JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Amyloid-mediated sequestration of essential proteins contributes to mutant huntingtin toxicity in yeast.
PLoS ONE
Polyglutamine expansion is responsible for several neurodegenerative disorders, among which Huntington disease is the most well-known. Studies in the yeast model demonstrated that both aggregation and toxicity of a huntingtin (htt) protein with an expanded polyglutamine region strictly depend on the presence of the prion form of Rnq1 protein ([PIN+]), which has a glutamine/asparagine-rich domain.
Authors: Martin L. Duennwald.
Published: 03-05-2012
ABSTRACT
Protein misfolding is associated with many human diseases, particularly neurodegenerative diseases, such as Alzheimer’s disease, Parkinson's disease, and Huntington's disease 1. Huntington's disease (HD) is caused by the abnormal expansion of a polyglutamine (polyQ) region within the protein huntingtin. The polyQ-expanded huntingtin protein attains an aberrant conformation (i.e. it misfolds) and causes cellular toxicity 2. At least eight further neurodegenerative diseases are caused by polyQ-expansions, including the Spinocerebellar Ataxias and Kennedy’s disease 3. The model organism yeast has facilitated significant insights into the cellular and molecular basis of polyQ-toxicity, including the impact of intra- and inter-molecular factors of polyQ-toxicity, and the identification of cellular pathways that are impaired in cells expressing polyQ-expansion proteins 3-8. Importantly, many aspects of polyQ-toxicity that were found in yeast were reproduced in other experimental systems and to some extent in samples from HD patients, thus demonstrating the significance of the yeast model for the discovery of basic mechanisms underpinning polyQ-toxicity. A direct and relatively simple way to determine polyQ-toxicity in yeast is to measure growth defects of yeast cells expressing polyQ-expansion proteins. This manuscript describes three complementary experimental approaches to determine polyQ-toxicity in yeast by measuring the growth of yeast cells expressing polyQ-expansion proteins. The first two experimental approaches monitor yeast growth on plates, the third approach monitors the growth of liquid yeast cultures using the BioscreenC instrument. Furthermore, this manuscript describes experimental difficulties that can occur when handling yeast polyQ models and outlines strategies that will help to avoid or minimize these difficulties. The protocols described here can be used to identify and to characterize genetic pathways and small molecules that modulate polyQ-toxicity. Moreover, the described assays may serve as templates for accurate analyses of the toxicity caused by other disease-associated misfolded proteins in yeast models.
21 Related JoVE Articles!
Play Button
Isolating Potentiated Hsp104 Variants Using Yeast Proteinopathy Models
Authors: Meredith E. Jackrel, Amber Tariq, Keolamau Yee, Rachel Weitzman, James Shorter.
Institutions: Perelman School of Medicine at the University of Pennsylvania.
Many protein-misfolding disorders can be modeled in the budding yeast Saccharomyces cerevisiae. Proteins such as TDP-43 and FUS, implicated in amyotrophic lateral sclerosis, and α-synuclein, implicated in Parkinson’s disease, are toxic and form cytoplasmic aggregates in yeast. These features recapitulate protein pathologies observed in patients with these disorders. Thus, yeast are an ideal platform for isolating toxicity suppressors from libraries of protein variants. We are interested in applying protein disaggregases to eliminate misfolded toxic protein conformers. Specifically, we are engineering Hsp104, a hexameric AAA+ protein from yeast that is uniquely capable of solubilizing both disordered aggregates and amyloid and returning the proteins to their native conformations. While Hsp104 is highly conserved in eukaryotes and eubacteria, it has no known metazoan homologue. Hsp104 has only limited ability to eliminate disordered aggregates and amyloid fibers implicated in human disease. Thus, we aim to engineer Hsp104 variants to reverse the protein misfolding implicated in neurodegenerative disorders. We have developed methods to screen large libraries of Hsp104 variants for suppression of proteotoxicity in yeast. As yeast are prone to spontaneous nonspecific suppression of toxicity, a two-step screening process has been developed to eliminate false positives. Using these methods, we have identified a series of potentiated Hsp104 variants that potently suppress the toxicity and aggregation of TDP-43, FUS, and α-synuclein. Here, we describe this optimized protocol, which could be adapted to screen libraries constructed using any protein backbone for suppression of toxicity of any protein that is toxic in yeast.
Microbiology, Issue 93, Protein-misfolding disorders, yeast proteinopathy models, Hsp104, proteotoxicity, amyloid, disaggregation
52089
Play Button
Single Drosophila Ommatidium Dissection and Imaging
Authors: Vera Volpi, Daniel Mackay, Manolis Fanto.
Institutions: King's College London.
The fruit fly Drosophila melanogaster has made invaluable contributions to neuroscience research and has been used widely as a model for neurodegenerative diseases because of its powerful genetics1. The fly eye in particular has been the organ of choice for neurodegeneration research, being the most accessible and life-dispensable part of the Drosophila nervous system. However the major caveat of intact eyes is the difficulty, because of the intense autofluorescence of the pigment, in imaging intracellular events, such as autophagy dynamics2, which are paramount to understanding of neurodegeneration. We have recently used the dissection and culture of single ommatidia3 that has been essential for our understanding of autophagic dysfunctions in a fly model of Dentatorubro-Pallidoluysian Atrophy (DRPLA)3, 4. We now report a comprehensive description of this technique (Fig. 1), adapted from electrophysiological studies5, which is likely to expand dramatically the possibility of fly models for neurodegeneration. This method can be adapted to image live subcellular events and to monitor effective drug administration onto photoreceptor cells (Fig. 2). If used in combination with mosaic techniques6-8, the responses of genetically different cells can be assayed in parallel (Fig. 2).
Neuroscience, Issue 54, Drosophila, cell biology, neuroscience, autophagy
2882
Play Button
High-throughput Yeast Plasmid Overexpression Screen
Authors: Michael S. Fleming, Aaron D. Gitler.
Institutions: University of Pennsylvania School of Medicine , University of Pennsylvania School of Medicine .
The budding yeast, Saccharomyces cerevisiae, is a powerful model system for defining fundamental mechanisms of many important cellular processes, including those with direct relevance to human disease. Because of its short generation time and well-characterized genome, a major experimental advantage of the yeast model system is the ability to perform genetic screens to identify genes and pathways that are involved in a given process. Over the last thirty years such genetic screens have been used to elucidate the cell cycle, secretory pathway, and many more highly conserved aspects of eukaryotic cell biology 1-5. In the last few years, several genomewide libraries of yeast strains and plasmids have been generated 6-10. These collections now allow for the systematic interrogation of gene function using gain- and loss-of-function approaches 11-16. Here we provide a detailed protocol for the use of a high-throughput yeast transformation protocol with a liquid handling robot to perform a plasmid overexpression screen, using an arrayed library of 5,500 yeast plasmids. We have been using these screens to identify genetic modifiers of toxicity associated with the accumulation of aggregation-prone human neurodegenerative disease proteins. The methods presented here are readily adaptable to the study of other cellular phenotypes of interest.
Cell Biology, Issue 53, Yeast, plasmid, transformation, PEG/LioAc, high-throughput screen
2836
Play Button
ReAsH/FlAsH Labeling and Image Analysis of Tetracysteine Sensor Proteins in Cells
Authors: Sevgi Irtegun, Yasmin M. Ramdzan, Terrence D. Mulhern, Danny M. Hatters.
Institutions: Bio21 Molecular Science and Biotechnology Institute.
Fluorescent proteins and dyes are essential tools for the study of protein trafficking, localization and function in cells. While fluorescent proteins such as green fluorescence protein (GFP) have been extensively used as fusion partners to proteins to track the properties of a protein of interest1, recent developments with smaller tags enable new functionalities of proteins to be examined in cells such as conformational change and protein-association 2, 3. One small tag system involves a tetracysteine motif (CCXXCC) genetically inserted into a target protein, which binds to biarsenical dyes, ReAsH (red fluorescent) and FlAsH (green fluorescent), with high specificity even in live cells 2. The TC/biarsenical dye system offers far less steric constraints to the host protein than fluorescent proteins which has enabled several new approaches to measure conformational change and protein-protein interactions 4-7. We recently developed a novel application of TC tags as sensors of oligomerization in cells expressing mutant huntingtin, which when mutated aggregates in neurons in Huntington disease 7. Huntingtin was tagged with two fluorescent dyes, one a fluorescent protein to track protein location, and the second a TC tag which only binds biarsenical dyes in monomers. Hence, changes in colocalization between protein and biarsenical dye reactivity enabled submicroscopic oligomer content to be spatially mapped within cells. Here, we describe how to label TC-tagged proteins fused to a fluorescent protein (Cherry, GFP or CFP) with FlAsH or ReAsH in live mammalian cells and how to quantify the two color fluorescence (Cherry/FlAsH, CFP/FlAsH or GFP/ReAsH combinations).
Cell Biology, Issue 54, tetracysteine, TC, ReAsH, FlAsH, biarsenical dyes, fluorescence, imaging, confocal microscopy, ImageJ, GFP
2857
Play Button
Mapping Bacterial Functional Networks and Pathways in Escherichia Coli using Synthetic Genetic Arrays
Authors: Alla Gagarinova, Mohan Babu, Jack Greenblatt, Andrew Emili.
Institutions: University of Toronto, University of Toronto, University of Regina.
Phenotypes are determined by a complex series of physical (e.g. protein-protein) and functional (e.g. gene-gene or genetic) interactions (GI)1. While physical interactions can indicate which bacterial proteins are associated as complexes, they do not necessarily reveal pathway-level functional relationships1. GI screens, in which the growth of double mutants bearing two deleted or inactivated genes is measured and compared to the corresponding single mutants, can illuminate epistatic dependencies between loci and hence provide a means to query and discover novel functional relationships2. Large-scale GI maps have been reported for eukaryotic organisms like yeast3-7, but GI information remains sparse for prokaryotes8, which hinders the functional annotation of bacterial genomes. To this end, we and others have developed high-throughput quantitative bacterial GI screening methods9, 10. Here, we present the key steps required to perform quantitative E. coli Synthetic Genetic Array (eSGA) screening procedure on a genome-scale9, using natural bacterial conjugation and homologous recombination to systemically generate and measure the fitness of large numbers of double mutants in a colony array format. Briefly, a robot is used to transfer, through conjugation, chloramphenicol (Cm) - marked mutant alleles from engineered Hfr (High frequency of recombination) 'donor strains' into an ordered array of kanamycin (Kan) - marked F- recipient strains. Typically, we use loss-of-function single mutants bearing non-essential gene deletions (e.g. the 'Keio' collection11) and essential gene hypomorphic mutations (i.e. alleles conferring reduced protein expression, stability, or activity9, 12, 13) to query the functional associations of non-essential and essential genes, respectively. After conjugation and ensuing genetic exchange mediated by homologous recombination, the resulting double mutants are selected on solid medium containing both antibiotics. After outgrowth, the plates are digitally imaged and colony sizes are quantitatively scored using an in-house automated image processing system14. GIs are revealed when the growth rate of a double mutant is either significantly better or worse than expected9. Aggravating (or negative) GIs often result between loss-of-function mutations in pairs of genes from compensatory pathways that impinge on the same essential process2. Here, the loss of a single gene is buffered, such that either single mutant is viable. However, the loss of both pathways is deleterious and results in synthetic lethality or sickness (i.e. slow growth). Conversely, alleviating (or positive) interactions can occur between genes in the same pathway or protein complex2 as the deletion of either gene alone is often sufficient to perturb the normal function of the pathway or complex such that additional perturbations do not reduce activity, and hence growth, further. Overall, systematically identifying and analyzing GI networks can provide unbiased, global maps of the functional relationships between large numbers of genes, from which pathway-level information missed by other approaches can be inferred9.
Genetics, Issue 69, Molecular Biology, Medicine, Biochemistry, Microbiology, Aggravating, alleviating, conjugation, double mutant, Escherichia coli, genetic interaction, Gram-negative bacteria, homologous recombination, network, synthetic lethality or sickness, suppression
4056
Play Button
Genetic Manipulation in Δku80 Strains for Functional Genomic Analysis of Toxoplasma gondii
Authors: Leah M. Rommereim, Miryam A. Hortua Triana, Alejandra Falla, Kiah L. Sanders, Rebekah B. Guevara, David J. Bzik, Barbara A. Fox.
Institutions: The Geisel School of Medicine at Dartmouth.
Targeted genetic manipulation using homologous recombination is the method of choice for functional genomic analysis to obtain a detailed view of gene function and phenotype(s). The development of mutant strains with targeted gene deletions, targeted mutations, complemented gene function, and/or tagged genes provides powerful strategies to address gene function, particularly if these genetic manipulations can be efficiently targeted to the gene locus of interest using integration mediated by double cross over homologous recombination. Due to very high rates of nonhomologous recombination, functional genomic analysis of Toxoplasma gondii has been previously limited by the absence of efficient methods for targeting gene deletions and gene replacements to specific genetic loci. Recently, we abolished the major pathway of nonhomologous recombination in type I and type II strains of T. gondii by deleting the gene encoding the KU80 protein1,2. The Δku80 strains behave normally during tachyzoite (acute) and bradyzoite (chronic) stages in vitro and in vivo and exhibit essentially a 100% frequency of homologous recombination. The Δku80 strains make functional genomic studies feasible on the single gene as well as on the genome scale1-4. Here, we report methods for using type I and type II Δku80Δhxgprt strains to advance gene targeting approaches in T. gondii. We outline efficient methods for generating gene deletions, gene replacements, and tagged genes by targeted insertion or deletion of the hypoxanthine-xanthine-guanine phosphoribosyltransferase (HXGPRT) selectable marker. The described gene targeting protocol can be used in a variety of ways in Δku80 strains to advance functional analysis of the parasite genome and to develop single strains that carry multiple targeted genetic manipulations. The application of this genetic method and subsequent phenotypic assays will reveal fundamental and unique aspects of the biology of T. gondii and related significant human pathogens that cause malaria (Plasmodium sp.) and cryptosporidiosis (Cryptosporidium).
Infectious Diseases, Issue 77, Genetics, Microbiology, Infection, Medicine, Immunology, Molecular Biology, Cellular Biology, Biomedical Engineering, Bioengineering, Genomics, Parasitology, Pathology, Apicomplexa, Coccidia, Toxoplasma, Genetic Techniques, Gene Targeting, Eukaryota, Toxoplasma gondii, genetic manipulation, gene targeting, gene deletion, gene replacement, gene tagging, homologous recombination, DNA, sequencing
50598
Play Button
In Vivo Modeling of the Morbid Human Genome using Danio rerio
Authors: Adrienne R. Niederriter, Erica E. Davis, Christelle Golzio, Edwin C. Oh, I-Chun Tsai, Nicholas Katsanis.
Institutions: Duke University Medical Center, Duke University, Duke University Medical Center.
Here, we present methods for the development of assays to query potentially clinically significant nonsynonymous changes using in vivo complementation in zebrafish. Zebrafish (Danio rerio) are a useful animal system due to their experimental tractability; embryos are transparent to enable facile viewing, undergo rapid development ex vivo, and can be genetically manipulated.1 These aspects have allowed for significant advances in the analysis of embryogenesis, molecular processes, and morphogenetic signaling. Taken together, the advantages of this vertebrate model make zebrafish highly amenable to modeling the developmental defects in pediatric disease, and in some cases, adult-onset disorders. Because the zebrafish genome is highly conserved with that of humans (~70% orthologous), it is possible to recapitulate human disease states in zebrafish. This is accomplished either through the injection of mutant human mRNA to induce dominant negative or gain of function alleles, or utilization of morpholino (MO) antisense oligonucleotides to suppress genes to mimic loss of function variants. Through complementation of MO-induced phenotypes with capped human mRNA, our approach enables the interpretation of the deleterious effect of mutations on human protein sequence based on the ability of mutant mRNA to rescue a measurable, physiologically relevant phenotype. Modeling of the human disease alleles occurs through microinjection of zebrafish embryos with MO and/or human mRNA at the 1-4 cell stage, and phenotyping up to seven days post fertilization (dpf). This general strategy can be extended to a wide range of disease phenotypes, as demonstrated in the following protocol. We present our established models for morphogenetic signaling, craniofacial, cardiac, vascular integrity, renal function, and skeletal muscle disorder phenotypes, as well as others.
Molecular Biology, Issue 78, Genetics, Biomedical Engineering, Medicine, Developmental Biology, Biochemistry, Anatomy, Physiology, Bioengineering, Genomics, Medical, zebrafish, in vivo, morpholino, human disease modeling, transcription, PCR, mRNA, DNA, Danio rerio, animal model
50338
Play Button
4D Imaging of Protein Aggregation in Live Cells
Authors: Rachel Spokoini, Maya Shamir, Alma Keness, Daniel Kaganovich.
Institutions: Hebrew University of Jerusalem .
One of the key tasks of any living cell is maintaining the proper folding of newly synthesized proteins in the face of ever-changing environmental conditions and an intracellular environment that is tightly packed, sticky, and hazardous to protein stability1. The ability to dynamically balance protein production, folding and degradation demands highly-specialized quality control machinery, whose absolute necessity is observed best when it malfunctions. Diseases such as ALS, Alzheimer's, Parkinson's, and certain forms of Cystic Fibrosis have a direct link to protein folding quality control components2, and therefore future therapeutic development requires a basic understanding of underlying processes. Our experimental challenge is to understand how cells integrate damage signals and mount responses that are tailored to diverse circumstances. The primary reason why protein misfolding represents an existential threat to the cell is the propensity of incorrectly folded proteins to aggregate, thus causing a global perturbation of the crowded and delicate intracellular folding environment1. The folding health, or "proteostasis," of the cellular proteome is maintained, even under the duress of aging, stress and oxidative damage, by the coordinated action of different mechanistic units in an elaborate quality control system3,4. A specialized machinery of molecular chaperones can bind non-native polypeptides and promote their folding into the native state1, target them for degradation by the ubiquitin-proteasome system5, or direct them to protective aggregation inclusions6-9. In eukaryotes, the cytosolic aggregation quality control load is partitioned between two compartments8-10: the juxtanuclear quality control compartment (JUNQ) and the insoluble protein deposit (IPOD) (Figure 1 - model). Proteins that are ubiquitinated by the protein folding quality control machinery are delivered to the JUNQ, where they are processed for degradation by the proteasome. Misfolded proteins that are not ubiquitinated are diverted to the IPOD, where they are actively aggregated in a protective compartment. Up until this point, the methodological paradigm of live-cell fluorescence microscopy has largely been to label proteins and track their locations in the cell at specific time-points and usually in two dimensions. As new technologies have begun to grant experimenters unprecedented access to the submicron scale in living cells, the dynamic architecture of the cytosol has come into view as a challenging new frontier for experimental characterization. We present a method for rapidly monitoring the 3D spatial distributions of multiple fluorescently labeled proteins in the yeast cytosol over time. 3D timelapse (4D imaging) is not merely a technical challenge; rather, it also facilitates a dramatic shift in the conceptual framework used to analyze cellular structure. We utilize a cytosolic folding sensor protein in live yeast to visualize distinct fates for misfolded proteins in cellular aggregation quality control, using rapid 4D fluorescent imaging. The temperature sensitive mutant of the Ubc9 protein10-12 (Ubc9ts) is extremely effective both as a sensor of cellular proteostasis, and a physiological model for tracking aggregation quality control. As with most ts proteins, Ubc9ts is fully folded and functional at permissive temperatures due to active cellular chaperones. Above 30 °C, or when the cell faces misfolding stress, Ubc9ts misfolds and follows the fate of a native globular protein that has been misfolded due to mutation, heat denaturation, or oxidative damage. By fusing it to GFP or other fluorophores, it can be tracked in 3D as it forms Stress Foci, or is directed to JUNQ or IPOD.
Cellular Biology, Issue 74, Molecular Biology, Genetics, Proteins, Aggregation quality control, protein folding quality control, GFP, JUNQ (juxtanuclear quality control compartment), IPOD (insoluble protein deposit), proteostasis sensor, 4D live cell imaging, live cells, laser, cell biology, protein folding, Ubc9ts, yeast, assay, cell, imaging
50083
Play Button
Combining Magnetic Sorting of Mother Cells and Fluctuation Tests to Analyze Genome Instability During Mitotic Cell Aging in Saccharomyces cerevisiae
Authors: Melissa N. Patterson, Patrick H. Maxwell.
Institutions: Rensselaer Polytechnic Institute.
Saccharomyces cerevisiae has been an excellent model system for examining mechanisms and consequences of genome instability. Information gained from this yeast model is relevant to many organisms, including humans, since DNA repair and DNA damage response factors are well conserved across diverse species. However, S. cerevisiae has not yet been used to fully address whether the rate of accumulating mutations changes with increasing replicative (mitotic) age due to technical constraints. For instance, measurements of yeast replicative lifespan through micromanipulation involve very small populations of cells, which prohibit detection of rare mutations. Genetic methods to enrich for mother cells in populations by inducing death of daughter cells have been developed, but population sizes are still limited by the frequency with which random mutations that compromise the selection systems occur. The current protocol takes advantage of magnetic sorting of surface-labeled yeast mother cells to obtain large enough populations of aging mother cells to quantify rare mutations through phenotypic selections. Mutation rates, measured through fluctuation tests, and mutation frequencies are first established for young cells and used to predict the frequency of mutations in mother cells of various replicative ages. Mutation frequencies are then determined for sorted mother cells, and the age of the mother cells is determined using flow cytometry by staining with a fluorescent reagent that detects bud scars formed on their cell surfaces during cell division. Comparison of predicted mutation frequencies based on the number of cell divisions to the frequencies experimentally observed for mother cells of a given replicative age can then identify whether there are age-related changes in the rate of accumulating mutations. Variations of this basic protocol provide the means to investigate the influence of alterations in specific gene functions or specific environmental conditions on mutation accumulation to address mechanisms underlying genome instability during replicative aging.
Microbiology, Issue 92, Aging, mutations, genome instability, Saccharomyces cerevisiae, fluctuation test, magnetic sorting, mother cell, replicative aging
51850
Play Button
Screening for Amyloid Aggregation by Semi-Denaturing Detergent-Agarose Gel Electrophoresis
Authors: Randal Halfmann, Susan Lindquist.
Institutions: Whitehead Institute for Biomedical Research, MIT - Massachusetts Institute of Technology, Howard Hughes Medical Institute.
Amyloid aggregation is associated with numerous protein misfolding pathologies and underlies the infectious properties of prions, which are conformationally self-templating proteins that are thought to have beneficial roles in lower organisms. Amyloids have been notoriously difficult to study due to their insolubility and structural heterogeneity. However, resolution of amyloid polymers based on size and detergent insolubility has been made possible by Semi-Denaturing Detergent-Agarose Gel Electrophoresis (SDD-AGE). This technique is finding widespread use for the detection and characterization of amyloid conformational variants. Here, we demonstrate an adaptation of this technique that facilitates its use in large-scale applications, such as screens for novel prions and other amyloidogenic proteins. The new SDD-AGE method uses capillary transfer for greater reliability and ease of use, and allows any sized gel to be accomodated. Thus, a large number of samples, prepared from cells or purified proteins, can be processed simultaneously for the presence of SDS-insoluble conformers of tagged proteins.
Basic Protocols, Issue 17, biochemistry, SDD-AGE, amyloid, prion, aggregate
838
Play Button
High-throughput Functional Screening using a Homemade Dual-glow Luciferase Assay
Authors: Jessica M. Baker, Frederick M. Boyce.
Institutions: Massachusetts General Hospital.
We present a rapid and inexpensive high-throughput screening protocol to identify transcriptional regulators of alpha-synuclein, a gene associated with Parkinson's disease. 293T cells are transiently transfected with plasmids from an arrayed ORF expression library, together with luciferase reporter plasmids, in a one-gene-per-well microplate format. Firefly luciferase activity is assayed after 48 hr to determine the effects of each library gene upon alpha-synuclein transcription, normalized to expression from an internal control construct (a hCMV promoter directing Renilla luciferase). This protocol is facilitated by a bench-top robot enclosed in a biosafety cabinet, which performs aseptic liquid handling in 96-well format. Our automated transfection protocol is readily adaptable to high-throughput lentiviral library production or other functional screening protocols requiring triple-transfections of large numbers of unique library plasmids in conjunction with a common set of helper plasmids. We also present an inexpensive and validated alternative to commercially-available, dual luciferase reagents which employs PTC124, EDTA, and pyrophosphate to suppress firefly luciferase activity prior to measurement of Renilla luciferase. Using these methods, we screened 7,670 human genes and identified 68 regulators of alpha-synuclein. This protocol is easily modifiable to target other genes of interest.
Cellular Biology, Issue 88, Luciferases, Gene Transfer Techniques, Transfection, High-Throughput Screening Assays, Transfections, Robotics
50282
Play Button
Using Caenorhabditis elegans as a Model System to Study Protein Homeostasis in a Multicellular Organism
Authors: Ido Karady, Anna Frumkin, Shiran Dror, Netta Shemesh, Nadav Shai, Anat Ben-Zvi.
Institutions: Ben-Gurion University of the Negev.
The folding and assembly of proteins is essential for protein function, the long-term health of the cell, and longevity of the organism. Historically, the function and regulation of protein folding was studied in vitro, in isolated tissue culture cells and in unicellular organisms. Recent studies have uncovered links between protein homeostasis (proteostasis), metabolism, development, aging, and temperature-sensing. These findings have led to the development of new tools for monitoring protein folding in the model metazoan organism Caenorhabditis elegans. In our laboratory, we combine behavioral assays, imaging and biochemical approaches using temperature-sensitive or naturally occurring metastable proteins as sensors of the folding environment to monitor protein misfolding. Behavioral assays that are associated with the misfolding of a specific protein provide a simple and powerful readout for protein folding, allowing for the fast screening of genes and conditions that modulate folding. Likewise, such misfolding can be associated with protein mislocalization in the cell. Monitoring protein localization can, therefore, highlight changes in cellular folding capacity occurring in different tissues, at various stages of development and in the face of changing conditions. Finally, using biochemical tools ex vivo, we can directly monitor protein stability and conformation. Thus, by combining behavioral assays, imaging and biochemical techniques, we are able to monitor protein misfolding at the resolution of the organism, the cell, and the protein, respectively.
Biochemistry, Issue 82, aging, Caenorhabditis elegans, heat shock response, neurodegenerative diseases, protein folding homeostasis, proteostasis, stress, temperature-sensitive
50840
Play Button
Polymerase Chain Reaction: Basic Protocol Plus Troubleshooting and Optimization Strategies
Authors: Todd C. Lorenz.
Institutions: University of California, Los Angeles .
In the biological sciences there have been technological advances that catapult the discipline into golden ages of discovery. For example, the field of microbiology was transformed with the advent of Anton van Leeuwenhoek's microscope, which allowed scientists to visualize prokaryotes for the first time. The development of the polymerase chain reaction (PCR) is one of those innovations that changed the course of molecular science with its impact spanning countless subdisciplines in biology. The theoretical process was outlined by Keppe and coworkers in 1971; however, it was another 14 years until the complete PCR procedure was described and experimentally applied by Kary Mullis while at Cetus Corporation in 1985. Automation and refinement of this technique progressed with the introduction of a thermal stable DNA polymerase from the bacterium Thermus aquaticus, consequently the name Taq DNA polymerase. PCR is a powerful amplification technique that can generate an ample supply of a specific segment of DNA (i.e., an amplicon) from only a small amount of starting material (i.e., DNA template or target sequence). While straightforward and generally trouble-free, there are pitfalls that complicate the reaction producing spurious results. When PCR fails it can lead to many non-specific DNA products of varying sizes that appear as a ladder or smear of bands on agarose gels. Sometimes no products form at all. Another potential problem occurs when mutations are unintentionally introduced in the amplicons, resulting in a heterogeneous population of PCR products. PCR failures can become frustrating unless patience and careful troubleshooting are employed to sort out and solve the problem(s). This protocol outlines the basic principles of PCR, provides a methodology that will result in amplification of most target sequences, and presents strategies for optimizing a reaction. By following this PCR guide, students should be able to: ● Set up reactions and thermal cycling conditions for a conventional PCR experiment ● Understand the function of various reaction components and their overall effect on a PCR experiment ● Design and optimize a PCR experiment for any DNA template ● Troubleshoot failed PCR experiments
Basic Protocols, Issue 63, PCR, optimization, primer design, melting temperature, Tm, troubleshooting, additives, enhancers, template DNA quantification, thermal cycler, molecular biology, genetics
3998
Play Button
Direct Intraventricular Delivery of Drugs to the Rodent Central Nervous System
Authors: Sarah L. DeVos, Timothy M. Miller.
Institutions: Washington University in St. Louis School of Medicine.
Due to an inability to cross the blood brain barrier, certain drugs need to be directly delivered into the central nervous system (CNS). Our lab focuses specifically on antisense oligonucleotides (ASOs), though the techniques shown in the video here can also be used to deliver a plethora of other drugs to the CNS. Antisense oligonucleotides (ASOs) have the capability to knockdown sequence-specific targets 1 as well as shift isoform ratios of specific genes 2. To achieve widespread gene knockdown or splicing in the CNS of mice, the ASOs can be delivered into the brain using two separate routes of administration, both of which we demonstrate in the video. The first uses Alzet osmotic pumps, connected to a catheter that is surgically implanted into the lateral ventricle. This allows the ASOs to be continuously infused into the CNS for a designated period of time. The second involves a single bolus injection of a high concentration of ASO into the right lateral ventricle. Both methods use the mouse cerebral ventricular system to deliver the ASO to the entire brain and spinal cord, though depending on the needs of the study, one method may be preferred over the other.
Neurobiology, Issue 75, Neuroscience, Medicine, Biomedical Engineering, Genetics, Anatomy, Physiology, Surgery, Pharmacology, Cerebrospinal Fluid, Rodentia, Oligonucleotides, Antisense, Drug Administration Routes, Injections, Intraventricular, Drug Delivery Systems, mouse, rat, brain, antisense oligonucleotide, osmotic pump, Bolus, Ventricle, Neurosciences, Translational, Cerebrospinal fluid, CNS, cannula, catheter, animal model, surgical techniques
50326
Play Button
Diffusion Tensor Magnetic Resonance Imaging in the Analysis of Neurodegenerative Diseases
Authors: Hans-Peter Müller, Jan Kassubek.
Institutions: University of Ulm.
Diffusion tensor imaging (DTI) techniques provide information on the microstructural processes of the cerebral white matter (WM) in vivo. The present applications are designed to investigate differences of WM involvement patterns in different brain diseases, especially neurodegenerative disorders, by use of different DTI analyses in comparison with matched controls. DTI data analysis is performed in a variate fashion, i.e. voxelwise comparison of regional diffusion direction-based metrics such as fractional anisotropy (FA), together with fiber tracking (FT) accompanied by tractwise fractional anisotropy statistics (TFAS) at the group level in order to identify differences in FA along WM structures, aiming at the definition of regional patterns of WM alterations at the group level. Transformation into a stereotaxic standard space is a prerequisite for group studies and requires thorough data processing to preserve directional inter-dependencies. The present applications show optimized technical approaches for this preservation of quantitative and directional information during spatial normalization in data analyses at the group level. On this basis, FT techniques can be applied to group averaged data in order to quantify metrics information as defined by FT. Additionally, application of DTI methods, i.e. differences in FA-maps after stereotaxic alignment, in a longitudinal analysis at an individual subject basis reveal information about the progression of neurological disorders. Further quality improvement of DTI based results can be obtained during preprocessing by application of a controlled elimination of gradient directions with high noise levels. In summary, DTI is used to define a distinct WM pathoanatomy of different brain diseases by the combination of whole brain-based and tract-based DTI analysis.
Medicine, Issue 77, Neuroscience, Neurobiology, Molecular Biology, Biomedical Engineering, Anatomy, Physiology, Neurodegenerative Diseases, nuclear magnetic resonance, NMR, MR, MRI, diffusion tensor imaging, fiber tracking, group level comparison, neurodegenerative diseases, brain, imaging, clinical techniques
50427
Play Button
Real-time Imaging of Axonal Transport of Quantum Dot-labeled BDNF in Primary Neurons
Authors: Xiaobei Zhao, Yue Zhou, April M. Weissmiller, Matthew L. Pearn, William C. Mobley, Chengbiao Wu.
Institutions: University of California, San Diego, Shanghai Jiao Tong University, University of California, San Diego, VA San Diego Healthcare System.
BDNF plays an important role in several facets of neuronal survival, differentiation, and function. Structural and functional deficits in axons are increasingly viewed as an early feature of neurodegenerative diseases, including Alzheimer’s disease (AD) and Huntington’s disease (HD). As yet unclear is the mechanism(s) by which axonal injury is induced. We reported the development of a novel technique to produce biologically active, monobiotinylated BDNF (mBtBDNF) that can be used to trace axonal transport of BDNF. Quantum dot-labeled BDNF (QD-BDNF) was produced by conjugating quantum dot 655 to mBtBDNF. A microfluidic device was used to isolate axons from neuron cell bodies. Addition of QD-BDNF to the axonal compartment allowed live imaging of BDNF transport in axons. We demonstrated that QD-BDNF moved essentially exclusively retrogradely, with very few pauses, at a moving velocity of around 1.06 μm/sec. This system can be used to investigate mechanisms of disrupted axonal function in AD or HD, as well as other degenerative disorders.
Neuroscience, Issue 91, live imaging, brain-derived neurotrophic factor (BDNF), quantum dot, trafficking, axonal retrograde transport, microfluidic chamber
51899
Play Button
Generation, Purification, and Characterization of Cell-invasive DISC1 Protein Species
Authors: Verian Bader, Philipp Ottis, Martin Pum, Joseph P. Huston, Carsten Korth.
Institutions: Medical School Düsseldorf, Germany, University of Düsseldorf.
Protein aggregation is seen as a general hallmark of chronic, degenerative brain conditions like, for example, in the neurodegenerative diseases Alzheimer's disease (Aβ, tau), Parkinson's Disease (α-synuclein), Huntington's disease (polyglutamine, huntingtin), and others. Protein aggregation is thought to occur due to disturbed proteostasis, i.e. the imbalance between the arising and degradation of misfolded proteins. Of note, the same proteins are found aggregated in sporadic forms of these diseases that are mutant in rare variants of familial forms. Schizophrenia is a chronic progressive brain condition that in many cases goes along with a permanent and irreversible cognitive deficit. In a candidate gene approach, we investigated whether Disrupted-in-schizophrenia 1 (DISC1), a gene cloned in a Scottish family with linkage to chronic mental disease1, 2, could be found as insoluble aggregates in the brain of sporadic cases of schizophrenia3. Using the SMRI CC, we identified in approximately 20 % of cases with CMD but not normal controls or patients with neurodegenerative diseases sarkosyl-insoluble DISC1 immunoreactivity after biochemical fractionation. Subsequent studies in vitro revealed that the aggregation propensity of DISC1 was influenced by disease-associated polymorphism S704C4, and that DISC1 aggresomes generated in vitro were cell-invasive5, similar to what had been shown for Aβ6, tau7-9, α-synuclein10, polyglutamine11, or SOD1 aggregates12. These findings prompted us to propose that at least a subset of cases with CMD, those with aggregated DISC1 might be protein conformational disorders. Here we describe how we generate DISC1 aggresomes in mammalian cells, purify them on a sucrose gradient and use them for cell-invasiveness studies. Similarly, we describe how we generate an exclusively multimeric C-terminal DISC1 fragment, label and purify it for cell invasiveness studies. Using the recombinant multimers of DISC1 we achieve similar cell invasiveness as for a similarly labeled synthetic α-synuclein fragment. We also show that this fragment is taken up in vivo when stereotactically injected into the brain of recipient animals.
Molecular Biology, Issue 66, Neuroscience, Medicine, Genetics, Protein aggregate, aggresome, cell invasiveness, protein conformational disease, DISC1, DISC1opathy, purification, recombinant protein, multimerization, protein labeling, brain, rat, neuroscience
4132
Play Button
Purification of Transcripts and Metabolites from Drosophila Heads
Authors: Kurt Jensen, Jonatan Sanchez-Garcia, Caroline Williams, Swati Khare, Krishanu Mathur, Rita M. Graze, Daniel A. Hahn, Lauren M. McIntyre, Diego E. Rincon-Limas, Pedro Fernandez-Funez.
Institutions: University of Florida , University of Florida , University of Florida , University of Florida .
For the last decade, we have tried to understand the molecular and cellular mechanisms of neuronal degeneration using Drosophila as a model organism. Although fruit flies provide obvious experimental advantages, research on neurodegenerative diseases has mostly relied on traditional techniques, including genetic interaction, histology, immunofluorescence, and protein biochemistry. These techniques are effective for mechanistic, hypothesis-driven studies, which lead to a detailed understanding of the role of single genes in well-defined biological problems. However, neurodegenerative diseases are highly complex and affect multiple cellular organelles and processes over time. The advent of new technologies and the omics age provides a unique opportunity to understand the global cellular perturbations underlying complex diseases. Flexible model organisms such as Drosophila are ideal for adapting these new technologies because of their strong annotation and high tractability. One challenge with these small animals, though, is the purification of enough informational molecules (DNA, mRNA, protein, metabolites) from highly relevant tissues such as fly brains. Other challenges consist of collecting large numbers of flies for experimental replicates (critical for statistical robustness) and developing consistent procedures for the purification of high-quality biological material. Here, we describe the procedures for collecting thousands of fly heads and the extraction of transcripts and metabolites to understand how global changes in gene expression and metabolism contribute to neurodegenerative diseases. These procedures are easily scalable and can be applied to the study of proteomic and epigenomic contributions to disease.
Genetics, Issue 73, Biochemistry, Molecular Biology, Neurobiology, Neuroscience, Bioengineering, Cellular Biology, Anatomy, Neurodegenerative Diseases, Biological Assay, Drosophila, fruit fly, head separation, purification, mRNA, RNA, cDNA, DNA, transcripts, metabolites, replicates, SCA3, neurodegeneration, NMR, gene expression, animal model
50245
Play Button
Purification of Hsp104, a Protein Disaggregase
Authors: Elizabeth A. Sweeny, Morgan E. DeSantis, James Shorter.
Institutions: University of Pennsylvania.
Hsp104 is a hexameric AAA+ protein1 from yeast, which couples ATP hydrolysis to protein disaggregation2-10 (Fig. 1). This activity imparts two key selective advantages. First, renaturation of disordered aggregates by Hsp104 empowers yeast survival after various protein-misfolding stresses, including heat shock3,5,11,12. Second, remodeling of cross-beta amyloid fibrils by Hsp104 enables yeast to exploit myriad prions (infectious amyloids) as a reservoir of beneficial and heritable phenotypic variation13-22. Remarkably, Hsp104 directly remodels preamyloid oligomers and amyloid fibrils, including those comprised of the yeast prion proteins Sup35 and Ure223-30. This amyloid-remodeling functionality is a specialized facet of yeast Hsp104. The E. coli orthologue, ClpB, fails to remodel preamyloid oligomers or amyloid fibrils26,31,32. Hsp104 orthologues are found in all kingdoms of life except, perplexingly, animals. Indeed, whether animal cells possess any enzymatic system that couples protein disaggregation to renaturation (rather than degradation) remains unknown33-35. Thus, we and others have proposed that Hsp104 might be developed as a therapeutic agent for various neurodegenerative diseases connected with the misfolding of specific proteins into toxic preamyloid oligomers and amyloid fibrils4,7,23,36-38. There are no treatments that directly target the aggregated species associated with these diseases. Yet, Hsp104 dissolves toxic oligomers and amyloid fibrils composed of alpha-synuclein, which are connected with Parkinson's Disease23 as well as amyloid forms of PrP39. Importantly, Hsp104 reduces protein aggregation and ameliorates neurodegeneration in rodent models of Parkinson's Disease23 and Huntington's disease38. Ideally, to optimize therapy and minimize side effects, Hsp104 would be engineered and potentiated to selectively remodel specific aggregates central to the disease in question4,7. However, the limited structural and mechanistic understanding of how Hsp104 disaggregates such a diverse repertoire of aggregated structures and unrelated proteins frustrates these endeavors30,40-42. To understand the structure and mechanism of Hsp104, it is essential to study the pure protein and reconstitute its disaggregase activity with minimal components. Hsp104 is a 102kDa protein with a pI of ~5.3, which hexamerizes in the presence of ADP or ATP, or at high protein concentrations in the absence of nucleotide43-46. Here, we describe an optimized protocol for the purification of highly active, stable Hsp104 from E. coli. The use of E. coli allows simplified large-scale production and our method can be performed quickly and reliably for numerous Hsp104 variants. Our protocol increases Hsp104 purity and simplifies His6-tag removal compared to a previous purification method from E. coli47. Moreover, our protocol is more facile and convenient than two more recent protocols26,48.
Molecular Biology, Issue 55, Neuroscience, Hsp104, AAA+, disaggregase, heat shock, amyloid, prion
3190
Play Button
Interview: Protein Folding and Studies of Neurodegenerative Diseases
Authors: Susan Lindquist.
Institutions: MIT - Massachusetts Institute of Technology.
In this interview, Dr. Lindquist describes relationships between protein folding, prion diseases and neurodegenerative disorders. The problem of the protein folding is at the core of the modern biology. In addition to their traditional biochemical functions, proteins can mediate transfer of biological information and therefore can be considered a genetic material. This recently discovered function of proteins has important implications for studies of human disorders. Dr. Lindquist also describes current experimental approaches to investigate the mechanism of neurodegenerative diseases based on genetic studies in model organisms.
Neuroscience, issue 17, protein folding, brain, neuron, prion, neurodegenerative disease, yeast, screen, Translational Research
786
Play Button
A Simple Composite Phenotype Scoring System for Evaluating Mouse Models of Cerebellar Ataxia
Authors: Stephan J. Guyenet, Stephanie A. Furrer, Vincent M. Damian, Travis D. Baughan, Albert R. La Spada, Gwenn A. Garden.
Institutions: University of Washington, University of Washington, University of California, San Diego - Rady Children’s Hospital.
We describe a protocol for the rapid and sensitive quantification of disease severity in mouse models of cerebella ataxia. It is derived from previously published phenotype assessments in several disease models, including spinocerebellar ataxias, Huntington s disease and spinobulbar muscular atrophy. Measures include hind limb clasping, ledge test, gait and kyphosis. Each measure is recorded on a scale of 0-3, with a combined total of 0-12 for all four measures. The results effectively discriminate between affected and non-affected individuals, while also quantifying the temporal progression of neurodegenerative disease phenotypes. Measures may be analyzed individually or combined into a composite phenotype score for greater statistical power. The ideal combination of the four described measures will depend upon the disorder in question. We present an example of the protocol used to assess disease severity in a transgenic mouse model of spinocerebellar ataxia type 7 (SCA7). Albert R. La Spada and Gwenn A. Garden contributed to this manuscript equally.
JoVE Neuroscience, Issue 39, Neurodegeneration, Mouse behavior assay, cerebellar ataxia, polyglutamine disease
1787
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.