JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Hemolysis of coagulation specimens: a comparative study of intravenous draw methods.
J Emerg Nurs
PUBLISHED: 01-27-2010
Hemolysis of blood samples creates significant delays in the treatment and disposition of patients in the emergency department. The purpose of this study was to compare the hemolysis rates of coagulation blood samples obtained during insertion of an intravenous (IV) catheter without (group 1) or with (group 2) extension tubing connected to the IV catheter hub. A secondary purpose of this study was to determine whether the investigators could predict whether a coagulation sample was hemolyzed based on visual observation during the specimen withdrawal process.
Authors: Martin Ebinger, Sascha Lindenlaub, Alexander Kunz, Michal Rozanski, Carolin Waldschmidt, Joachim E. Weber, Matthias Wendt, Benjamin Winter, Philipp A. Kellner, Sabina Kaczmarek, Matthias Endres, Heinrich J. Audebert.
Published: 11-26-2013
In acute ischemic stroke, time from symptom onset to intervention is a decisive prognostic factor. In order to reduce this time, prehospital thrombolysis at the emergency site would be preferable. However, apart from neurological expertise and laboratory investigations a computed tomography (CT) scan is necessary to exclude hemorrhagic stroke prior to thrombolysis. Therefore, a specialized ambulance equipped with a CT scanner and point-of-care laboratory was designed and constructed. Further, a new stroke identifying interview algorithm was developed and implemented in the Berlin emergency medical services. Since February 2011 the identification of suspected stroke in the dispatch center of the Berlin Fire Brigade prompts the deployment of this ambulance, a stroke emergency mobile (STEMO). On arrival, a neurologist, experienced in stroke care and with additional training in emergency medicine, takes a neurological examination. If stroke is suspected a CT scan excludes intracranial hemorrhage. The CT-scans are telemetrically transmitted to the neuroradiologist on-call. If coagulation status of the patient is normal and patient's medical history reveals no contraindication, prehospital thrombolysis is applied according to current guidelines (intravenous recombinant tissue plasminogen activator, iv rtPA, alteplase, Actilyse). Thereafter patients are transported to the nearest hospital with a certified stroke unit for further treatment and assessment of strokeaetiology. After a pilot-phase, weeks were randomized into blocks either with or without STEMO care. Primary end-point of this study is time from alarm to the initiation of thrombolysis. We hypothesized that alarm-to-treatment time can be reduced by at least 20 min compared to regular care.
24 Related JoVE Articles!
Play Button
Guidelines for Elective Pediatric Fiberoptic Intubation
Authors: Roland N. Kaddoum, Zulfiqar Ahmed, Alan A. D'Augsutine, Maria M. Zestos.
Institutions: St. Jude Children's Research Hospital, Children's Hospital of Michigan, Children's Hospital of Michigan.
Fiberoptic intubation in pediatric patients is often required especially in difficult airways of syndromic patients i.e. Pierre Robin Syndrome. Small babies will desaturate very quickly if ventilation is interrupted mainly to high metabolic rate. We describe guidelines to perform a safe fiberoptic intubation while maintaining spontaneous breathing throughout the procedure. Steps requiring the use of propofol pump, fentanyl, glycopyrrolate, red rubber catheter, metal insuflation hook, afrin, lubricant and lidocaine spray are shown.
Medicine, Issue 47, Fiberoptic, Intubation, Pediatric, elective
Play Button
Rat Model of Blood-brain Barrier Disruption to Allow Targeted Neurovascular Therapeutics
Authors: Jacob A. Martin, Alexander S. Maris, Moneeb Ehtesham, Robert J. Singer.
Institutions: Vanderbilt University School of Medicine.
Endothelial cells with tight junctions along with the basement membrane and astrocyte end feet surround cerebral blood vessels to form the blood-brain barrier1. The barrier selectively excludes molecules from crossing between the blood and the brain based upon their size and charge. This function can impede the delivery of therapeutics for neurological disorders. A number of chemotherapeutic drugs, for example, will not effectively cross the blood-brain barrier to reach tumor cells2. Thus, improving the delivery of drugs across the blood-brain barrier is an area of interest. The most prevalent methods for enhancing the delivery of drugs to the brain are direct cerebral infusion and blood-brain barrier disruption3. Direct intracerebral infusion guarantees that therapies reach the brain; however, this method has a limited ability to disperse the drug4. Blood-brain barrier disruption (BBBD) allows drugs to flow directly from the circulatory system into the brain and thus more effectively reach dispersed tumor cells. Three methods of barrier disruption include osmotic barrier disruption, pharmacological barrier disruption, and focused ultrasound with microbubbles. Osmotic disruption, pioneered by Neuwelt, uses a hypertonic solution of 25% mannitol that dehydrates the cells of the blood-brain barrier causing them to shrink and disrupt their tight junctions. Barrier disruption can also be accomplished pharmacologically with vasoactive compounds such as histamine5 and bradykinin6. This method, however, is selective primarily for the brain-tumor barrier7. Additionally, RMP-7, an analog of the peptide bradykinin, was found to be inferior when compared head-to-head with osmotic BBBD with 25% mannitol8. Another method, focused ultrasound (FUS) in conjunction with microbubble ultrasound contrast agents, has also been shown to reversibly open the blood-brain barrier9. In comparison to FUS, though, 25% mannitol has a longer history of safety in human patients that makes it a proven tool for translational research10-12. In order to accomplish BBBD, mannitol must be delivered at a high rate directly into the brain's arterial circulation. In humans, an endovascular catheter is guided to the brain where rapid, direct flow can be accomplished. This protocol models human BBBD as closely as possible. Following a cut-down to the bifurcation of the common carotid artery, a catheter is inserted retrograde into the ECA and used to deliver mannitol directly into the internal carotid artery (ICA) circulation. Propofol and N2O anesthesia are used for their ability to maximize the effectiveness of barrier disruption13. If executed properly, this procedure has the ability to safely, effectively, and reversibly open the blood-brain barrier and improve the delivery of drugs that do not ordinarily reach the brain 8,13,14.
Medicine, Issue 69, Neuroscience, Immunology, Cancer Biology, Blood-brain barrier disruption, neurovascular, endovascular, intra-arterial, neurosurgery, oncology, neuro-oncology, animal model, rat
Play Button
Accurate and Simple Evaluation of Vascular Anastomoses in Monochorionic Placenta using Colored Dye
Authors: Enrico Lopriore, Femke Slaghekke, Johanna M. Middeldorp, Frans J. Klumper, Jan M. van Lith, Frans J. Walther, Dick Oepkes.
Institutions: Leiden University Medical Center, Leiden University Medical Center, Leiden University Medical Center.
The presence of placental vascular anastomoses is a conditio sine qua non for the development of twin-to-twin transfusion syndrome (TTTS) and twin anemia polycythemia sequence (TAPS)1,2. Injection studies of twin placentas have shown that such anastomoses are almost invariably present in monochorionic twins and extremely rare in dichorionic twins1. Three types of anastomoses have been documented: from artery to artery, from vein to vein and from artery to vein. Arterio-venous (AV) anastomoses are unidirectional and are referred to as "deep" anastomoses since they proceed through a shared placental cotyledon, whereas arterio-arterial (AA) and veno-venous (VV) anastomoses are bi-directional and are referred to as "superficial" since they lie on the chorionic plate. Both TTTS and TAPS are caused by net imbalance of blood flow between the twins due to AV anastomoses. Blood from one twin (the donor) is pumped through an artery into the shared placental cotyledon and then drained through a vein into the circulation of the other twin (the recipient). Unless blood is pumped back from the recipient to the donor through oppositely directed deep AV anastomoses or through superficial anastomoses, an imbalance of blood volumes occurs, gradually leading to the development of TTTS or TAPS. The presence of an AA anastomosis has been shown to protect against the development of TTTS and TAPS by compensating for the circulatory imbalance caused by the uni-directional AV anastomoses1,2. Injection of monochorionic placentas soon after birth is a useful mean to understand the etiology of various (hematological) complications in monochorionic twins and is a required test to reach the diagnosis of TAPS2. In addition, injection of TTTS placentas treated with fetoscopic laser surgery allows identification of possible residual anastomoses3-5. This additional information is of paramount importance for all perinatologists involved in the management and care of monochorionic twins with TTTS or TAPS. Several placental injection techniques are currently being used. We provide a simple protocol to accurately evaluate the presence of (residual) vascular anastomoses using colored dye injection.
Medicine, Issue 55, monochorionic twin placenta, vascular anastomoses, twin-to-twin transfusion syndrome, twin anemia polycythemia sequence, colored dye injection, fetoscopic laser surgery
Play Button
Methods for Intravenous Self Administration in a Mouse Model
Authors: Elizabeth K. Kmiotek, Corey Baimel, Kathryn J. Gill.
Institutions: McGill University Health Centre.
Animal models have been developed to study the reinforcing effects of drugs, including the intravenous self-administration (IVSA) paradigm. The advantages of using an IVSA paradigm to study the reinforcing properties of drugs of abuse such as cocaine include the fact that the drug is self-administered instead of experimenter-administered, the schedule of reinforcement can be altered, and accurate measurement of the quantities of drug consumed as well as the timing and pattern of IV injections can be obtained. Furthermore, the intravenous route of administration avoids potential confounds related to first pass metabolism or taste, and produces rapid increases in blood and brain drug levels. As outlined in this video, intravenous self-administration can be obtained without prior food restriction or prior drug training following careful catheter placement during surgery and meticulous daily catheter flushing and maintenance. Experimental procedures outlined in this paper include a description of animal housing and acclimation methods, operant training using sweetened milk solutions, and catheter implantation surgery.
Medicine, Issue 70, Neuroscience, Pharmacology, Behavior, Anatomy, Physiology, Surgery, Intravenous self-administration, IVSA, catheterization, indwelling catheters, drug abuse, addiction, operant training, mouse, animal model
Play Button
A Simple Method of Mouse Lung Intubation
Authors: Sandhya Das, Kelvin MacDonald, Herng-Yu Sucie Chang, Wayne Mitzner.
Institutions: Johns Hopkins Bloomberg School of Public Health, Oregon Health Sciences University.
A simple procedure to intubate mice for pulmonary function measurements would have several advantages in longitudinal studies with limited numbers or expensive animal. One of the reasons that this is not done more routinely is that it is relatively difficult, despite there being several published studies that describe ways to achieve it. In this paper we demonstrate a procedure that eliminates one of the major hurdles associated with this intubation, that of visualizing the trachea during the entire time of intubation. The approach uses a 0.5 mm fiberoptic light source that serves as an introducer to direct the intubation cannula into the mouse trachea. We show that it is possible to use this procedure to measure lung mechanics in individual mice over a time course of at least several weeks. The technique can be set up with relatively little expense and expertise, and it can be routinely accomplished with relatively little training. This should make it possible for any laboratory to routinely carry out this intubation, thereby allowing longitudinal studies in individual mice, thereby minimizing the number of mice needed and increasing the statistical power by using each mouse as its own control.
Medicine, Issue 73, Biomedical Engineering, Anatomy, Physiology, Surgery, Respiratory System, Respiratory Tract Diseases, pulmonary function, chronic, longitudinal studies, airway resistance, trachea, lung, clinical techniques, intubation, cannula, animal model
Play Button
Manual Restraint and Common Compound Administration Routes in Mice and Rats
Authors: Elton Machholz, Guy Mulder, Casimira Ruiz, Brian F. Corning, Kathleen R. Pritchett-Corning.
Institutions: Charles River , Charles River.
Being able to safely and effectively restrain mice and rats is an important part of conducting research. Working confidently and humanely with mice and rats requires a basic competency in handling and restraint methods. This article will present the basic principles required to safely handle animals. One-handed, two-handed, and restraint with specially designed restraint objects will be illustrated. Often, another part of the research or testing use of animals is the effective administration of compounds to mice and rats. Although there are a large number of possible administration routes (limited only by the size and organs of the animal), most are not used regularly in research. This video will illustrate several of the more common routes, including intravenous, intramuscular, subcutaneous, and oral gavage. The goal of this article is to expose a viewer unfamiliar with these techniques to basic restraint and substance administration routes. This video does not replace required hands-on training at your facility, but is meant to augment and supplement that training.
Basic Protocols, Issue 67, Anatomy, Medicine, Rodents, training, handling, restraint, injections, oral gavage
Play Button
Measuring Bacterial Load and Immune Responses in Mice Infected with Listeria monocytogenes
Authors: Nancy Wang, Richard Strugnell, Odilia Wijburg, Thomas Brodnicki.
Institutions: The University of Melbourne, The University of Melbourne.
Listeria monocytogenes (Listeria) is a Gram-positive facultative intracellular pathogen1. Mouse studies typically employ intravenous injection of Listeria, which results in systemic infection2. After injection, Listeria quickly disseminates to the spleen and liver due to uptake by CD8α+ dendritic cells and Kupffer cells3,4. Once phagocytosed, various bacterial proteins enable Listeria to escape the phagosome, survive within the cytosol, and infect neighboring cells5. During the first three days of infection, different innate immune cells (e.g. monocytes, neutrophils, NK cells, dendritic cells) mediate bactericidal mechanisms that minimize Listeria proliferation. CD8+ T cells are subsequently recruited and responsible for the eventual clearance of Listeria from the host, typically within 10 days of infection6. Successful clearance of Listeria from infected mice depends on the appropriate onset of host immune responses6 . There is a broad range of sensitivities amongst inbred mouse strains7,8. Generally, mice with increased susceptibility to Listeria infection are less able to control bacterial proliferation, demonstrating increased bacterial load and/or delayed clearance compared to resistant mice. Genetic studies, including linkage analyses and knockout mouse strains, have identified various genes for which sequence variation affects host responses to Listeria infection6,8-14. Determination and comparison of infection kinetics between different mouse strains is therefore an important method for identifying host genetic factors that contribute to immune responses against Listeria. Comparison of host responses to different Listeria strains is also an effective way to identify bacterial virulence factors that may serve as potential targets for antibiotic therapy or vaccine design. We describe here a straightforward method for measuring bacterial load (colony forming units [CFU] per tissue) and preparing single-cell suspensions of the liver and spleen for FACS analysis of immune responses in Listeria-infected mice. This method is particularly useful for initial characterization of Listeria infection in novel mouse strains, as well as comparison of immune responses between different mouse strains infected with Listeria. We use the Listeria monocytogenes EGD strain15 that, when cultured on blood agar, exhibits a characteristic halo zone around each colony due to β-hemolysis1 (Figure 1). Bacterial load and immune responses can be determined at any time-point after infection by culturing tissue homogenate on blood agar plates and preparing tissue cell suspensions for FACS analysis using the protocols described below. We would note that individuals who are immunocompromised or pregnant should not handle Listeria, and the relevant institutional biosafety committee and animal facility management should be consulted before work commences.
Immunology, Issue 54, Listeria, intracellular bacteria, genetic susceptibility, liver, spleen, blood, FACS analysis, T cells
Play Button
Modeling Stroke in Mice: Permanent Coagulation of the Distal Middle Cerebral Artery
Authors: Gemma Llovera, Stefan Roth, Nikolaus Plesnila, Roland Veltkamp, Arthur Liesz.
Institutions: University Hospital Munich, Munich Cluster for Systems Neurology (SyNergy), University Heidelberg, Charing Cross Hospital.
Stroke is the third most common cause of death and a main cause of acquired adult disability in developed countries. Only very limited therapeutical options are available for a small proportion of stroke patients in the acute phase. Current research is intensively searching for novel therapeutic strategies and is increasingly focusing on the sub-acute and chronic phase after stroke because more patients might be eligible for therapeutic interventions in a prolonged time window. These delayed mechanisms include important pathophysiological pathways such as post-stroke inflammation, angiogenesis, neuronal plasticity and regeneration. In order to analyze these mechanisms and to subsequently evaluate novel drug targets, experimental stroke models with clinical relevance, low mortality and high reproducibility are sought after. Moreover, mice are the smallest mammals in which a focal stroke lesion can be induced and for which a broad spectrum of transgenic models are available. Therefore, we describe here the mouse model of transcranial, permanent coagulation of the middle cerebral artery via electrocoagulation distal of the lenticulostriatal arteries, the so-called “coagulation model”. The resulting infarct in this model is located mainly in the cortex; the relative infarct volume in relation to brain size corresponds to the majority of human strokes. Moreover, the model fulfills the above-mentioned criteria of reproducibility and low mortality. In this video we demonstrate the surgical methods of stroke induction in the “coagulation model” and report histological and functional analysis tools.
Medicine, Issue 89, stroke, brain ischemia, animal model, middle cerebral artery, electrocoagulation
Play Button
An Improved Mechanical Testing Method to Assess Bone-implant Anchorage
Authors: Spencer Bell, Elnaz Ajami, John E. Davies.
Institutions: University of Toronto.
Recent advances in material science have led to a substantial increase in the topographical complexity of implant surfaces, both on a micro- and a nano-scale. As such, traditional methods of describing implant surfaces - namely numerical determinants of surface roughness - are inadequate for predicting in vivo performance. Biomechanical testing provides an accurate and comparative platform to analyze the performance of biomaterial surfaces. An improved mechanical testing method to test the anchorage of bone to candidate implant surfaces is presented. The method is applicable to both early and later stages of healing and can be employed for any range of chemically or mechanically modified surfaces - but not smooth surfaces. Custom rectangular implants are placed bilaterally in the distal femora of male Wistar rats and collected with the surrounding bone. Test specimens are prepared and potted using a novel breakaway mold and the disruption test is conducted using a mechanical testing machine. This method allows for alignment of the disruption force exactly perpendicular, or parallel, to the plane of the implant surface, and provides an accurate and reproducible means for isolating an exact peri-implant region for testing.
Bioengineering, Issue 84, Mechanical test, bone anchorage, disruption test, surface topography, peri-implant bone, bone-implant interface, bone-bonding, microtopography, nanotopography
Play Button
Histochemical Staining of Arabidopsis thaliana Secondary Cell Wall Elements
Authors: Prajakta Pradhan Mitra, Dominique Loqué.
Institutions: Joint Bioenergy Institute, Lawrence Berkeley National Laboratory.
Arabidopsis thaliana is a model organism commonly used to understand and manipulate various cellular processes in plants, and it has been used extensively in the study of secondary cell wall formation. Secondary cell wall deposition occurs after the primary cell wall is laid down, a process carried out exclusively by specialized cells such as those forming vessel and fiber tissues. Most secondary cell walls are composed of cellulose (40–50%), hemicellulose (25–30%), and lignin (20–30%). Several mutations affecting secondary cell wall biosynthesis have been isolated, and the corresponding mutants may or may not exhibit obvious biochemical composition changes or visual phenotypes since these mutations could be masked by compensatory responses. Staining procedures have historically been used to show differences on a cellular basis. These methods are exclusively visual means of analysis; nevertheless their role in rapid and critical analysis is of great importance. Congo red and calcofluor white are stains used to detect polysaccharides, whereas Mäule and phloroglucinol are commonly used to determine differences in lignin, and toluidine blue O is used to differentially stain polysaccharides and lignin. The seemingly simple techniques of sectioning, staining, and imaging can be a challenge for beginners. Starting with sample preparation using the A. thaliana model, this study details the protocols of a variety of staining methodologies that can be easily implemented for observation of cell and tissue organization in secondary cell walls of plants.
Cellular Biology, Issue 87, Xylem, Fibers, Lignin, polysaccharides, Plant cell wall, Mäule staining, Phloroglucinol, Congo red, Toluidine blue O, Calcofluor white, Cell wall staining methods
Play Button
Human In-Vivo Bioassay for the Tissue-Specific Measurement of Nociceptive and Inflammatory Mediators
Authors: Martin S Angst, Martha Tingle, Martin Schmelz, Brendan Carvalho, David C Yeomans.
Institutions: Stanford University School of Medicine, University of Mannheim, University of Heidelberg.
This in-vivo human bioassay can be used to study human volunteers and patients. Samples are collected from pertinent tissue sites such as the skin via aseptically inserted microdialysis catheters (Dermal Dialysis, Erlangen, Germany). Illustrated in this example is the collection of interstitial fluid from experimentally inflamed skin in human volunteers. Sample collection can be combined with other experimental tests. For example, the simultaneous assessment of locally released biochemicals and subjective sensitivity to painful stimuli in experimentally inflamed skin provides the critical biochemical-behavioral link to identify biomarkers of pain and inflammation. Presented assay in the living human organism allows for mechanistic insight into tissue-specific processes underlying pain and/or inflammation. The method is also well suited to examine the effectiveness of existing or novel interventions - such as new drug candidates - targeting the treatment of painful and/or inflammatory conditions. This article will provide a detailed description on the use of microdialysis techniques for collecting interstitial fluid from experimentally inflamed skin lesion of human study subjects. Interstitial fluid samples are typically processed with aid of multiplex bead array immunoassays allowing assaying up to 100 analytes in samples as small in volume as 50 microliters.
Medicine, Issue 22, Microdialysis, experimental pain, cytokines, skin, interstitial fluid, experimental inflammation, human, inflammatory mediators, nociceptive mediators, biomarkers
Play Button
Gene Transfer for Ischemic Heart Failure in a Preclinical Model
Authors: Kiyotake Ishikawa, Dennis Ladage, Lisa Tilemann, Kenneth Fish, Yoshiaki Kawase, Roger J. Hajjar.
Institutions: Mount Sinai School of Medicine .
Various emerging technologies are being developed for patients with heart failure. Well-established preclinical evaluations are necessary to determine their efficacy and safety. Gene therapy using viral vectors is one of the most promising approaches for treating cardiac diseases. Viral delivery of various different genes by changing the carrier gene has immeasurable therapeutic potential. In this video, the full process of an animal model of heart failure creation followed by gene transfer is presented using a swine model. First, myocardial infarction is created by occluding the proximal left anterior descending coronary artery. Heart remodeling results in chronic heart failure. Unique to our model is a fairly large scar which truly reflects patients with severe heart failure who require aggressive therapy for positive outcomes. After myocardial infarct creation and development of scar tissue, an intracoronary injection of virus is demonstrated with simultaneous nitroglycerine infusion. Our injection method provides simple and efficient gene transfer with enhanced gene expression. This combination of a myocardial infarct swine model with intracoronary virus delivery has proven to be a consistent and reproducible methodology, which helps not only to test the effect of individual gene, but also compare the efficacy of many genes as therapeutic candidates.
Medicine, Issue 51, Myocardial infarction, Gene therapy, Intracoronary injection, Viral vector, Ischemic heart failure
Play Button
An Orthotopic Model of Murine Bladder Cancer
Authors: Georgina L. Dobek, W. T. Godbey.
Institutions: Tulane University, Tulane University.
In this straightforward procedure, bladder tumors are established in female C57 mice through the use of catheterization, local cauterization, and subsequent cell adhesion. After their bladders are transurethrally catheterized and drained, animals are again catheterized to permit insertion of a platinum wire into bladders without damaging the urethra or bladder. The catheters are made of Teflon to serve as an insulator for the wire, which will conduct electrical current into the bladder to create a burn injury. An electrocautery unit is used to deliver 2.5W to the exposed end of the wire, burning away extracellular layers and providing attachment sites for carcinoma cells that are delivered in suspension to the bladder through a subsequent catheterization. Cells remain in the bladder for 90 minutes, after which the catheters are removed and the bladders allowed to drain naturally. The development of tumor is monitored via ultrasound. Specific attention is paid to the catheterization technique in the accompanying video.
Medicine, Issue 48, Bladder tumor, orthotopic, mouse, ultrasound
Play Button
Measurement of Factor V Activity in Human Plasma Using a Microplate Coagulation Assay
Authors: Derek Tilley, Irina Levit, John A. Samis.
Institutions: University of Ontario Institute of Technology , University of Ontario Institute of Technology , University of Ontario Institute of Technology .
In response to injury, blood coagulation is activated and results in generation of the clotting protease, thrombin. Thrombin cleaves fibrinogen to fibrin which forms an insoluble clot that stops hemorrhage. Factor V (FV) in its activated form, FVa, is a critical cofactor for the protease FXa and accelerator of thrombin generation during fibrin clot formation as part of prothrombinase 1, 2. Manual FV assays have been described 3, 4, but they are time consuming and subjective. Automated FV assays have been reported 5-7, but the analyzer and reagents are expensive and generally provide only the clot time, not the rate and extent of fibrin formation. The microplate platform is preferred for measuring enzyme-catalyzed events because of convenience, time, cost, small volume, continuous monitoring, and high-throughput 8, 9. Microplate assays have been reported for clot lysis 10, platelet aggregation 11, and coagulation Factors 12, but not for FV activity in human plasma. The goal of the method was to develop a microplate assay that measures FV activity during fibrin formation in human plasma. This novel microplate method outlines a simple, inexpensive, and rapid assay of FV activity in human plasma. The assay utilizes a kinetic microplate reader to monitor the absorbance change at 405nm during fibrin formation in human plasma (Figure 1) 13. The assay accurately measures the time, initial rate, and extent of fibrin clot formation. It requires only μl quantities of plasma, is complete in 6 min, has high-throughput, is sensitive to 24-80pM FV, and measures the amount of unintentionally activated (1-stage activity) and thrombin-activated FV (2-stage activity) to obtain a complete assessment of its total functional activity (2-stage activity - 1-stage activity). Disseminated intravascular coagulation (DIC) is an acquired coagulopathy that most often develops from pre-existing infections 14. DIC is associated with a poor prognosis and increases mortality above the pre-existing pathology 15. The assay was used to show that in 9 patients with DIC, the FV 1-stage, 2-stage, and total activities were decreased, on average, by 54%, 44%, and 42%, respectively, compared with normal pooled human reference plasma (NHP). The FV microplate assay is easily adaptable to measure the activity of any coagulation factor. This assay will increase our understanding of FV biochemistry through a more accurate and complete measurement of its activity in research and clinical settings. This information will positively impact healthcare environments through earlier diagnosis and development of more effective treatments for coagulation disorders, such as DIC.
Immunology, Issue 67, Factor V, Microplate, Coagulation assay, Human plasma, Disseminated intravascular coagulation (DIC), blood clotting
Play Button
Ex Vivo Red Blood Cell Hemolysis Assay for the Evaluation of pH-responsive Endosomolytic Agents for Cytosolic Delivery of Biomacromolecular Drugs
Authors: Brian C. Evans, Christopher E. Nelson, Shann S. Yu, Kelsey R. Beavers, Arnold J. Kim, Hongmei Li, Heather M. Nelson, Todd D. Giorgio, Craig L. Duvall.
Institutions: Vanderbilt University, Vanderbilt University, Vanderbilt University, Vanderbilt University Medical Center, Vanderbilt University, Vanderbilt University.
Phospholipid bilayers that constitute endo-lysosomal vesicles can pose a barrier to delivery of biologic drugs to intracellular targets. To overcome this barrier, a number of synthetic drug carriers have been engineered to actively disrupt the endosomal membrane and deliver cargo into the cytoplasm. Here, we describe the hemolysis assay, which can be used as rapid, high-throughput screen for the cytocompatibility and endosomolytic activity of intracellular drug delivery systems. In the hemolysis assay, human red blood cells and test materials are co-incubated in buffers at defined pHs that mimic extracellular, early endosomal, and late endo-lysosomal environments. Following a centrifugation step to pellet intact red blood cells, the amount of hemoglobin released into the medium is spectrophotometrically measured (405 nm for best dynamic range). The percent red blood cell disruption is then quantified relative to positive control samples lysed with a detergent. In this model system the erythrocyte membrane serves as a surrogate for the lipid bilayer membrane that enclose endo-lysosomal vesicles. The desired result is negligible hemolysis at physiologic pH (7.4) and robust hemolysis in the endo-lysosomal pH range from approximately pH 5-6.8.
Immunology, Issue 73, Cellular Biology, Medicine, Biomedical Engineering, Bioengineering, Cancer Biology, Molecular Biology, Erythrocytes, Endosomes, Small Interfering RNA, Gene Therapy, Nanomedicine, Gene delivery, Nanoparticles, Endosome Escape, Intracellular Trafficking, Cytosolic Drug Delivery, red blood cells, assay
Play Button
Helical Organization of Blood Coagulation Factor VIII on Lipid Nanotubes
Authors: Jaimy Miller, Daniela Dalm, Alexey Y. Koyfman, Kirill Grushin, Svetla Stoilova-McPhie.
Institutions: University of Texas Medical Branch, University of Texas Medical Branch, University of Texas Medical Branch.
Cryo-electron microscopy (Cryo-EM)1 is a powerful approach to investigate the functional structure of proteins and complexes in a hydrated state and membrane environment2. Coagulation Factor VIII (FVIII)3 is a multi-domain blood plasma glycoprotein. Defect or deficiency of FVIII is the cause for Hemophilia type A - a severe bleeding disorder. Upon proteolytic activation, FVIII binds to the serine protease Factor IXa on the negatively charged platelet membrane, which is critical for normal blood clotting4. Despite the pivotal role FVIII plays in coagulation, structural information for its membrane-bound state is incomplete5. Recombinant FVIII concentrate is the most effective drug against Hemophilia type A and commercially available FVIII can be expressed as human or porcine, both forming functional complexes with human Factor IXa6,7. In this study we present a combination of Cryo-electron microscopy (Cryo-EM), lipid nanotechnology and structure analysis applied to resolve the membrane-bound structure of two highly homologous FVIII forms: human and porcine. The methodology developed in our laboratory to helically organize the two functional recombinant FVIII forms on negatively charged lipid nanotubes (LNT) is described. The representative results demonstrate that our approach is sufficiently sensitive to define the differences in the helical organization between the two highly homologous in sequence (86% sequence identity) proteins. Detailed protocols for the helical organization, Cryo-EM and electron tomography (ET) data acquisition are given. The two-dimensional (2D) and three-dimensional (3D) structure analysis applied to obtain the 3D reconstructions of human and porcine FVIII-LNT is discussed. The presented human and porcine FVIII-LNT structures show the potential of the proposed methodology to calculate the functional, membrane-bound organization of blood coagulation Factor VIII at high resolution.
Bioengineering, Issue 88, Cryo-electron microscopy, Lipid nanotubes, Helical assembly, Membrane-bound organization, Coagulation factor VIII
Play Button
An Isolated Working Heart System for Large Animal Models
Authors: Matthew A. Schechter, Kevin W. Southerland, Bryan J. Feger, Dean Linder Jr., Ayyaz A. Ali, Linda Njoroge, Carmelo A. Milano, Dawn E. Bowles.
Institutions: Duke University Medical Center, University Hospital of South Manchester.
Since its introduction in the late 19th century, the Langendorff isolated heart perfusion apparatus, and the subsequent development of the working heart model, have been invaluable tools for studying cardiovascular function and disease1-15. Although the Langendorff heart preparation can be used for any mammalian heart, most studies involving this apparatus use small animal models (e.g., mouse, rat, and rabbit) due to the increased complexity of systems for larger mammals1,3,11. One major difficulty is ensuring a constant coronary perfusion pressure over a range of different heart sizes – a key component of any experiment utilizing this device1,11. By replacing the classic hydrostatic afterload column with a centrifugal pump, the Langendorff working heart apparatus described below allows for easy adjustment and tight regulation of perfusion pressures, meaning the same set-up can be used for various species or heart sizes. Furthermore, this configuration can also seamlessly switch between constant pressure or constant flow during reperfusion, depending on the user’s preferences. The open nature of this setup, despite making temperature regulation more difficult than other designs, allows for easy collection of effluent and ventricular pressure-volume data.
Medicine, Issue 88, cardiac physiology, surgery, transplantation, large animal models, isolated working heart, cardiac disease
Play Button
2-Vessel Occlusion/Hypotension: A Rat Model of Global Brain Ischemia
Authors: Thomas H. Sanderson, Joseph M. Wider.
Institutions: Wayne State University School of Medicine, Wayne State University School of Medicine, Wayne State University School of Medicine.
Cardiac arrest followed by resuscitation often results in dramatic brain damage caused by ischemia and subsequent reperfusion of the brain. Global brain ischemia produces damage to specific brain regions shown to be highly sensitive to ischemia 1. Hippocampal neurons have higher sensitivity to ischemic insults compared to other cell populations, and specifically, the CA1 region of the hippocampus is particularly vulnerable to ischemia/reperfusion 2. The design of therapeutic interventions, or study of mechanisms involved in cerebral damage, requires a model that produces damage similar to the clinical condition and in a reproducible manner. Bilateral carotid vessel occlusion with hypotension (2VOH) is a model that produces reversible forebrain ischemia, emulating the cerebral events that can occur during cardiac arrest and resuscitation. We describe a model modified from Smith et al. (1984) 2, as first presented in its current form in Sanderson, et al. (2008) 3, which produces reproducible injury to selectively vulnerable brain regions 3-6. The reliability of this model is dictated by precise control of systemic blood pressure during applied hypotension, the duration of ischemia, close temperature control, a specific anesthesia regimen, and diligent post-operative care. An 8-minute ischemic insult produces cell death of CA1 hippocampal neurons that progresses over the course of 6 to 24 hr of reperfusion, while less vulnerable brain regions are spared. This progressive cell death is easily quantified after 7-14 days of reperfusion, as a near complete loss of CA1 neurons is evident at this time. In addition to this brain injury model, we present a method for CA1 damage quantification using a simple, yet thorough, methodology. Importantly, quantification can be accomplished using a simple camera-mounted microscope, and a free ImageJ (NIH) software plugin, obviating the need for cost-prohibitive stereology software programs and a motorized microscopic stage for damage assessment.
Medicine, Issue 76, Biomedical Engineering, Neurobiology, Neuroscience, Immunology, Anatomy, Physiology, Cardiology, Brain Ischemia, ischemia, reperfusion, cardiac arrest, resuscitation, 2VOH, brain injury model, CA1 hippocampal neurons, brain, neuron, blood vessel, occlusion, hypotension, animal model
Play Button
Evaluation of a Novel Laser-assisted Coronary Anastomotic Connector - the Trinity Clip - in a Porcine Off-pump Bypass Model
Authors: David Stecher, Glenn Bronkers, Jappe O.T. Noest, Cornelis A.F. Tulleken, Imo E. Hoefer, Lex A. van Herwerden, Gerard Pasterkamp, Marc P. Buijsrogge.
Institutions: University Medical Center Utrecht, Vascular Connect b.v., University Medical Center Utrecht, University Medical Center Utrecht.
To simplify and facilitate beating heart (i.e., off-pump), minimally invasive coronary artery bypass surgery, a new coronary anastomotic connector, the Trinity Clip, is developed based on the excimer laser-assisted nonocclusive anastomosis technique. The Trinity Clip connector enables simplified, sutureless, and nonocclusive connection of the graft to the coronary artery, and an excimer laser catheter laser-punches the opening of the anastomosis. Consequently, owing to the complete nonocclusive anastomosis construction, coronary conditioning (i.e., occluding or shunting) is not necessary, in contrast to the conventional anastomotic technique, hence simplifying the off-pump bypass procedure. Prior to clinical application in coronary artery bypass grafting, the safety and quality of this novel connector will be evaluated in a long-term experimental porcine off-pump coronary artery bypass (OPCAB) study. In this paper, we describe how to evaluate the coronary anastomosis in the porcine OPCAB model using various techniques to assess its quality. Representative results are summarized and visually demonstrated.
Medicine, Issue 93, Anastomosis, coronary, anastomotic connector, anastomotic coupler, excimer laser-assisted nonocclusive anastomosis (ELANA), coronary artery bypass graft (CABG), off-pump coronary artery bypass (OPCAB), beating heart surgery, excimer laser, porcine model, experimental, medical device
Play Button
Measuring Ascending Aortic Stiffness In Vivo in Mice Using Ultrasound
Authors: Maggie M. Kuo, Viachaslau Barodka, Theodore P. Abraham, Jochen Steppan, Artin A. Shoukas, Mark Butlin, Alberto Avolio, Dan E. Berkowitz, Lakshmi Santhanam.
Institutions: Johns Hopkins University, Johns Hopkins University, Johns Hopkins University, Macquarie University.
We present a protocol for measuring in vivo aortic stiffness in mice using high-resolution ultrasound imaging. Aortic diameter is measured by ultrasound and aortic blood pressure is measured invasively with a solid-state pressure catheter. Blood pressure is raised then lowered incrementally by intravenous infusion of vasoactive drugs phenylephrine and sodium nitroprusside. Aortic diameter is measured for each pressure step to characterize the pressure-diameter relationship of the ascending aorta. Stiffness indices derived from the pressure-diameter relationship can be calculated from the data collected. Calculation of arterial compliance is described in this protocol. This technique can be used to investigate mechanisms underlying increased aortic stiffness associated with cardiovascular disease and aging. The technique produces a physiologically relevant measure of stiffness compared to ex vivo approaches because physiological influences on aortic stiffness are incorporated in the measurement. The primary limitation of this technique is the measurement error introduced from the movement of the aorta during the cardiac cycle. This motion can be compensated by adjusting the location of the probe with the aortic movement as well as making multiple measurements of the aortic pressure-diameter relationship and expanding the experimental group size.
Medicine, Issue 94, Aortic stiffness, ultrasound, in vivo, aortic compliance, elastic modulus, mouse model, cardiovascular disease
Play Button
Carotid Artery Infusions for Pharmacokinetic and Pharmacodynamic Analysis of Taxanes in Mice
Authors: Joely D. Jacobs, Elizabeth A. Hopper-Borge.
Institutions: Fox Chase Cancer Center.
When proposing the use of a drug, drug combination, or drug delivery into a novel system, one must assess the pharmacokinetics of the drug in the study model. As the use of mouse models are often a vital step in preclinical drug discovery and drug development1-8, it is necessary to design a system to introduce drugs into mice in a uniform, reproducible manner. Ideally, the system should permit the collection of blood samples at regular intervals over a set time course. The ability to measure drug concentrations by mass-spectrometry, has allowed investigators to follow the changes in plasma drug levels over time in individual mice1, 9, 10. In this study, paclitaxel was introduced into transgenic mice as a continuous arterial infusion over three hours, while blood samples were simultaneously taken by retro-orbital bleeds at set time points. Carotid artery infusions are a potential alternative to jugular vein infusions, when factors such as mammary tumors or other obstructions make jugular infusions impractical. Using this technique, paclitaxel concentrations in plasma and tissue achieved similar levels as compared to jugular infusion. In this tutorial, we will demonstrate how to successfully catheterize the carotid artery by preparing an optimized catheter for the individual mouse model, then show how to insert and secure the catheter into the mouse carotid artery, thread the end of the catheter out through the back of the mouse’s neck, and hook the mouse to a pump to deliver a controlled rate of drug influx. Multiple low volume retro-orbital bleeds allow for analysis of plasma drug concentrations over time.
Medicine, Issue 92, pharmacokinetics, paclitaxel, catheter, carotid artery, infusion, tissue distribution
Play Button
Vascular Gene Transfer from Metallic Stent Surfaces Using Adenoviral Vectors Tethered through Hydrolysable Cross-linkers
Authors: Ilia Fishbein, Scott P. Forbes, Richard F. Adamo, Michael Chorny, Robert J. Levy, Ivan S. Alferiev.
Institutions: The Children's Hospital of Philadelphia, University of Pennsylvania.
In-stent restenosis presents a major complication of stent-based revascularization procedures widely used to re-establish blood flow through critically narrowed segments of coronary and peripheral arteries. Endovascular stents capable of tunable release of genes with anti-restenotic activity may present an alternative strategy to presently used drug-eluting stents. In order to attain clinical translation, gene-eluting stents must exhibit predictable kinetics of stent-immobilized gene vector release and site-specific transduction of vasculature, while avoiding an excessive inflammatory response typically associated with the polymer coatings used for physical entrapment of the vector. This paper describes a detailed methodology for coatless tethering of adenoviral gene vectors to stents based on a reversible binding of the adenoviral particles to polyallylamine bisphosphonate (PABT)-modified stainless steel surface via hydrolysable cross-linkers (HC). A family of bifunctional (amine- and thiol-reactive) HC with an average t1/2 of the in-chain ester hydrolysis ranging between 5 and 50 days were used to link the vector with the stent. The vector immobilization procedure is typically carried out within 9 hr and consists of several steps: 1) incubation of the metal samples in an aqueous solution of PABT (4 hr); 2) deprotection of thiol groups installed in PABT with tris(2-carboxyethyl) phosphine (20 min); 3) expansion of thiol reactive capacity of the metal surface by reacting the samples with polyethyleneimine derivatized with pyridyldithio (PDT) groups (2 hr); 4) conversion of PDT groups to thiols with dithiothreitol (10 min); 5) modification of adenoviruses with HC (1 hr); 6) purification of modified adenoviral particles by size-exclusion column chromatography (15 min) and 7) immobilization of thiol-reactive adenoviral particles on the thiolated steel surface (1 hr). This technique has wide potential applicability beyond stents, by facilitating surface engineering of bioprosthetic devices to enhance their biocompatibility through the substrate-mediated gene delivery to the cells interfacing the implanted foreign material.
Medicine, Issue 90, gene therapy, bioconjugation, adenoviral vectors, stents, local gene delivery, smooth muscle cells, endothelial cells, bioluminescence imaging
Play Button
Blood Collection for Biochemical Analysis in Adult Zebrafish
Authors: Gabriela L. Pedroso, Thais O. Hammes, Thayssa D.C. Escobar, Laisa B. Fracasso, Luiz Felipe Forgiarini, Themis R. da Silveira.
Institutions: Centro de Pesquisa Experimental Laboratório de Hepatologia e Gastroenterologia Experimental, Universidade Federal do Rio Grande do Sul, UFRGS. Porto Alegre, RS, Brasil.
The zebrafish has been used as an animal model for studies of several human diseases. It can serve as a powerful preclinical platform for studies of molecular events and therapeutic strategies as well as for evaluating the physiological mechanisms of some pathologies1. There are relatively few publications related to adult zebrafish physiology of organs and systems2, which may lead researchers to infer that the basic techniques needed to allow the exploration of zebrafish systems are lacking3. Hematologic biochemical values of zebrafish were first reported in 2003 by Murtha and colleagues4 who employed a blood collection technique first described by Jagadeeswaran and colleagues in 1999. Briefly, blood was collected via a micropipette tip through a lateral incision, approximately 0.3 cm in length, in the region of the dorsal aorta5. Because of the minute dimensions involved, this is a high-precision technique requiring a highly skilled practitioner. The same technique was used by the same group in another publication in that same year6. In 2010, Eames and colleagues assessed whole blood glucose levels in zebrafish7. They gained access to the blood by performing decapitations with scissors and then inserting a heparinized microcapillary collection tube into the pectoral articulation. They mention difficulties with hemolysis that were solved with an appropriate storage temperature based on the work Kilpatrick et al.8. When attempting to use Jagadeeswaran's technique in our laboratory, we found that it was difficult to make the incision in precisely the right place as not to allow a significant amount of blood to be lost before collection could be started. Recently, Gupta et al.9 described how to dissect adult zebrafish organs, Kinkle et al.10 described how to perform intraperitoneal injections, and Pugach et al.11 described how to perform retro-orbital injections. However, more work is needed to more fully explore basic techniques for research in zebrafish. The small size of zebrafish presents challenges for researchers using it as an experimental model. Furthermore, given this smallness of scale, it is important that simple techniques are developed to enable researchers to explore the advantages of the zebrafish model.
Biochemistry, Issue 63, Developmental Biology, Zebrafish, Zebrafish blood, Hematologic, Biochemical analysis
Play Button
A Novel In vitro Model for Studying the Interactions Between Human Whole Blood and Endothelium
Authors: Sofia Nordling, Bo Nilsson, Peetra U. Magnusson.
Institutions: Uppsala University.
The majority of all known diseases are accompanied by disorders of the cardiovascular system. Studies into the complexity of the interacting pathways activated during cardiovascular pathologies are, however, limited by the lack of robust and physiologically relevant methods. In order to model pathological vascular events we have developed an in vitro assay for studying the interaction between endothelium and whole blood. The assay consists of primary human endothelial cells, which are placed in contact with human whole blood. The method utilizes native blood with no or very little anticoagulant, enabling study of delicate interactions between molecular and cellular components present in a blood vessel. We investigated functionality of the assay by comparing activation of coagulation by different blood volumes incubated with or without human umbilical vein endothelial cells (HUVEC). Whereas a larger blood volume contributed to an increase in the formation of thrombin antithrombin (TAT) complexes, presence of HUVEC resulted in reduced activation of coagulation. Furthermore, we applied image analysis of leukocyte attachment to HUVEC stimulated with tumor necrosis factor (TNFα) and found the presence of CD16+ cells to be significantly higher on TNFα stimulated cells as compared to unstimulated cells after blood contact. In conclusion, the assay may be applied to study vascular pathologies, where interactions between the endothelium and the blood compartment are perturbed.
Immunology, Issue 93, In vitro human model system, whole blood, endothelial cells, vascular activation, inflammation, blood coagulation
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.