is more difficult to investigate. Many transport assays utilize radioisotopes to achieve a sufficient signal-to-noise ratio, however, the necessary security measures impose severe restrictions regarding human exposure or assay design. Furthermore, ion transport across cell membranes is critically influenced by the membrane potential, which is not straightforwardly controlled in cell culture or in proteoliposome preparations. Here, we make use of the outstanding sensitivity of atomic absorption spectrophotometry (AAS) towards trace amounts of chemical elements to measure Rb+ or Li+ transport by Na+,K+- or gastric H+,K+-ATPase in single cells. Using Xenopus oocytes as expression system, we determine the amount of Rb+ (Li+) transported into the cells by measuring samples of single-oocyte homogenates in an AAS device equipped with a transversely heated graphite atomizer (THGA) furnace, which is loaded from an autosampler. Since the background of unspecific Rb+ uptake into control oocytes or during application of ATPase-specific inhibitors is very small, it is possible to implement complex kinetic assay schemes involving a large number of experimental conditions simultaneously, or to compare the transport capacity and kinetics of site-specifically mutated transporters with high precision. Furthermore, since cation uptake is determined on single cells, the flux experiments can be carried out in combination with two-electrode voltage-clamping (TEVC) to achieve accurate control of the membrane potential and current. This allowed e.g. to quantitatively determine the 3Na+/2K+ transport stoichiometry of the Na+,K+-ATPase and enabled for the first time to investigate the voltage dependence of cation transport by the electroneutrally operating gastric H+,K+-ATPase. In principle, the assay is not limited to K+-transporting membrane proteins, but it may work equally well to address the activity of heavy or transition metal transporters, or uptake of chemical elements by endocytotic processes.
Biochemistry, Issue 72, Chemistry, Biophysics, Bioengineering, Physiology, Molecular Biology, electrochemical processes, physical chemistry, spectrophotometry (application), spectroscopic chemical analysis (application), life sciences, temperature effects (biological, animal and plant), Life Sciences (General), Na+,K+-ATPase, H+,K+-ATPase, Cation Uptake, P-type ATPases, Atomic Absorption Spectrophotometry (AAS), Two-Electrode Voltage-Clamp, Xenopus Oocytes, Rb+ Flux, Transversely Heated Graphite Atomizer (THGA) Furnace, electrophysiology, animal model
50201
Play Button
Production of Disulfide-stabilized Transmembrane Peptide Complexes for Structural Studies
Authors: Pooja Sharma, Mariam Kaywan-Lutfi, Logesvaran Krshnan, Eamon F. X. Byrne, Melissa Joy Call, Matthew Edwin Call.
Institutions: The Walter and Eliza Hall Institute of Medical Research, The University of Melbourne.
Physical interactions among the lipid-embedded alpha-helical domains of membrane proteins play a crucial role in folding and assembly of membrane protein complexes and in dynamic processes such as transmembrane (TM) signaling and regulation of cell-surface protein levels. Understanding the structural features driving the association of particular sequences requires sophisticated biophysical and biochemical analyses of TM peptide complexes. However, the extreme hydrophobicity of TM domains makes them very difficult to manipulate using standard peptide chemistry techniques, and production of suitable study material often proves prohibitively challenging. Identifying conditions under which peptides can adopt stable helical conformations and form complexes spontaneously adds a further level of difficulty. Here we present a procedure for the production of homo- or hetero-dimeric TM peptide complexes from materials that are expressed in E. coli, thus allowing incorporation of stable isotope labels for nuclear magnetic resonance (NMR) or non-natural amino acids for other applications relatively inexpensively. The key innovation in this method is that TM complexes are produced and purified as covalently associated (disulfide-crosslinked) assemblies that can form stable, stoichiometric and homogeneous structures when reconstituted into detergent, lipid or other membrane-mimetic materials. We also present carefully optimized procedures for expression and purification that are equally applicable whether producing single TM domains or crosslinked complexes and provide advice for adapting these methods to new TM sequences.
Biochemistry, Issue 73, Structural Biology, Chemistry, Chemical Engineering, Biophysics, Genetics, Molecular Biology, Membrane Proteins, Proteins, Molecular Structure, transmembrane domain, peptide chemistry, membrane protein structure, immune receptors, reversed-phase HPLC, HPLC, peptides, lipids, protein, cloning, TFA Elution, CNBr Digestion, NMR, expression, cell culture
50141
Play Button
FtsZ Polymerization Assays: Simple Protocols and Considerations
Authors: Ewa Król, Dirk-Jan Scheffers.
Institutions: University of Groningen.
During bacterial cell division, the essential protein FtsZ assembles in the middle of the cell to form the so-called Z-ring. FtsZ polymerizes into long filaments in the presence of GTP in vitro, and polymerization is regulated by several accessory proteins. FtsZ polymerization has been extensively studied in vitro using basic methods including light scattering, sedimentation, GTP hydrolysis assays and electron microscopy. Buffer conditions influence both the polymerization properties of FtsZ, and the ability of FtsZ to interact with regulatory proteins. Here, we describe protocols for FtsZ polymerization studies and validate conditions and controls using Escherichia coli and Bacillus subtilis FtsZ as model proteins. A low speed sedimentation assay is introduced that allows the study of the interaction of FtsZ with proteins that bundle or tubulate FtsZ polymers. An improved GTPase assay protocol is described that allows testing of GTP hydrolysis over time using various conditions in a 96-well plate setup, with standardized incubation times that abolish variation in color development in the phosphate detection reaction. The preparation of samples for light scattering studies and electron microscopy is described. Several buffers are used to establish suitable buffer pH and salt concentration for FtsZ polymerization studies. A high concentration of KCl is the best for most of the experiments. Our methods provide a starting point for the in vitro characterization of FtsZ, not only from E. coli and B. subtilis but from any other bacterium. As such, the methods can be used for studies of the interaction of FtsZ with regulatory proteins or the testing of antibacterial drugs which may affect FtsZ polymerization.
Basic Protocols, Issue 81, FtsZ, protein polymerization, cell division, GTPase, sedimentation assay, light scattering
50844
Play Button
Mutagenesis and Functional Selection Protocols for Directed Evolution of Proteins in E. coli
Authors: Chris Troll, David Alexander, Jennifer Allen, Jacob Marquette, Manel Camps.
Institutions: University of California Santa Cruz - UCSC.
The efficient generation of genetic diversity represents an invaluable molecular tool that can be used to label DNA synthesis, to create unique molecular signatures, or to evolve proteins in the laboratory. Here, we present a protocol that allows the generation of large (>1011) mutant libraries for a given target sequence. This method is based on replication of a ColE1 plasmid encoding the desired sequence by a low-fidelity variant of DNA polymerase I (LF-Pol I). The target plasmid is transformed into a mutator strain of E. coli and plated on solid media, yielding between 0.2 and 1 mutations/kb, depending on the location of the target gene. Higher mutation frequencies are achieved by iterating this process of mutagenesis. Compared to alternative methods of mutagenesis, our protocol stands out for its simplicity, as no cloning or PCR are involved. Thus, our method is ideal for mutational labeling of plasmids or other Pol I templates or to explore large sections of sequence space for the evolution of activities not present in the original target. The tight spatial control that PCR or randomized oligonucleotide-based methods offer can also be achieved through subsequent cloning of specific sections of the library. Here we provide protocols showing how to create a random mutant library and how to establish drug-based selections in E. coli to identify mutants exhibiting new biochemical activities.
Genetics, Issue 49, random mutagenesis, directed evolution, LB agar drug gradient, bacterial complementation, ColE1 plasmid, DNA polymerase I, replication fidelity, genetic adaptation, antimicrobials, methylating agents
2505
Play Button
In Vitro Nuclear Assembly Using Fractionated Xenopus Egg Extracts
Authors: Marie Cross, Maureen Powers.
Institutions: Emory University.
Nuclear membrane assembly is an essential step in the cell division cycle; this process can be replicated in the test tube by combining Xenopus sperm chromatin, cytosol, and light membrane fractions. Complete nuclei are formed, including nuclear membranes with pore complexes, and these reconstituted nuclei are capable of normal nuclear processes.
Cellular Biology, Issue 19, Current Protocols Wiley, Xenopus Egg Extracts, Nuclear Assembly, Nuclear Membrane
908
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.