JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Histone H2A (H2A.X and H2A.Z) variants in molluscs: molecular characterization and potential implications for chromatin dynamics.
Histone variants are used by the cell to build specialized nucleosomes, replacing canonical histones and generating functionally specialized chromatin domains. Among many other processes, the specialization imparted by histone H2A (H2A.X and H2A.Z) variants to the nucleosome core particle constitutes the earliest response to DNA damage in the cell. Consequently, chromatin-based genotoxicity tests have been developed in those cases where enough information pertaining chromatin structure and dynamics is available (i.e., human and mouse). However, detailed chromatin knowledge is almost absent in most organisms, specially protostome animals. Molluscs (which represent sentinel organisms for the study of pollution) are not an exception to this lack of knowledge. In the present work we first identified the existence of functionally differentiated histone H2A.X and H2A.Z variants in the mussel Mytilus galloprovincialis (MgH2A.X and MgH2A.Z), a marine organism widely used in biomonitoring programs. Our results support the functional specialization of these variants based on: a) their active expression in different tissues, as revealed by the isolation of native MgH2A.X and MgH2A.Z proteins in gonad and hepatopancreas; b) the evolutionary conservation of different residues encompassing functional relevance; and c) their ability to confer specialization to nucleosomes, as revealed by nucleosome reconstitution experiments using recombinant MgH2A.X and MgH2A.Z histones. Given the seminal role of these variants in maintaining genomic integrity and regulating gene expression, their preliminary characterization opens up new potential applications for the future development of chromatin-based genotoxicity tests in pollution biomonitoring programs.
Authors: Ryan A. Rogge, Anna A. Kalashnikova, Uma M. Muthurajan, Mary E. Porter-Goff, Karolin Luger, Jeffrey C. Hansen.
Published: 09-10-2013
Core histone octamers that are repetitively spaced along a DNA molecule are called nucleosomal arrays. Nucleosomal arrays are obtained in one of two ways: purification from in vivo sources, or reconstitution in vitro from recombinant core histones and tandemly repeated nucleosome positioning DNA. The latter method has the benefit of allowing for the assembly of a more compositionally uniform and precisely positioned nucleosomal array. Sedimentation velocity experiments in the analytical ultracentrifuge yield information about the size and shape of macromolecules by analyzing the rate at which they migrate through solution under centrifugal force. This technique, along with atomic force microscopy, can be used for quality control, ensuring that the majority of DNA templates are saturated with nucleosomes after reconstitution. Here we describe the protocols necessary to reconstitute milligram quantities of length and compositionally defined nucleosomal arrays suitable for biochemical and biophysical studies of chromatin structure and function.
15 Related JoVE Articles!
Play Button
The ChroP Approach Combines ChIP and Mass Spectrometry to Dissect Locus-specific Proteomic Landscapes of Chromatin
Authors: Monica Soldi, Tiziana Bonaldi.
Institutions: European Institute of Oncology.
Chromatin is a highly dynamic nucleoprotein complex made of DNA and proteins that controls various DNA-dependent processes. Chromatin structure and function at specific regions is regulated by the local enrichment of histone post-translational modifications (hPTMs) and variants, chromatin-binding proteins, including transcription factors, and DNA methylation. The proteomic characterization of chromatin composition at distinct functional regions has been so far hampered by the lack of efficient protocols to enrich such domains at the appropriate purity and amount for the subsequent in-depth analysis by Mass Spectrometry (MS). We describe here a newly designed chromatin proteomics strategy, named ChroP (Chromatin Proteomics), whereby a preparative chromatin immunoprecipitation is used to isolate distinct chromatin regions whose features, in terms of hPTMs, variants and co-associated non-histonic proteins, are analyzed by MS. We illustrate here the setting up of ChroP for the enrichment and analysis of transcriptionally silent heterochromatic regions, marked by the presence of tri-methylation of lysine 9 on histone H3. The results achieved demonstrate the potential of ChroP in thoroughly characterizing the heterochromatin proteome and prove it as a powerful analytical strategy for understanding how the distinct protein determinants of chromatin interact and synergize to establish locus-specific structural and functional configurations.
Biochemistry, Issue 86, chromatin, histone post-translational modifications (hPTMs), epigenetics, mass spectrometry, proteomics, SILAC, chromatin immunoprecipitation , histone variants, chromatome, hPTMs cross-talks
Play Button
Biochemical Assays for Analyzing Activities of ATP-dependent Chromatin Remodeling Enzymes
Authors: Lu Chen, Soon-Keat Ooi, Joan W. Conaway, Ronald C. Conaway.
Institutions: Stowers Institute for Medical Research, Kansas University Medical Center.
Members of the SNF2 family of ATPases often function as components of multi-subunit chromatin remodeling complexes that regulate nucleosome dynamics and DNA accessibility by catalyzing ATP-dependent nucleosome remodeling. Biochemically dissecting the contributions of individual subunits of such complexes to the multi-step ATP-dependent chromatin remodeling reaction requires the use of assays that monitor the production of reaction products and measure the formation of reaction intermediates. This JOVE protocol describes assays that allow one to measure the biochemical activities of chromatin remodeling complexes or subcomplexes containing various combinations of subunits. Chromatin remodeling is measured using an ATP-dependent nucleosome sliding assay, which monitors the movement of a nucleosome on a DNA molecule using an electrophoretic mobility shift assay (EMSA)-based method. Nucleosome binding activity is measured by monitoring the formation of remodeling complex-bound mononucleosomes using a similar EMSA-based method, and DNA- or nucleosome-dependent ATPase activity is assayed using thin layer chromatography (TLC) to measure the rate of conversion of ATP to ADP and phosphate in the presence of either DNA or nucleosomes. Using these assays, one can examine the functions of subunits of a chromatin remodeling complex by comparing the activities of the complete complex to those lacking one or more subunits. The human INO80 chromatin remodeling complex is used as an example; however, the methods described here can be adapted to the study of other chromatin remodeling complexes.
Biochemistry, Issue 92, chromatin remodeling, INO80, SNF2 family ATPase, biochemical assays, ATPase, nucleosome remodeling, nucleosome binding
Play Button
Quantitative Analysis of Chromatin Proteomes in Disease
Authors: Emma Monte, Haodong Chen, Maria Kolmakova, Michelle Parvatiyar, Thomas M. Vondriska, Sarah Franklin.
Institutions: David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah.
In the nucleus reside the proteomes whose functions are most intimately linked with gene regulation. Adult mammalian cardiomyocyte nuclei are unique due to the high percentage of binucleated cells,1 the predominantly heterochromatic state of the DNA, and the non-dividing nature of the cardiomyocyte which renders adult nuclei in a permanent state of interphase.2 Transcriptional regulation during development and disease have been well studied in this organ,3-5 but what remains relatively unexplored is the role played by the nuclear proteins responsible for DNA packaging and expression, and how these proteins control changes in transcriptional programs that occur during disease.6 In the developed world, heart disease is the number one cause of mortality for both men and women.7 Insight on how nuclear proteins cooperate to regulate the progression of this disease is critical for advancing the current treatment options. Mass spectrometry is the ideal tool for addressing these questions as it allows for an unbiased annotation of the nuclear proteome and relative quantification for how the abundance of these proteins changes with disease. While there have been several proteomic studies for mammalian nuclear protein complexes,8-13 until recently14 there has been only one study examining the cardiac nuclear proteome, and it considered the entire nucleus, rather than exploring the proteome at the level of nuclear sub compartments.15 In large part, this shortage of work is due to the difficulty of isolating cardiac nuclei. Cardiac nuclei occur within a rigid and dense actin-myosin apparatus to which they are connected via multiple extensions from the endoplasmic reticulum, to the extent that myocyte contraction alters their overall shape.16 Additionally, cardiomyocytes are 40% mitochondria by volume17 which necessitates enrichment of the nucleus apart from the other organelles. Here we describe a protocol for cardiac nuclear enrichment and further fractionation into biologically-relevant compartments. Furthermore, we detail methods for label-free quantitative mass spectrometric dissection of these fractions-techniques amenable to in vivo experimentation in various animal models and organ systems where metabolic labeling is not feasible.
Medicine, Issue 70, Molecular Biology, Immunology, Genetics, Genomics, Physiology, Protein, DNA, Chromatin, cardiovascular disease, proteomics, mass spectrometry
Play Button
Pulse-chase Analysis of N-linked Sugar Chains from Glycoproteins in Mammalian Cells
Authors: Edward Avezov, Efrat Ron, Yana Izenshtein, Yosef Adan, Gerardo Z. Lederkremer.
Institutions: Tel Aviv University.
Attachment of the Glc3Man9GlcNAc2 precursor oligosaccharide to nascent polypeptides in the ER is a common modification for secretory proteins. Although this modification was implicated in several biological processes, additional aspects of its function are emerging, with recent evidence of its role in the production of signals for glycoprotein quality control and trafficking. Thus, phenomena related to N-linked glycans and their processing are being intensively investigated. Methods that have been recently developed for proteomic analysis have greatly improved the characterization of glycoprotein N-linked glycans. Nevertheless, they do not provide insight into the dynamics of the sugar chain processing involved. For this, labeling and pulse-chase analysis protocols are used that are usually complex and give very low yields. We describe here a simple method for the isolation and analysis of metabolically labeled N-linked oligosaccharides. The protocol is based on labeling of cells with [2-3H] mannose, denaturing lysis and enzymatic release of the oligosaccharides from either a specifically immunoprecipitated protein of interest or from the general glycoprotein pool by sequential treatments with endo H and N-glycosidase F, followed by molecular filtration (Amicon). In this method the isolated oligosaccharides serve as an input for HPLC analysis, which allows discrimination between various glycan structures according to the number of monosaccharide units comprising them, with a resolution of a single monosaccharide. Using this method we were able to study high mannose N-linked oligosaccharide profiles of total cell glycoproteins after pulse-chase in normal conditions and under proteasome inhibition. These profiles were compared to those obtained from an immunoprecipitated ER-associated degradation (ERAD) substrate. Our results suggest that most NIH 3T3 cellular glycoproteins are relatively stable and that most of their oligosaccharides are trimmed to Man9-8GlcNAc2. In contrast, unstable ERAD substrates are trimmed to Man6-5GlcNAc2 and glycoproteins bearing these species accumulate upon inhibition of proteasomal degradation.
Cellular Biology, Issue 38, N-linked oligosaccharide, mannose-labeling, endoplasmic reticulum associated degradation, calnexin, glycosylation, mannosidase
Play Button
Chromatin Immunoprecipitation (ChIP) to Assay Dynamic Histone Modification in Activated Gene Expression in Human Cells
Authors: Lauren J. Buro, Shaili Shah, Melissa A. Henriksen.
Institutions: University of Virginia.
In response to a variety of extracellular ligands, the STAT (signal transducer and activator of transcription) transcription factors are rapidly recruited from their latent state in the cytoplasm to cell surface receptors where they are activated by phosphorylation at a single tyrosine residue1. They then dimerize and translocate to the nucleus to drive the transcription of target genes, affecting growth, differentiation, homeostasis and the immune response. Not surprisingly, given their widespread involvement in normal cell processes, dysregulation of STAT function contributes to human disease, particularly to cancers2 and autoimmune diseases3. It is well established that transcription is regulated by alterations to the chromatin template4,5. These alterations include the activities of ATP-dependent complexes, as well as covalent histone modifications and DNA methylation6. Because STAT activation of gene expression is both rapid and transient, it requires specific mechanisms for modulating the chromatin template at STAT-dependent gene loci. To define these mechanisms, we characterize the histone modifications and the enzymatic activities that generate them at gene loci that respond to STAT signaling. This protocol describes chromatin immunoprecipitation, a method that is valuable for the study of STAT signaling to chromatin in activated gene expression.
Cellular Biology, Issue 41, chromatin, histone modification, transcription, antibody, cell culture, epigenetics, transcription factor, nucleosome
Play Button
A Chromatin Assay for Human Brain Tissue
Authors: Anouch Matevossian, Schahram Akbarian.
Institutions: University of Massachusetts Medical School.
Chronic neuropsychiatric illnesses such as schizophrenia, bipolar disease and autism are thought to result from a combination of genetic and environmental factors that might result in epigenetic alterations of gene expression and other molecular pathology. Traditionally, however, expression studies in postmortem brain were confined to quantification of mRNA or protein. The limitations encountered in postmortem brain research such as variabilities in autolysis time and tissue integrities are also likely to impact any studies of higher order chromatin structures. However, the nucleosomal organization of genomic DNA including DNA:core histone binding - appears to be largely preserved in representative samples provided by various brain banks. Therefore, it is possible to study the methylation pattern and other covalent modifications of the core histones at defined genomic loci in postmortem brain. Here, we present a simplified native chromatin immunoprecipitation (NChIP) protocol for frozen (never-fixed) human brain specimens. Starting with micrococcal nuclease digestion of brain homogenates, NChIP followed by qPCR can be completed within three days. The methodology presented here should be useful to elucidate epigenetic mechanisms of gene expression in normal and diseased human brain.
Neuroscience, Issue 13, Postmortem brain, Nucleosome, Histone, Methylation, Epigenetic, Chromatin, Human Brain
Play Button
Detection of Histone Modifications in Plant Leaves
Authors: Michal Jaskiewicz, Christoph Peterhansel, Uwe Conrath.
Institutions: RWTH Aachen University, RWTH Aachen University, Leibniz University.
Chromatin structure is important for the regulation of gene expression in eukaryotes. In this process, chromatin remodeling, DNA methylation, and covalent modifications on the amino-terminal tails of histones H3 and H4 play essential roles1-2. H3 and H4 histone modifications include methylation of lysine and arginine, acetylation of lysine, and phosphorylation of serine residues1-2. These modifications are associated either with gene activation, repression, or a primed state of gene that supports more rapid and robust activation of expression after perception of appropriate signals (microbe-associated molecular patterns, light, hormones, etc.)3-7. Here, we present a method for the reliable and sensitive detection of specific chromatin modifications on selected plant genes. The technique is based on the crosslinking of (modified) histones and DNA with formaldehyde8,9, extraction and sonication of chromatin, chromatin immunoprecipitation (ChIP) with modification-specific antibodies9,10, de-crosslinking of histone-DNA complexes, and gene-specific real-time quantitative PCR. The approach has proven useful for detecting specific histone modifications associated with C4 photosynthesis in maize5,11 and systemic immunity in Arabidopsis3.
Molecular Biology, Issue 55, chromatin, chromatin immunoprecipitation, ChIP, histone modifications, PCR, plant molecular biology, plant promoter control, gene regulation
Play Button
Automating ChIP-seq Experiments to Generate Epigenetic Profiles on 10,000 HeLa Cells
Authors: Geoffrey Berguet, Jan Hendrickx, Celine Sabatel, Miklos Laczik, Sharon Squazzo, Ignacio Mazon Pelaez, Rini Saxena, Helene Pendeville, Dominique Poncelet.
Institutions: Diagenode S.A., Diagenode Inc..
Chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq) is a technique of choice for studying protein-DNA interactions. ChIP-seq has been used for mapping protein-DNA interactions and allocating histones modifications. The procedure is tedious and time consuming, and one of the major limitations is the requirement for high amounts of starting material, usually millions of cells. Automation of chromatin immunoprecipitation assays is possible when the procedure is based on the use of magnetic beads. Successful automated protocols of chromatin immunoprecipitation and library preparation have been specifically designed on a commercially available robotic liquid handling system dedicated mainly to automate epigenetic assays. First, validation of automated ChIP-seq assays using antibodies directed against various histone modifications was shown, followed by optimization of the automated protocols to perform chromatin immunoprecipitation and library preparation starting with low cell numbers. The goal of these experiments is to provide a valuable tool for future epigenetic analysis of specific cell types, sub-populations, and biopsy samples.
Molecular Biology, Issue 94, Automation, chromatin immunoprecipitation, low DNA amounts, histone antibodies, sequencing, library preparation
Play Button
Quantification of γH2AX Foci in Response to Ionising Radiation
Authors: Li-Jeen Mah, Raja S. Vasireddy, Michelle M. Tang, George T. Georgiadis, Assam El-Osta, Tom C. Karagiannis.
Institutions: The Alfred Medical Research and Education Precinct, The University of Melbourne, The Alfred Medical Research and Education Precinct.
DNA double-strand breaks (DSBs), which are induced by either endogenous metabolic processes or by exogenous sources, are one of the most critical DNA lesions with respect to survival and preservation of genomic integrity. An early response to the induction of DSBs is phosphorylation of the H2A histone variant, H2AX, at the serine-139 residue, in the highly conserved C-terminal SQEY motif, forming γH2AX1. Following induction of DSBs, H2AX is rapidly phosphorylated by the phosphatidyl-inosito 3-kinase (PIKK) family of proteins, ataxia telangiectasia mutated (ATM), DNA-protein kinase catalytic subunit and ATM and RAD3-related (ATR)2. Typically, only a few base-pairs (bp) are implicated in a DSB, however, there is significant signal amplification, given the importance of chromatin modifications in DNA damage signalling and repair. Phosphorylation of H2AX mediated predominantly by ATM spreads to adjacent areas of chromatin, affecting approximately 0.03% of total cellular H2AX per DSB2,3. This corresponds to phosphorylation of approximately 2000 H2AX molecules spanning ~2 Mbp regions of chromatin surrounding the site of the DSB and results in the formation of discrete γH2AX foci which can be easily visualized and quantitated by immunofluorescence microscopy2. The loss of γH2AX at DSB reflects repair, however, there is some controversy as to what defines complete repair of DSBs; it has been proposed that rejoining of both strands of DNA is adequate however, it has also been suggested that re-instatement of the original chromatin state of compaction is necessary4-8. The disappearence of γH2AX involves at least in part, dephosphorylation by phosphatases, phosphatase 2A and phosphatase 4C5,6. Further, removal of γH2AX by redistribution involving histone exchange with H2A.Z has been implicated7,8. Importantly, the quantitative analysis of γH2AX foci has led to a wide range of applications in medical and nuclear research. Here, we demonstrate the most commonly used immunofluorescence method for evaluation of initial DNA damage by detection and quantitation of γH2AX foci in γ-irradiated adherent human keratinocytes9.
Medicine, Issue 38, H2AX, DNA double-strand break, DNA damage, chromatin modification, repair, ionising radiation
Play Button
Combined Immunofluorescence and DNA FISH on 3D-preserved Interphase Nuclei to Study Changes in 3D Nuclear Organization
Authors: Julie Chaumeil, Mariann Micsinai, Jane A. Skok.
Institutions: New York University School of Medicine, New York University Center for Health Informatics and Bioinformatics, NYU Cancer Institute, Yale University School of Medicine .
Fluorescent in situ hybridization using DNA probes on 3-dimensionally preserved nuclei followed by 3D confocal microscopy (3D DNA FISH) represents the most direct way to visualize the location of gene loci, chromosomal sub-regions or entire territories in individual cells. This type of analysis provides insight into the global architecture of the nucleus as well as the behavior of specific genomic loci and regions within the nuclear space. Immunofluorescence, on the other hand, permits the detection of nuclear proteins (modified histones, histone variants and modifiers, transcription machinery and factors, nuclear sub-compartments, etc). The major challenge in combining immunofluorescence and 3D DNA FISH is, on the one hand to preserve the epitope detected by the antibody as well as the 3D architecture of the nucleus, and on the other hand, to allow the penetration of the DNA probe to detect gene loci or chromosome territories 1-5. Here we provide a protocol that combines visualization of chromatin modifications with genomic loci in 3D preserved nuclei.
Genetics, Issue 72, Molecular Biology, Bioinformatics, Cancer Biology, Pathology, Biomedical Engineering, Immunology, Intranuclear Space, Nuclear Matrix, Fluorescence in situ Hybridization, FISH, 3D DNA FISH, DNA, immunofluorescence, immuno-FISH, 3D microscopy, Nuclear organization, interphase nuclei, chromatin modifications
Play Button
Ex vivo Culture of Drosophila Pupal Testis and Single Male Germ-line Cysts: Dissection, Imaging, and Pharmacological Treatment
Authors: Stefanie M. K. Gärtner, Christina Rathke, Renate Renkawitz-Pohl, Stephan Awe.
Institutions: Philipps-Universität Marburg, Philipps-Universität Marburg.
During spermatogenesis in mammals and in Drosophila melanogaster, male germ cells develop in a series of essential developmental processes. This includes differentiation from a stem cell population, mitotic amplification, and meiosis. In addition, post-meiotic germ cells undergo a dramatic morphological reshaping process as well as a global epigenetic reconfiguration of the germ line chromatin—the histone-to-protamine switch. Studying the role of a protein in post-meiotic spermatogenesis using mutagenesis or other genetic tools is often impeded by essential embryonic, pre-meiotic, or meiotic functions of the protein under investigation. The post-meiotic phenotype of a mutant of such a protein could be obscured through an earlier developmental block, or the interpretation of the phenotype could be complicated. The model organism Drosophila melanogaster offers a bypass to this problem: intact testes and even cysts of germ cells dissected from early pupae are able to develop ex vivo in culture medium. Making use of such cultures allows microscopic imaging of living germ cells in testes and of germ-line cysts. Importantly, the cultivated testes and germ cells also become accessible to pharmacological inhibitors, thereby permitting manipulation of enzymatic functions during spermatogenesis, including post-meiotic stages. The protocol presented describes how to dissect and cultivate pupal testes and germ-line cysts. Information on the development of pupal testes and culture conditions are provided alongside microscope imaging data of live testes and germ-line cysts in culture. We also describe a pharmacological assay to study post-meiotic spermatogenesis, exemplified by an assay targeting the histone-to-protamine switch using the histone acetyltransferase inhibitor anacardic acid. In principle, this cultivation method could be adapted to address many other research questions in pre- and post-meiotic spermatogenesis.
Developmental Biology, Issue 91, Ex vivo culture, testis, male germ-line cells, Drosophila, imaging, pharmacological assay
Play Button
Fluorescence-based Monitoring of PAD4 Activity via a Pro-fluorescence Substrate Analog
Authors: Mary J. Sabulski, Jonathan M. Fura, Marcos M. Pires.
Institutions: Lehigh University.
Post-translational modifications may lead to altered protein functional states by increasing the covalent variations on the side chains of many protein substrates. The histone tails represent one of the most heavily modified stretches within all human proteins. Peptidyl-arginine deiminase 4 (PAD4) has been shown to convert arginine residues into the non-genetically encoded citrulline residue. Few assays described to date have been operationally facile with satisfactory sensitivity. Thus, the lack of adequate assays has likely contributed to the absence of potent non-covalent PAD4 inhibitors. Herein a novel fluorescence-based assay that allows for the monitoring of PAD4 activity is described. A pro-fluorescent substrate analog was designed to link PAD4 enzymatic activity to fluorescence liberation upon the addition of the protease trypsin. It was shown that the assay is compatible with high-throughput screening conditions and has a strong signal-to-noise ratio. Furthermore, the assay can also be performed with crude cell lysates containing over-expressed PAD4.
Chemistry, Issue 93, PAD4, PADI4, citrullination, arginine, post-translational modification, HTS, assay, fluorescence, citrulline
Play Button
Expression Analysis of Mammalian Linker-histone Subtypes
Authors: Magdalena Medrzycki, Yunzhe Zhang, Kaixiang Cao, Yuhong Fan.
Institutions: Georgia Institute of Technology .
Linker histone H1 binds to the nucleosome core particle and linker DNA, facilitating folding of chromatin into higher order structure. H1 is essential for mammalian development1 and regulates specific gene expression in vivo2-4. Among the highly conserved histone proteins, the family of H1 linker histones is the most heterogeneous group. There are 11 H1 subtypes in mammals that are differentially regulated during development and in different cell types. These H1 subtypes include 5 somatic H1s (H1a-e), the replacement H10, 4 germ cell specific H1 subtypes, and H1x5. The presence of multiple H1 subtypes that differ in DNA binding affinity and chromatin compaction ability6-9 provides an additional level of modulation of chromatin function. Thus, quantitative expression analysis of individual H1 subtypes, both of mRNA and proteins, is necessary for better understanding of the regulation of higher order chromatin structure and function. Here we describe a set of assays designed for analyzing the expression levels of individual H1 subtypes (Figure 1). mRNA expression of various H1 variant genes is measured by a set of highly sensitive and quantitative reverse transcription-PCR (qRT-PCR) assays, which are faster, more accurate and require much less samples compared with the alternative approach of Northern blot analysis. Unlike most other cellular mRNA messages, mRNAs for most histone genes, including the majority of H1 genes, lack a long polyA tail, but contain a stem-loop structure at the 3' untranslated region (UTR)10. Therefore, cDNAs are prepared from total RNA by reverse transcription using random primers instead of oligo-dT primers. Realtime PCR assays with primers specific to each H1 subtypes (Table 1) are performed to obtain highly quantitative measurement of mRNA levels of individual H1 subtypes. Expression of housekeeping genes are analyzed as controls for normalization. The relative abundance of proteins of each H1 subtype and core histones is obtained through reverse phase high-performance liquid chromatography (RP-HPLC) analysis of total histones extracted from mammalian cells11-13. The HPLC method and elution conditions described here give optimum separations of mouse H1 subtypes. By quantifying the HPLC profile, we calculate the relative proportion of individual H1 subtypes within H1 family, as well as determine the H1 to nucleosome ratio in the cells.
Genetics, Issue 61, H1 linker histones, histone H1 subtypes, chromatin, RT-PCR, HPLC, gene expression
Play Button
Detection of Post-translational Modifications on Native Intact Nucleosomes by ELISA
Authors: Bo Dai, Farida Dahmani, Joseph A. Cichocki, Lindsey C. Swanson, Theodore P. Rasmussen.
Institutions: Stanford University , University of Connecticut, University of Connecticut.
The genome of eukaryotes exists as chromatin which contains both DNA and proteins. The fundamental unit of chromatin is the nucleosome, which contains 146 base pairs of DNA associated with two each of histones H2A, H2B, H3, and H41. The N-terminal tails of histones are rich in lysine and arginine and are modified post-transcriptionally by acetylation, methylation, and other post-translational modifications (PTMs). The PTM configuration of nucleosomes can affect the transcriptional activity of associated DNA, thus providing a mode of gene regulation that is epigenetic in nature 2,3. We developed a method called nucleosome ELISA (NU-ELISA) to quantitatively determine global PTM signatures of nucleosomes extracted from cells. NU-ELISA is more sensitive and quantitative than western blotting, and is useful to interrogate the epiproteomic state of specific cell types. This video journal article shows detailed procedures to perform NU-ELISA analysis.
Cellular Biology, Issue 50, Chromatin, Nucleosome, Epigenetics, ELISA, Histone, Modification, Methylation, Acetylation
Play Button
Multilayer Mounting for Long-term Light Sheet Microscopy of Zebrafish
Authors: Michael Weber, Michaela Mickoleit, Jan Huisken.
Institutions: Max Planck Institute of Molecular Cell Biology and Genetics.
Light sheet microscopy is the ideal imaging technique to study zebrafish embryonic development. Due to minimal photo-toxicity and bleaching, it is particularly suited for long-term time-lapse imaging over many hours up to several days. However, an appropriate sample mounting strategy is needed that offers both confinement and normal development of the sample. Multilayer mounting, a new embedding technique using low-concentration agarose in optically clear tubes, now overcomes this limitation and unleashes the full potential of light sheet microscopy for real-time developmental biology.
Developmental Biology, Issue 84, zebrafish, Danio rerio, light sheet microscopy, Selective Plane Illumination Microscopy, sample mounting, time lapse microscopy, long-term imaging
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.