JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Glucose-induced O? consumption activates hypoxia inducible factors 1 and 2 in rat insulin-secreting pancreatic beta-cells.
Glucose increases the expression of glycolytic enzymes and other hypoxia-response genes in pancreatic beta-cells. Here, we tested whether this effect results from the activation of Hypoxia-Inducible-factors (HIF) 1 and 2 in a hypoxia-dependent manner.
Authors: Joffrey Pelletier, Grégory Bellot, Jacques Pouysségur, Nathalie M. Mazure.
Published: 11-24-2013
Glycogen is the main energetic polymer of glucose in vertebrate animals and plays a crucial role in whole body metabolism as well as in cellular metabolism. Many methods to detect glycogen already exist but only a few are quantitative. We describe here a method using the Abcam Glycogen assay kit, which is based on specific degradation of glycogen to glucose by glucoamylase. Glucose is then specifically oxidized to a product that reacts with the OxiRed probe to produce fluorescence. Titration is accurate, sensitive and can be achieved on cell extracts or tissue sections. However, in contrast to other techniques, it does not give information about the distribution of glycogen in the cell. As an example of this technique, we describe here the titration of glycogen in two cell lines, Chinese hamster lung fibroblast CCL39 and human colon carcinoma LS174, incubated in normoxia (21% O2) versus hypoxia (1% O2). We hypothesized that hypoxia is a signal that prepares cells to synthesize and store glycogen in order to survive1.
18 Related JoVE Articles!
Play Button
Quantitative and Temporal Control of Oxygen Microenvironment at the Single Islet Level
Authors: Joe Fu-Jiou Lo, Yong Wang, Zidong Li, Zhengtuo Zhao, Di Hu, David T. Eddington, Jose Oberholzer.
Institutions: University of Michigan-Dearborn, University of Illinois at Chicago, University of Illinois at Chicago.
Simultaneous oxygenation and monitoring of glucose stimulus-secretion coupling factors in a single technique is critical for modeling pathophysiological states of islet hypoxia, especially in transplant environments. Standard hypoxic chamber techniques cannot modulate both stimulations at the same time nor provide real-time monitoring of glucose stimulus-secretion coupling factors. To address these difficulties, we applied a multilayered microfluidic technique to integrate both aqueous and gas phase modulations via a diffusion membrane. This creates a stimulation sandwich around the microscaled islets within the transparent polydimethylsiloxane (PDMS) device, enabling monitoring of the aforementioned coupling factors via fluorescence microscopy. Additionally, the gas input is controlled by a pair of microdispensers, providing quantitative, sub-minute modulations of oxygen between 0-21%. This intermittent hypoxia is applied to investigate a new phenomenon of islet preconditioning. Moreover, armed with multimodal microscopy, we were able to look at detailed calcium and KATP channel dynamics during these hypoxic events. We envision microfluidic hypoxia, especially this simultaneous dual phase technique, as a valuable tool in studying islets as well as many ex vivo tissues.
Bioengineering, Issue 81, Islets of Langerhans, Microfluidics, Microfluidic Analytical Techniques, Microfluidic Analytical Techniques, oxygen, islet, hypoxia, intermittent hypoxia
Play Button
Tracking Hypoxic Signaling within Encapsulated Cell Aggregates
Authors: Matthew L. Skiles, Suchit Sahai, James O. Blanchette.
Institutions: University of South Carolina, University of South Carolina.
In Diabetes mellitus type 1, autoimmune destruction of the pancreatic β-cells results in loss of insulin production and potentially lethal hyperglycemia. As an alternative treatment option to exogenous insulin injection, transplantation of functional pancreatic tissue has been explored1,2. This approach offers the promise of a more natural, long-term restoration of normoglycemia. Protection of the donor tissue from the host's immune system is required to prevent rejection and encapsulation is a method used to help achieve this aim. Biologically-derived materials, such as alginate3 and agarose4, have been the traditional choice for capsule construction but may induce inflammation or fibrotic overgrowth5 which can impede nutrient and oxygen transport. Alternatively, synthetic poly(ethylene glycol) (PEG)-based hydrogels are non-degrading, easily functionalized, available at high purity, have controllable pore size, and are extremely biocompatible,6,7,8. As an additional benefit, PEG hydrogels may be formed rapidly in a simple photo-crosslinking reaction that does not require application of non-physiological temperatures6,7. Such a procedure is described here. In the crosslinking reaction, UV degradation of the photoinitiator, 1-[4-(2-Hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propane-1-one (Irgacure 2959), produces free radicals which attack the vinyl carbon-carbon double bonds of dimethacrylated PEG (PEGDM) inducing crosslinking at the chain ends. Crosslinking can be achieved within 10 minutes. PEG hydrogels constructed in such a manner have been shown to favorably support cells7,9, and the low photoinitiator concentration and brief exposure to UV irradiation is not detrimental to viability and function of the encapsulated tissue10. While we methacrylate our PEG with the method described below, PEGDM can also be directly purchased from vendors such as Sigma. An inherent consequence of encapsulation is isolation of the cells from a vascular network. Supply of nutrients, notably oxygen, is therefore reduced and limited by diffusion. This reduced oxygen availability may especially impact β-cells whose insulin secretory function is highly dependent on oxygen11-13. Capsule composition and geometry will also impact diffusion rates and lengths for oxygen. Therefore, we also describe a technique for identifying hypoxic cells within our PEG capsules. Infection of the cells with a recombinant adenovirus allows for a fluorescent signal to be produced when intracellular hypoxia-inducible factor (HIF) pathways are activated14. As HIFs are the primary regulators of the transcriptional response to hypoxia, they represent an ideal target marker for detection of hypoxic signaling15. This approach allows for easy and rapid detection of hypoxic cells. Briefly, the adenovirus has the sequence for a red fluorescent protein (Ds Red DR from Clontech) under the control of a hypoxia-responsive element (HRE) trimer. Stabilization of HIF-1 by low oxygen conditions will drive transcription of the fluorescent protein (Figure 1). Additional details on the construction of this virus have been published previously15. The virus is stored in 10% glycerol at -80° C as many 150 μL aliquots in 1.5 mL centrifuge tubes at a concentration of 3.4 x 1010 pfu/mL. Previous studies in our lab have shown that MIN6 cells encapsulated as aggregates maintain their viability throughout 4 weeks of culture in 20% oxygen. MIN6 aggregates cultured at 2 or 1% oxygen showed both signs of necrotic cells (still about 85-90% viable) by staining with ethidium bromide as well as morphological changes relative to cells in 20% oxygen. The smooth spherical shape of the aggregates displayed at 20% was lost and aggregates appeared more like disorganized groups of cells. While the low oxygen stress does not cause a pronounced drop in viability, it is clearly impacting MIN6 aggregation and function as measured by glucose-stimulated insulin secretion15. Western blot analysis of encapsulated cells in 20% and 1% oxygen also showed a significant increase in HIF-1α for cells cultured in the low oxygen conditions which correlates with the expression of the DsRed DR protein.
Bioengineering, Issue 58, Cell encapsulation, PEG, cell aggregation, hypoxia, insulin secretion, fluorescent imaging
Play Button
Coculture Analysis of Extracellular Protein Interactions Affecting Insulin Secretion by Pancreatic Beta Cells
Authors: Charles Zhang, Arthur T. Suckow, Steven D. Chessler.
Institutions: University of California, San Diego, Janssen Research & Development, University of California, San Diego.
Interactions between cell-surface proteins help coordinate the function of neighboring cells. Pancreatic beta cells are clustered together within pancreatic islets and act in a coordinated fashion to maintain glucose homeostasis. It is becoming increasingly clear that interactions between transmembrane proteins on the surfaces of adjacent beta cells are important determinants of beta-cell function. Elucidation of the roles of particular transcellular interactions by knockdown, knockout or overexpression studies in cultured beta cells or in vivo necessitates direct perturbation of mRNA and protein expression, potentially affecting beta-cell health and/or function in ways that could confound analyses of the effects of specific interactions. These approaches also alter levels of the intracellular domains of the targeted proteins and may prevent effects due to interactions between proteins within the same cell membrane to be distinguished from the effects of transcellular interactions. Here a method for determining the effect of specific transcellular interactions on the insulin secreting capacity and responsiveness of beta cells is presented. This method is applicable to beta-cell lines, such as INS-1 cells, and to dissociated primary beta cells. It is based on coculture models developed by neurobiologists, who found that exposure of cultured neurons to specific neuronal proteins expressed on HEK293 (or COS) cell layers identified proteins important for driving synapse formation. Given the parallels between the secretory machinery of neuronal synapses and of beta cells, we reasoned that beta-cell functional maturation might be driven by similar transcellular interactions. We developed a system where beta cells are cultured on a layer of HEK293 cells expressing a protein of interest. In this model, the beta-cell cytoplasm is untouched while extracellular protein-protein interactions are manipulated. Although we focus here primarily on studies of glucose-stimulated insulin secretion, other processes can be analyzed; for example, changes in gene expression as determined by immunoblotting or qPCR.
Medicine, Issue 76, Cellular Biology, Molecular Biology, Biomedical Engineering, Immunology, Hepatology, Islets of Langerhans, islet, Insulin, Coculture, pancreatic beta cells, INS-1 cells, extracellular contact, transmembrane protein, transcellular interactions, insulin secretion, diabetes, cell culture
Play Button
A Method for Mouse Pancreatic Islet Isolation and Intracellular cAMP Determination
Authors: Joshua C. Neuman, Nathan A. Truchan, Jamie W. Joseph, Michelle E. Kimple.
Institutions: University of Wisconsin-Madison, University of Wisconsin-Madison, University of Waterloo.
Uncontrolled glycemia is a hallmark of diabetes mellitus and promotes morbidities like neuropathy, nephropathy, and retinopathy. With the increasing prevalence of diabetes, both immune-mediated type 1 and obesity-linked type 2, studies aimed at delineating diabetes pathophysiology and therapeutic mechanisms are of critical importance. The β-cells of the pancreatic islets of Langerhans are responsible for appropriately secreting insulin in response to elevated blood glucose concentrations. In addition to glucose and other nutrients, the β-cells are also stimulated by specific hormones, termed incretins, which are secreted from the gut in response to a meal and act on β-cell receptors that increase the production of intracellular cyclic adenosine monophosphate (cAMP). Decreased β-cell function, mass, and incretin responsiveness are well-understood to contribute to the pathophysiology of type 2 diabetes, and are also being increasingly linked with type 1 diabetes. The present mouse islet isolation and cAMP determination protocol can be a tool to help delineate mechanisms promoting disease progression and therapeutic interventions, particularly those that are mediated by the incretin receptors or related receptors that act through modulation of intracellular cAMP production. While only cAMP measurements will be described, the described islet isolation protocol creates a clean preparation that also allows for many other downstream applications, including glucose stimulated insulin secretion, [3H]-thymidine incorporation, protein abundance, and mRNA expression.
Physiology, Issue 88, islet, isolation, insulin secretion, β-cell, diabetes, cAMP production, mouse
Play Button
Isolation, Culture, and Imaging of Human Fetal Pancreatic Cell Clusters
Authors: Ana D. Lopez, Ayse G. Kayali, Alberto Hayek, Charles C. King.
Institutions: University of California, San Diego.
For almost 30 years, scientists have demonstrated that human fetal ICCs transplanted under the kidney capsule of nude mice matured into functioning endocrine cells, as evidenced by a significant increase in circulating human C-peptide following glucose stimulation1-9. However in vitro, genesis of insulin producing cells from human fetal ICCs is low10; results reminiscent of recent experiments performed with human embryonic stem cells (hESC), a renewable source of cells that hold great promise as a potential therapeutic treatment for type 1 diabetes. Like ICCs, transplantation of partially differentiated hESC generate glucose responsive, insulin producing cells, but in vitro genesis of insulin producing cells from hESC is much less robust11-17. A complete understanding of the factors that influence the growth and differentiation of endocrine precursor cells will likely require data generated from both ICCs and hESC. While a number of protocols exist to generate insulin producing cells from hESC in vitro11-22, far fewer exist for ICCs10,23,24. Part of that discrepancy likely comes from the difficulty of working with human fetal pancreas. Towards that end, we have continued to build upon existing methods to isolate fetal islets from human pancreases with gestational ages ranging from 12 to 23 weeks, grow the cells as a monolayer or in suspension, and image for cell proliferation, pancreatic markers and human hormones including glucagon and C-peptide. ICCs generated by the protocol described below result in C-peptide release after transplantation under the kidney capsule of nude mice that are similar to C-peptide levels obtained by transplantation of fresh tissue6. Although the examples presented here focus upon the pancreatic endoderm proliferation and β cell genesis, the protocol can be employed to study other aspects of pancreatic development, including exocrine, ductal, and other hormone producing cells.
Medicine, Issue 87, human fetal pancreas, islet cell cluster (ICC), transplantation, immunofluorescence, endocrine cell proliferation, differentiation, C-peptide
Play Button
Assessing Replication and Beta Cell Function in Adenovirally-transduced Isolated Rodent Islets
Authors: Patrick T. Fueger, Angelina M. Hernandez, Yi-Chun Chen, E. Scott Colvin.
Institutions: Indiana University School of Medicine, Indiana University School of Medicine.
Glucose homeostasis is primarily controlled by the endocrine hormones insulin and glucagon, secreted from the pancreatic beta and alpha cells, respectively. Functional beta cell mass is determined by the anatomical beta cell mass as well as the ability of the beta cells to respond to a nutrient load. A loss of functional beta cell mass is central to both major forms of diabetes 1-3. Whereas the declining functional beta cell mass results from an autoimmune attack in type 1 diabetes, in type 2 diabetes, this decrement develops from both an inability of beta cells to secrete insulin appropriately and the destruction of beta cells from a cadre of mechanisms. Thus, efforts to restore functional beta cell mass are paramount to the better treatment of and potential cures for diabetes. Efforts are underway to identify molecular pathways that can be exploited to stimulate the replication and enhance the function of beta cells. Ideally, therapeutic targets would improve both beta cell growth and function. Perhaps more important though is to identify whether a strategy that stimulates beta cell growth comes at the cost of impairing beta cell function (such as with some oncogenes) and vice versa. By systematically suppressing or overexpressing the expression of target genes in isolated rat islets, one can identify potential therapeutic targets for increasing functional beta cell mass 4-6. Adenoviral vectors can be employed to efficiently overexpress or knockdown proteins in isolated rat islets 4,7-15. Here, we present a method to manipulate gene expression utilizing adenoviral transduction and assess islet replication and beta cell function in isolated rat islets (Figure 1). This method has been used previously to identify novel targets that modulate beta cell replication or function 5,6,8,9,16,17.
Medicine, Issue 64, Physiology, beta cell, gene expression, islet, diabetes, insulin secretion, proliferation, adenovirus, rat
Play Button
A Model of Chronic Nutrient Infusion in the Rat
Authors: Grace Fergusson, Mélanie Ethier, Bader Zarrouki, Ghislaine Fontés, Vincent Poitout.
Institutions: CRCHUM, University of Montreal.
Chronic exposure to excessive levels of nutrients is postulated to affect the function of several organs and tissues and to contribute to the development of the many complications associated with obesity and the metabolic syndrome, including type 2 diabetes. To study the mechanisms by which excessive levels of glucose and fatty acids affect the pancreatic beta-cell and the secretion of insulin, we have established a chronic nutrient infusion model in the rat. The procedure consists of catheterizing the right jugular vein and left carotid artery under general anesthesia; allowing a 7-day recuperation period; connecting the catheters to the pumps using a swivel and counterweight system that enables the animal to move freely in the cage; and infusing glucose and/or Intralipid (a soybean oil emulsion which generates a mixture of approximately 80% unsaturated/20% saturated fatty acids when infused with heparin) for 72 hr. This model offers several advantages, including the possibility to finely modulate the target levels of circulating glucose and fatty acids; the option to co-infuse pharmacological compounds; and the relatively short time frame as opposed to dietary models. It can be used to examine the mechanisms of nutrient-induced dysfunction in a variety of organs and to test the effectiveness of drugs in this context.
Biomedical Engineering, Issue 78, Medicine, Anatomy, Physiology, Basic Protocols, Surgery, Metabolic Diseases, Infusions, Intravenous, Infusion Pumps, Glucolipotoxicity, Rat, Infusion, Glucose, Intralipid, Catheter, canulation, canula, diabetes, animal model
Play Button
A Method for Murine Islet Isolation and Subcapsular Kidney Transplantation
Authors: Erik J. Zmuda, Catherine A. Powell, Tsonwin Hai.
Institutions: The Ohio State University, The Ohio State University, The Ohio State University.
Since the early pioneering work of Ballinger and Reckard demonstrating that transplantation of islets of Langerhans into diabetic rodents could normalize their blood glucose levels, islet transplantation has been proposed to be a potential treatment for type 1 diabetes 1,2. More recently, advances in human islet transplantation have further strengthened this view 1,3. However, two major limitations prevent islet transplantation from being a widespread clinical reality: (a) the requirement for large numbers of islets per patient, which severely reduces the number of potential recipients, and (b) the need for heavy immunosuppression, which significantly affects the pediatric population of patients due to their vulnerability to long-term immunosuppression. Strategies that can overcome these limitations have the potential to enhance the therapeutic utility of islet transplantation. Islet transplantation under the mouse kidney capsule is a widely accepted model to investigate various strategies to improve islet transplantation. This experiment requires the isolation of high quality islets and implantation of islets to the diabetic recipients. Both procedures require surgical steps that can be better demonstrated by video than by text. Here, we document the detailed steps for these procedures by both video and written protocol. We also briefly discuss different transplantation models: syngeneic, allogeneic, syngeneic autoimmune, and allogeneic autoimmune.
Medicine, Issue 50, islet isolation, islet transplantation, diabetes, murine, pancreas
Play Button
Pressure Controlled Ventilation to Induce Acute Lung Injury in Mice
Authors: Michael Koeppen, Tobias Eckle, Holger K. Eltzschig.
Institutions: University of Colorado.
Murine models are extensively used to investigate acute injuries of different organs systems (1-34). Acute lung injury (ALI), which occurs with prolonged mechanical ventilation, contributes to morbidity and mortality of critical illness, and studies on novel genetic or pharmacological targets are areas of intense investigation (1-3, 5, 8, 26, 30, 33-36). ALI is defined by the acute onset of the disease, which leads to non-cardiac pulmonary edema and subsequent impairment of pulmonary gas exchange (36). We have developed a murine model of ALI by using a pressure-controlled ventilation to induce ventilator-induced lung injury (2). For this purpose, C57BL/6 mice are anesthetized and a tracheotomy is performed followed by induction of ALI via mechanical ventilation. Mice are ventilated in a pressure-controlled setting with an inspiratory peak pressure of 45 mbar over 1 - 3 hours. As outcome parameters, pulmonary edema (wet-to-dry ratio), bronchoalveolar fluid albumin content, bronchoalveolar fluid and pulmonary tissue myeloperoxidase content and pulmonary gas exchange are assessed (2). Using this technique we could show that it sufficiently induces acute lung inflammation and can distinguish between different treatment groups or genotypes (1-3, 5). Therefore this technique may be helpful for researchers who pursue molecular mechanisms involved in ALI using a genetic approach in mice with gene-targeted deletion.
Medicine, Issue 51, Ventilator-induced lung injury, acute lung injury, targeted gene deletion, murine model, lung
Play Button
Mouse Models of Periventricular Leukomalacia
Authors: Yan Shen, Jennifer M. Plane, Wenbin Deng.
Institutions: University of California, Davis.
We describe a protocol for establishing mouse models of periventricular leukomalacia (PVL). PVL is the predominant form of brain injury in premature infants and the most common antecedent of cerebral palsy. PVL is characterized by periventricular white matter damage with prominent oligodendroglial injury. Hypoxia/ischemia with or without systemic infection/inflammation are the primary causes of PVL. We use P6 mice to create models of neonatal brain injury by the induction of hypoxia/ischemia with or without systemic infection/inflammation with unilateral carotid ligation followed by exposure to hypoxia with or without injection of the endotoxin lipopolysaccharide (LPS). Immunohistochemistry of myelin basic protein (MBP) or O1 and electron microscopic examination show prominent myelin loss in cerebral white matter with additional damage to the hippocampus and thalamus. Establishment of mouse models of PVL will greatly facilitate the study of disease pathogenesis using available transgenic mouse strains, conduction of drug trials in a relatively high throughput manner to identify candidate therapeutic agents, and testing of stem cell transplantation using immunodeficiency mouse strains.
JoVE Neuroscience, Issue 39, brain, mouse, white matter injury, oligodendrocyte, periventricular leukomalacia
Play Button
The Analysis of Neurovascular Remodeling in Entorhino-hippocampal Organotypic Slice Cultures
Authors: Sophorn Chip, Xinzhou Zhu, Josef P. Kapfhammer.
Institutions: University of Basel, University of Basel.
Ischemic brain injury is among the most common and devastating conditions compromising proper brain function and often leads to persisting functional deficits in the affected patients. Despite intensive research efforts, there is still no effective treatment option available that reduces neuronal injury and protects neurons in the ischemic areas from delayed secondary death. Research in this area typically involves the use of elaborate and problematic animal models. Entorhino-hippocampal organotypic slice cultures challenged with oxygen and glucose deprivation (OGD) are established in vitro models which mimic cerebral ischemia. The novel aspect of this study is that changes of the brain blood vessels are studied in addition to neuronal changes and the reaction of both the neuronal compartment and the vascular compartment can be compared and correlated. The methods presented in this protocol substantially broaden the potential applications of the organotypic slice culture approach. The induction of OGD or hypoxia alone can be applied by rather simple means in organotypic slice cultures and leads to reliable and reproducible damage in the neural tissue. This is in stark contrast to the complicated and problematic animal experiments inducing stroke and ischemia in vivo. By broadening the analysis to include the study of the reaction of the vasculature could provide new ways on how to preserve and restore brain functions. The slice culture approach presented here might develop into an attractive and important tool for the study of ischemic brain injury and might be useful for testing potential therapeutic measures aimed at neuroprotection.
Neurobiology, Issue 92, blood-brain-barrier, neurovascular remodeling, hippocampus, pyramidal cells, excitotoxic, ischemia
Play Button
Videomorphometric Analysis of Hypoxic Pulmonary Vasoconstriction of Intra-pulmonary Arteries Using Murine Precision Cut Lung Slices
Authors: Renate Paddenberg, Petra Mermer, Anna Goldenberg, Wolfgang Kummer.
Institutions: Justus-Liebig-University.
Acute alveolar hypoxia causes pulmonary vasoconstriction (HPV) - also known as von Euler-Liljestrand mechanism - which serves to match lung perfusion to ventilation. Up to now, the underlying mechanisms are not fully understood. The major vascular segment contributing to HPV is the intra-acinar artery. This vessel section is responsible for the blood supply of an individual acinus, which is defined as the portion of lung distal to a terminal bronchiole. Intra-acinar arteries are mostly located in that part of the lung that cannot be selectively reached by a number of commonly used techniques such as measurement of the pulmonary artery pressure in isolated perfused lungs or force recordings from dissected proximal pulmonary artery segments1,2. The analysis of subpleural vessels by real-time confocal laser scanning luminescence microscopy is limited to vessels with up to 50 µm in diameter3. We provide a technique to study HPV of murine intra-pulmonary arteries in the range of 20-100 µm inner diameters. It is based on the videomorphometric analysis of cross-sectioned arteries in precision cut lung slices (PCLS). This method allows the quantitative measurement of vasoreactivity of small intra-acinar arteries with inner diameter between 20-40 µm which are located at gussets of alveolar septa next to alveolar ducts and of larger pre-acinar arteries with inner diameters between 40-100 µm which run adjacent to bronchi and bronchioles. In contrast to real-time imaging of subpleural vessels in anesthetized and ventilated mice, videomorphometric analysis of PCLS occurs under conditions free of shear stress. In our experimental model both arterial segments exhibit a monophasic HPV when exposed to medium gassed with 1% O2 and the response fades after 30-40 min at hypoxia.
Medicine, Issue 83, Hypoxic pulmonary vasoconstriction, murine lungs, precision cut lung slices, intra-pulmonary, pre- and intra-acinar arteries, videomorphometry
Play Button
siRNA Screening to Identify Ubiquitin and Ubiquitin-like System Regulators of Biological Pathways in Cultured Mammalian Cells
Authors: John S. Bett, Adel F. M. Ibrahim, Amit K. Garg, Sonia Rocha, Ronald T. Hay.
Institutions: University of Dundee, University of Dundee.
Post-translational modification of proteins with ubiquitin and ubiquitin-like molecules (UBLs) is emerging as a dynamic cellular signaling network that regulates diverse biological pathways including the hypoxia response, proteostasis, the DNA damage response and transcription.  To better understand how UBLs regulate pathways relevant to human disease, we have compiled a human siRNA “ubiquitome” library consisting of 1,186 siRNA duplex pools targeting all known and predicted components of UBL system pathways. This library can be screened against a range of cell lines expressing reporters of diverse biological pathways to determine which UBL components act as positive or negative regulators of the pathway in question.  Here, we describe a protocol utilizing this library to identify ubiquitome-regulators of the HIF1A-mediated cellular response to hypoxia using a transcription-based luciferase reporter.  An initial assay development stage is performed to establish suitable screening parameters of the cell line before performing the screen in three stages: primary, secondary and tertiary/deconvolution screening.  The use of targeted over whole genome siRNA libraries is becoming increasingly popular as it offers the advantage of reporting only on members of the pathway with which the investigators are most interested.  Despite inherent limitations of siRNA screening, in particular false-positives caused by siRNA off-target effects, the identification of genuine novel regulators of the pathways in question outweigh these shortcomings, which can be overcome by performing a series of carefully undertaken control experiments.
Biochemistry, Issue 87, siRNA screening, ubiquitin, UBL, ubiquitome, hypoxia, HIF1A, High-throughput, mammalian cells, luciferase reporter
Play Button
Induction and Testing of Hypoxia in Cell Culture
Authors: Danli Wu, Patricia Yotnda.
Institutions: Baylor College of Medicine.
Hypoxia is defined as the reduction or lack of oxygen in organs, tissues, or cells. This decrease of oxygen tension can be due to a reduced supply in oxygen (causes include insufficient blood vessel network, defective blood vessel, and anemia) or to an increased consumption of oxygen relative to the supply (caused by a sudden higher cell proliferation rate). Hypoxia can be physiologic or pathologic such as in solid cancers 1-3, rheumatoid arthritis, atherosclerosis etc… Each tissues and cells have a different ability to adapt to this new condition. During hypoxia, hypoxia inducible factor alpha (HIF) is stabilized and regulates various genes such as those involved in angiogenesis or transport of oxygen 4. The stabilization of this protein is a hallmark of hypoxia, therefore detecting HIF is routinely used to screen for hypoxia 5-7. In this article, we propose two simple methods to induce hypoxia in mammalian cell cultures and simple tests to evaluate the hypoxic status of these cells.
Cell Biology, Issue 54, mammalian cell, hypoxia, anoxia, hypoxia inducible factor (HIF), reoxygenation, normoxia
Play Button
Analysis of Global RNA Synthesis at the Single Cell Level following Hypoxia
Authors: John Biddlestone, Jimena Druker, Alena Shmakova, Gus Ferguson, Jason R. Swedlow, Sonia Rocha.
Institutions: University of Dundee, UK.
Hypoxia or lowering of the oxygen availability is involved in many physiological and pathological processes. At the molecular level, cells initiate a particular transcriptional program in order to mount an appropriate and coordinated cellular response. The cell possesses several oxygen sensor enzymes that require molecular oxygen as cofactor for their activity. These range from prolyl-hydroxylases to histone demethylases. The majority of studies analyzing cellular responses to hypoxia are based on cellular populations and average studies, and as such single cell analysis of hypoxic cells are seldom performed. Here we describe a method of analysis of global RNA synthesis at the single cell level in hypoxia by using Click-iT RNA imaging kits in an oxygen controlled workstation, followed by microscopy analysis and quantification.  Using cancer cells exposed to hypoxia for different lengths of time, RNA is labeled and measured in each cell. This analysis allows the visualization of temporal and cell-to-cell changes in global RNA synthesis following hypoxic stress.
Cellular Biology, Issue 87, Cancer, RNA synthesis, Hypoxia, Microscopy, Click-iT, Open Microscopy Environment, OMERO
Play Button
Creating Defined Gaseous Environments to Study the Effects of Hypoxia on C. elegans
Authors: Emily M. Fawcett, Joseph W. Horsman, Dana L. Miller.
Institutions: University of Washington, University of Washington.
Oxygen is essential for all metazoans to survive, with one known exception1. Decreased O2 availability (hypoxia) can arise during states of disease, normal development or changes in environmental conditions2-5. Understanding the cellular signaling pathways that are involved in the response to hypoxia could provide new insight into treatment strategies for diverse human pathologies, from stroke to cancer. This goal has been impeded, at least in part, by technical difficulties associated with controlled hypoxic exposure in genetically amenable model organisms. The nematode Caenorhabditis elegans is ideally suited as a model organism for the study of hypoxic response, as it is easy to culture and genetically manipulate. Moreover, it is possible to study cellular responses to specific hypoxic O2 concentrations without confounding effects since C. elegans obtain O2 (and other gasses) by diffusion, as opposed to a facilitated respiratory system6. Factors known to be involved in the response to hypoxia are conserved in C. elegans. The actual response to hypoxia depends on the specific concentration of O2 that is available. In C. elegans, exposure to moderate hypoxia elicits a transcriptional response mediated largely by hif-1, the highly-conserved hypoxia-inducible transcription factor6-9. C .elegans embryos require hif-1 to survive in 5,000-20,000 ppm O27,10. Hypoxia is a general term for "less than normal O2". Normoxia (normal O2) can also be difficult to define. We generally consider room air, which is 210,000 ppm O2 to be normoxia. However, it has been shown that C. elegans has a behavioral preference for O2 concentrations from 5-12% (50,000-120,000 ppm O2)11. In larvae and adults, hif-1 acts to prevent hypoxia-induced diapause in 5,000 ppm O212. However, hif-1 does not play a role in the response to lower concentrations of O2 (anoxia, operational definition <10 ppm O2)13. In anoxia, C. elegans enters into a reversible state of suspended animation in which all microscopically observable activity ceases10. The fact that different physiological responses occur in different conditions highlights the importance of having experimental control over the hypoxic concentration of O2. Here, we present a method for the construction and implementation of environmental chambers that produce reliable and reproducible hypoxic conditions with defined concentrations of O2. The continual flow method ensures rapid equilibration of the chamber and increases the stability of the system. Additionally, the transparency and accessibility of the chambers allow for direct visualization of animals being exposed to hypoxia. We further demonstrate an effective method of harvesting C. elegans samples rapidly after exposure to hypoxia, which is necessary to observe many of the rapidly-reversed changes that occur in hypoxia10,14. This method provides a basic foundation that can be easily modified for individual laboratory needs, including different model systems and a variety of gasses.
Biochemistry, Issue 65, Molecular Biology, Cellular Biology, Genetics, Developmental Biology, C. elegans, hypoxia, hypoxia inducible factor-1 (hif-1), anoxia, oxygen
Play Button
In vivo Bioluminescence Imaging of Tumor Hypoxia Dynamics of Breast Cancer Brain Metastasis in a Mouse Model
Authors: Debabrata Saha, Henry Dunn, Heling Zhou, Hiroshi Harada, Masahiro Hiraoka, Ralph P. Mason, Dawen Zhao.
Institutions: University of Texas Southwestern Medical Center , University of Texas Southwestern Medical Center , Kyoto University Graduate School of Medicine.
It is well recognized that tumor hypoxia plays an important role in promoting malignant progression and affecting therapeutic response negatively. There is little knowledge about in situ, in vivo, tumor hypoxia during intracranial development of malignant brain tumors because of lack of efficient means to monitor it in these deep-seated orthotopic tumors. Bioluminescence imaging (BLI), based on the detection of light emitted by living cells expressing a luciferase gene, has been rapidly adopted for cancer research, in particular, to evaluate tumor growth or tumor size changes in response to treatment in preclinical animal studies. Moreover, by expressing a reporter gene under the control of a promoter sequence, the specific gene expression can be monitored non-invasively by BLI. Under hypoxic stress, signaling responses are mediated mainly via the hypoxia inducible factor-1α (HIF-1α) to drive transcription of various genes. Therefore, we have used a HIF-1α reporter construct, 5HRE-ODD-luc, stably transfected into human breast cancer MDA-MB231 cells (MDA-MB231/5HRE-ODD-luc). In vitro HIF-1α bioluminescence assay is performed by incubating the transfected cells in a hypoxic chamber (0.1% O2) for 24 hr before BLI, while the cells in normoxia (21% O2) serve as a control. Significantly higher photon flux observed for the cells under hypoxia suggests an increased HIF-1α binding to its promoter (HRE elements), as compared to those in normoxia. Cells are injected directly into the mouse brain to establish a breast cancer brain metastasis model. In vivo bioluminescence imaging of tumor hypoxia dynamics is initiated 2 wks after implantation and repeated once a week. BLI reveals increasing light signals from the brain as the tumor progresses, indicating increased intracranial tumor hypoxia. Histological and immunohistochemical studies are used to confirm the in vivo imaging results. Here, we will introduce approaches of in vitro HIF-1α bioluminescence assay, surgical establishment of a breast cancer brain metastasis in a nude mouse and application of in vivo bioluminescence imaging to monitor intracranial tumor hypoxia.
Medicine, Issue 56, bioluminescence imaging (BLI), tumor hypoxia dynamics, hypoxia inducible factor-1α (HIF-1α), breast cancer brain metastasis
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.