JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Mda-9/syntenin is expressed in uveal melanoma and correlates with metastatic progression.
Uveal melanoma is an aggressive cancer that metastasizes to the liver in about half of the patients, with a high lethality rate. Identification of patients at high risk of metastases may provide indication for a frequent follow-up for early detection of metastases and treatment. The analysis of the gene expression profiles of primary human uveal melanomas showed high expression of SDCBP gene (encoding for syndecan-binding protein-1 or mda-9/syntenin), which appeared higher in patients with recurrence, whereas expression of syndecans was lower and unrelated to progression. Moreover, we found that high expression of SDCBP gene was related to metastatic progression in two additional independent datasets of uveal melanoma patients. More importantly, immunohistochemistry showed that high expression of mda-9/syntenin protein in primary tumors was significantly related to metastatic recurrence in our cohort of patients. Mda-9/syntenin expression was confirmed by RT-PCR, immunofluorescence and immunohistochemistry in cultured uveal melanoma cells or primary tumors. Interestingly, mda-9/syntenin showed both cytoplasmic and nuclear localization in cell lines and in a fraction of patients, suggesting its possible involvement in nuclear functions. A pseudo-metastatic model of uveal melanoma to the liver was developed in NOD/SCID/IL2R? null mice and the study of mda-9/syntenin expression in primary and metastatic lesions revealed higher mda-9/syntenin in metastases. The inhibition of SDCBP expression by siRNA impaired the ability of uveal melanoma cells to migrate in a wound-healing assay. Moreover, silencing of SDCBP in mda-9/syntenin-high uveal melanoma cells inhibited the hepatocyte growth factor (HGF)-triggered invasion of matrigel membranes and inhibited the activation of FAK, AKT and Src. Conversely syntenin overexpression in mda-9/syntenin-low uveal melanoma cells mediated opposite effects. These results suggest that mda-9/syntenin is involved in uveal melanoma progression and that it warrants further investigation as a candidate molecular marker of metastases and a potential therapeutic target.
Breast cancer brain metastasis, occurring in 30% of breast cancer patients at stage IV, is associated with high mortality. The median survival is only 6 months. It is critical to have suitable animal models to mimic the hemodynamic spread of the metastatic cells in the clinical scenario. Here, we are introducing the use of small animal ultrasound imaging to guide an accurate injection of brain tropical breast cancer cells into the left ventricle of athymic nude mice. Longitudinal MRI is used to assessing intracranial initiation and growth of brain metastases. Ultrasound-guided intracardiac injection ensures not only an accurate injection and hereby a higher successful rate but also significantly decreased mortality rate, as compared to our previous manual procedure. In vivo high resolution MRI allows the visualization of hyperintense multifocal lesions, as small as 310 µm in diameter on T2-weighted images at 3 weeks post injection. Follow-up MRI reveals intracranial tumor growth and increased number of metastases that distribute throughout the whole brain.
19 Related JoVE Articles!
Play Button
The Three-Dimensional Human Skin Reconstruct Model: a Tool to Study Normal Skin and Melanoma Progression
Authors: Ling Li, Mizuho Fukunaga-Kalabis, Meenhard Herlyn.
Institutions: The Wistar Institute.
Most in vitro studies in experimental skin biology have been done in 2-dimensional (2D) monocultures, while accumulating evidence suggests that cells behave differently when they are grown within a 3D extra-cellular matrix and also interact with other cells (1-5). Mouse models have been broadly utilized to study tissue morphogenesis in vivo. However mouse and human skin have significant differences in cellular architecture and physiology, which makes it difficult to extrapolate mouse studies to humans. Since melanocytes in mouse skin are mostly localized in hair follicles, they have distinct biological properties from those of humans, which locate primarily at the basal layer of the epidermis. The recent development of 3D human skin reconstruct models has enabled the field to investigate cell-matrix and cell-cell interactions between different cell types. The reconstructs consist of a "dermis" with fibroblasts embedded in a collagen I matrix, an "epidermis", which is comprised of stratified, differentiated keratinocytes and a functional basement membrane, which separates epidermis from dermis. Collagen provides scaffolding, nutrient delivery, and potential for cell-to-cell interaction. The 3D skin models incorporating melanocytic cells recapitulate natural features of melanocyte homeostasis and melanoma progression in human skin. As in vivo, melanocytes in reconstructed skin are localized at the basement membrane interspersed with basal layer keratinocytes. Melanoma cells exhibit the same characteristics reflecting the original tumor stage (RGP, VGP and metastatic melanoma cells) in vivo. Recently, dermal stem cells have been identified in the human dermis (6). These multi-potent stem cells can migrate to the epidermis and differentiate to melanocytes.
Bioengineering, Issue 54, 3D model, melanocyte, melanoma, skin
Play Button
Experimental Metastasis and CTL Adoptive Transfer Immunotherapy Mouse Model
Authors: Mary Zimmerman, Xiaolin Hu, Kebin Liu.
Institutions: Medical College of Georgia.
Experimental metastasis mouse model is a simple and yet physiologically relevant metastasis model. The tumor cells are injected intravenously (i.v) into mouse tail veins and colonize in the lungs, thereby, resembling the last steps of tumor cell spontaneous metastasis: survival in the circulation, extravasation and colonization in the distal organs. From a therapeutic point of view, the experimental metastasis model is the simplest and ideal model since the target of therapies is often the end point of metastasis: established metastatic tumor in the distal organ. In this model, tumor cells are injected i.v into mouse tail veins and allowed to colonize and grow in the lungs. Tumor-specific CTLs are then injected i.v into the metastases-bearing mouse. The number and size of the lung metastases can be controlled by the number of tumor cells to be injected and the time of tumor growth. Therefore, various stages of metastasis, from minimal metastasis to extensive metastasis, can be modeled. Lung metastases are analyzed by inflation with ink, thus allowing easier visual observation and quantification.
Immunology, Issue 45, Metastasis, CTL adoptive transfer, Lung, Tumor Immunology
Play Button
Electrochemotherapy of Tumours
Authors: Gregor Sersa, Damijan Miklavcic.
Institutions: Institute of Oncology Ljubljana, University of Ljubljana.
Electrochemotherapy is a combined use of certain chemotherapeutic drugs and electric pulses applied to the treated tumour nodule. Local application of electric pulses to the tumour increases drug delivery into cells, specifically at the site of electric pulse application. Drug uptake by delivery of electric pulses is increased for only those chemotherapeutic drugs whose transport through the plasma membrane is impeded. Among many drugs that have been tested so far, bleomycin and cisplatin found their way from preclinical testing to clinical use. Clinical data collected within a number of clinical studies indicate that approximately 80% of the treated cutaneous and subcutaneous tumour nodules of different malignancies are in an objective response, from these, approximately 70% in complete response after a single application of electrochemotherapy. Usually only one treatment is needed, however, electrochemotherapy can be repeated several times every few weeks with equal effectiveness each time. The treatment results in an effective eradication of the treated nodules, with a good cosmetic effect without tissue scarring.
Medicine, Issue 22, electrochemotherapy, electroporation, cisplatin, bleomycin, malignant tumours, cutaneous lesions
Play Button
In vivo Bioluminescence Imaging of Tumor Hypoxia Dynamics of Breast Cancer Brain Metastasis in a Mouse Model
Authors: Debabrata Saha, Henry Dunn, Heling Zhou, Hiroshi Harada, Masahiro Hiraoka, Ralph P. Mason, Dawen Zhao.
Institutions: University of Texas Southwestern Medical Center , University of Texas Southwestern Medical Center , Kyoto University Graduate School of Medicine.
It is well recognized that tumor hypoxia plays an important role in promoting malignant progression and affecting therapeutic response negatively. There is little knowledge about in situ, in vivo, tumor hypoxia during intracranial development of malignant brain tumors because of lack of efficient means to monitor it in these deep-seated orthotopic tumors. Bioluminescence imaging (BLI), based on the detection of light emitted by living cells expressing a luciferase gene, has been rapidly adopted for cancer research, in particular, to evaluate tumor growth or tumor size changes in response to treatment in preclinical animal studies. Moreover, by expressing a reporter gene under the control of a promoter sequence, the specific gene expression can be monitored non-invasively by BLI. Under hypoxic stress, signaling responses are mediated mainly via the hypoxia inducible factor-1α (HIF-1α) to drive transcription of various genes. Therefore, we have used a HIF-1α reporter construct, 5HRE-ODD-luc, stably transfected into human breast cancer MDA-MB231 cells (MDA-MB231/5HRE-ODD-luc). In vitro HIF-1α bioluminescence assay is performed by incubating the transfected cells in a hypoxic chamber (0.1% O2) for 24 hr before BLI, while the cells in normoxia (21% O2) serve as a control. Significantly higher photon flux observed for the cells under hypoxia suggests an increased HIF-1α binding to its promoter (HRE elements), as compared to those in normoxia. Cells are injected directly into the mouse brain to establish a breast cancer brain metastasis model. In vivo bioluminescence imaging of tumor hypoxia dynamics is initiated 2 wks after implantation and repeated once a week. BLI reveals increasing light signals from the brain as the tumor progresses, indicating increased intracranial tumor hypoxia. Histological and immunohistochemical studies are used to confirm the in vivo imaging results. Here, we will introduce approaches of in vitro HIF-1α bioluminescence assay, surgical establishment of a breast cancer brain metastasis in a nude mouse and application of in vivo bioluminescence imaging to monitor intracranial tumor hypoxia.
Medicine, Issue 56, bioluminescence imaging (BLI), tumor hypoxia dynamics, hypoxia inducible factor-1α (HIF-1α), breast cancer brain metastasis
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
Play Button
A Next-generation Tissue Microarray (ngTMA) Protocol for Biomarker Studies
Authors: Inti Zlobec, Guido Suter, Aurel Perren, Alessandro Lugli.
Institutions: University of Bern.
Biomarker research relies on tissue microarrays (TMA). TMAs are produced by repeated transfer of small tissue cores from a ‘donor’ block into a ‘recipient’ block and then used for a variety of biomarker applications. The construction of conventional TMAs is labor intensive, imprecise, and time-consuming. Here, a protocol using next-generation Tissue Microarrays (ngTMA) is outlined. ngTMA is based on TMA planning and design, digital pathology, and automated tissue microarraying. The protocol is illustrated using an example of 134 metastatic colorectal cancer patients. Histological, statistical and logistical aspects are considered, such as the tissue type, specific histological regions, and cell types for inclusion in the TMA, the number of tissue spots, sample size, statistical analysis, and number of TMA copies. Histological slides for each patient are scanned and uploaded onto a web-based digital platform. There, they are viewed and annotated (marked) using a 0.6-2.0 mm diameter tool, multiple times using various colors to distinguish tissue areas. Donor blocks and 12 ‘recipient’ blocks are loaded into the instrument. Digital slides are retrieved and matched to donor block images. Repeated arraying of annotated regions is automatically performed resulting in an ngTMA. In this example, six ngTMAs are planned containing six different tissue types/histological zones. Two copies of the ngTMAs are desired. Three to four slides for each patient are scanned; 3 scan runs are necessary and performed overnight. All slides are annotated; different colors are used to represent the different tissues/zones, namely tumor center, invasion front, tumor/stroma, lymph node metastases, liver metastases, and normal tissue. 17 annotations/case are made; time for annotation is 2-3 min/case. 12 ngTMAs are produced containing 4,556 spots. Arraying time is 15-20 hr. Due to its precision, flexibility and speed, ngTMA is a powerful tool to further improve the quality of TMAs used in clinical and translational research.
Medicine, Issue 91, tissue microarray, biomarkers, prognostic, predictive, digital pathology, slide scanning
Play Button
An Orthotopic Murine Model of Human Prostate Cancer Metastasis
Authors: Janet Pavese, Irene M. Ogden, Raymond C. Bergan.
Institutions: Northwestern University, Northwestern University, Northwestern University.
Our laboratory has developed a novel orthotopic implantation model of human prostate cancer (PCa). As PCa death is not due to the primary tumor, but rather the formation of distinct metastasis, the ability to effectively model this progression pre-clinically is of high value. In this model, cells are directly implanted into the ventral lobe of the prostate in Balb/c athymic mice, and allowed to progress for 4-6 weeks. At experiment termination, several distinct endpoints can be measured, such as size and molecular characterization of the primary tumor, the presence and quantification of circulating tumor cells in the blood and bone marrow, and formation of metastasis to the lung. In addition to a variety of endpoints, this model provides a picture of a cells ability to invade and escape the primary organ, enter and survive in the circulatory system, and implant and grow in a secondary site. This model has been used effectively to measure metastatic response to both changes in protein expression as well as to response to small molecule therapeutics, in a short turnaround time.
Medicine, Issue 79, Urogenital System, Male Urogenital Diseases, Surgical Procedures, Operative, Life Sciences (General), Prostate Cancer, Metastasis, Mouse Model, Drug Discovery, Molecular Biology
Play Button
Polymalic Acid-based Nano Biopolymers for Targeting of Multiple Tumor Markers: An Opportunity for Personalized Medicine?
Authors: Julia Y. Ljubimova, Hui Ding, Jose Portilla-Arias, Rameshwar Patil, Pallavi R. Gangalum, Alexandra Chesnokova, Satoshi Inoue, Arthur Rekechenetskiy, Tala Nassoura, Keith L. Black, Eggehard Holler.
Institutions: Cedars-Sinai Medical Center.
Tumors with similar grade and morphology often respond differently to the same treatment because of variations in molecular profiling. To account for this diversity, personalized medicine is developed for silencing malignancy associated genes. Nano drugs fit these needs by targeting tumor and delivering antisense oligonucleotides for silencing of genes. As drugs for the treatment are often administered repeatedly, absence of toxicity and negligible immune response are desirable. In the example presented here, a nano medicine is synthesized from the biodegradable, non-toxic and non-immunogenic platform polymalic acid by controlled chemical ligation of antisense oligonucleotides and tumor targeting molecules. The synthesis and treatment is exemplified for human Her2-positive breast cancer using an experimental mouse model. The case can be translated towards synthesis and treatment of other tumors.
Chemistry, Issue 88, Cancer treatment, personalized medicine, polymalic acid, nanodrug, biopolymer, targeting, host compatibility, biodegradability
Play Button
An In Vitro System to Study Tumor Dormancy and the Switch to Metastatic Growth
Authors: Dalit Barkan, Jeffrey E. Green.
Institutions: University of Haifa, National Cancer Institute.
Recurrence of breast cancer often follows a long latent period in which there are no signs of cancer, and metastases may not become clinically apparent until many years after removal of the primary tumor and adjuvant therapy. A likely explanation of this phenomenon is that tumor cells have seeded metastatic sites, are resistant to conventional therapies, and remain dormant for long periods of time 1-4. The existence of dormant cancer cells at secondary sites has been described previously as quiescent solitary cells that neither proliferate nor undergo apoptosis 5-7. Moreover, these solitary cells has been shown to disseminate from the primary tumor at an early stage of disease progression 8-10 and reside growth-arrested in the patients' bone marrow, blood and lymph nodes 1,4,11. Therefore, understanding mechanisms that regulate dormancy or the switch to a proliferative state is critical for discovering novel targets and interventions to prevent disease recurrence. However, unraveling the mechanisms regulating the switch from tumor dormancy to metastatic growth has been hampered by the lack of available model systems. in vivo and ex vivo model systems to study metastatic progression of tumor cells have been described previously 1,12-14. However these model systems have not provided in real time and in a high throughput manner mechanistic insights into what triggers the emergence of solitary dormant tumor cells to proliferate as metastatic disease. We have recently developed a 3D in vitro system to model the in vivo growth characteristics of cells that exhibit either dormant (D2.OR, MCF7, K7M2-AS.46) or proliferative (D2A1, MDA-MB-231, K7M2) metastatic behavior in vivo . We demonstrated that tumor cells that exhibit dormancy in vivo at a metastatic site remain quiescent when cultured in a 3-dimension (3D) basement membrane extract (BME), whereas cells highly metastatic in vivo readily proliferate in 3D culture after variable, but relatively short periods of quiescence. Importantly by utilizing the 3D in vitro model system we demonstrated for the first time that the ECM composition plays an important role in regulating whether dormant tumor cells will switch to a proliferative state and have confirmed this in in vivo studies15-17. Hence, the model system described in this report provides an in vitro method to model tumor dormancy and study the transition to proliferative growth induced by the microenvironment.
Medicine, Issue 54, Tumor dormancy, cancer recurrence, metastasis, reconstituted basement membrane extract (BME), 3D culture, breast cancer
Play Button
Models of Bone Metastasis
Authors: J. Preston Campbell, Alyssa R. Merkel, S. Kathryn Masood-Campbell, Florent Elefteriou, Julie A. Sterling.
Institutions: Vanderbilt University, Vanderbilt University, Tennessee Valley Healthcare System (VISN 9), Vanderbilt University, Vanderbilt University.
Bone metastases are a common occurrence in several malignancies, including breast, prostate, and lung. Once established in bone, tumors are responsible for significant morbidity and mortality1. Thus, there is a significant need to understand the molecular mechanisms controlling the establishment, growth and activity of tumors in bone. Several in vivo models have been established to study these events and each has specific benefits and limitations. The most commonly used model utilizes intracardiac inoculation of tumor cells directly into the arterial blood supply of athymic (nude) BalbC mice. This procedure can be applied to many different tumor types (including PC-3 prostate cancer, lung carcinoma, and mouse mammary fat pad tumors); however, in this manuscript we will focus on the breast cancer model, MDA-MB-231. In this model we utilize a highly bone-selective clone, originally derived in Dr. Mundy's group in San Antonio2, that has since been transfected for GFP expression and re-cloned by our group3. This clone is a bone metastatic variant with a high rate of osteotropism and very little metastasis to lung, liver, or adrenal glands. While intracardiac injections are most commonly used for studies of bone metastasis2, in certain instances intratibial4 or mammary fat pad injections are more appropriate. Intracardiac injections are typically performed when using human tumor cells with the goal of monitoring later stages of metastasis, specifically the ability of cancer cells to arrest in bone, survive, proliferate, and establish tumors that develop into cancer-induced bone disease. Intratibial injections are performed if focusing on the relationship of cancer cells and bone after a tumor has metastasized to bone, which correlates roughly to established metastatic bone disease. Neither of these models recapitulates early steps in the metastatic process prior to embolism and entry of tumor cells into the circulation. If monitoring primary tumor growth or metastasis from the primary site to bone, then mammary fat pad inoculations are usually preferred; however, very few tumor cell lines will consistently metastasize to bone from the primary site, with 4T1 bone-preferential clones, a mouse mammary carcinoma, being the exception 5,6. This manuscript details inoculation procedures and highlights key steps in post inoculation analyses. Specifically, it includes cell culture, tumor cell inoculation procedures for intracardiac and intratibial inoculations, as well as brief information regarding weekly monitoring by x-ray, fluorescence and histomorphometric analyses.
Medicine, Issue 67, Mouse models of bone metastasis, breast cancer, cancer biology, intracardiac injections, intratibial injections, tumor cells
Play Button
Bioluminescent Orthotopic Model of Pancreatic Cancer Progression
Authors: Ming G. Chai, Corina Kim-Fuchs, Eliane Angst, Erica K. Sloan.
Institutions: Monash University, University of Bern, University of California Los Angeles .
Pancreatic cancer has an extremely poor five-year survival rate of 4-6%. New therapeutic options are critically needed and depend on improved understanding of pancreatic cancer biology. To better understand the interaction of cancer cells with the pancreatic microenvironment, we demonstrate an orthotopic model of pancreatic cancer that permits non-invasive monitoring of cancer progression. Luciferase-tagged pancreatic cancer cells are resuspended in Matrigel and delivered into the pancreatic tail during laparotomy. Matrigel solidifies at body temperature to prevent leakage of cancer cells during injection. Primary tumor growth and metastasis to distant organs are monitored following injection of the luciferase substrate luciferin, using in vivo imaging of bioluminescence emission from the cancer cells. In vivo imaging also may be used to track primary tumor recurrence after resection. This orthotopic model is suited to both syngeneic and xenograft models and may be used in pre-clinical trials to investigate the impact of novel anti-cancer therapeutics on the growth of the primary pancreatic tumor and metastasis.
Cancer Biology, Issue 76, Medicine, Molecular Biology, Cellular Biology, Genetics, Biomedical Engineering, Surgery, Neoplasms, Pancreatic Cancer, Cancer, Orthotopic Model, Bioluminescence, In Vivo Imaging, Matrigel, Metastasis, pancreas, tumor, cancer, cell culture, laparotomy, animal model, imaging
Play Button
Analysis of Cell Migration within a Three-dimensional Collagen Matrix
Authors: Nadine Rommerswinkel, Bernd Niggemann, Silvia Keil, Kurt S. Zänker, Thomas Dittmar.
Institutions: Witten/Herdecke University.
The ability to migrate is a hallmark of various cell types and plays a crucial role in several physiological processes, including embryonic development, wound healing, and immune responses. However, cell migration is also a key mechanism in cancer enabling these cancer cells to detach from the primary tumor to start metastatic spreading. Within the past years various cell migration assays have been developed to analyze the migratory behavior of different cell types. Because the locomotory behavior of cells markedly differs between a two-dimensional (2D) and three-dimensional (3D) environment it can be assumed that the analysis of the migration of cells that are embedded within a 3D environment would yield in more significant cell migration data. The advantage of the described 3D collagen matrix migration assay is that cells are embedded within a physiological 3D network of collagen fibers representing the major component of the extracellular matrix. Due to time-lapse video microscopy real cell migration is measured allowing the determination of several migration parameters as well as their alterations in response to pro-migratory factors or inhibitors. Various cell types could be analyzed using this technique, including lymphocytes/leukocytes, stem cells, and tumor cells. Likewise, also cell clusters or spheroids could be embedded within the collagen matrix concomitant with analysis of the emigration of single cells from the cell cluster/ spheroid into the collagen lattice. We conclude that the 3D collagen matrix migration assay is a versatile method to analyze the migration of cells within a physiological-like 3D environment.
Bioengineering, Issue 92, cell migration, 3D collagen matrix, cell tracking
Play Button
Adaptation of Semiautomated Circulating Tumor Cell (CTC) Assays for Clinical and Preclinical Research Applications
Authors: Lori E. Lowes, Benjamin D. Hedley, Michael Keeney, Alison L. Allan.
Institutions: London Health Sciences Centre, Western University, London Health Sciences Centre, Lawson Health Research Institute, Western University.
The majority of cancer-related deaths occur subsequent to the development of metastatic disease. This highly lethal disease stage is associated with the presence of circulating tumor cells (CTCs). These rare cells have been demonstrated to be of clinical significance in metastatic breast, prostate, and colorectal cancers. The current gold standard in clinical CTC detection and enumeration is the FDA-cleared CellSearch system (CSS). This manuscript outlines the standard protocol utilized by this platform as well as two additional adapted protocols that describe the detailed process of user-defined marker optimization for protein characterization of patient CTCs and a comparable protocol for CTC capture in very low volumes of blood, using standard CSS reagents, for studying in vivo preclinical mouse models of metastasis. In addition, differences in CTC quality between healthy donor blood spiked with cells from tissue culture versus patient blood samples are highlighted. Finally, several commonly discrepant items that can lead to CTC misclassification errors are outlined. Taken together, these protocols will provide a useful resource for users of this platform interested in preclinical and clinical research pertaining to metastasis and CTCs.
Medicine, Issue 84, Metastasis, circulating tumor cells (CTCs), CellSearch system, user defined marker characterization, in vivo, preclinical mouse model, clinical research
Play Button
Patient Derived Cell Culture and Isolation of CD133+ Putative Cancer Stem Cells from Melanoma
Authors: Yvonne Welte, Cathrin Davies, Reinhold Schäfer, Christian R.A. Regenbrecht.
Institutions: Charité - Universitätsmedizin Berlin, Free University Berlin, Charité - Universitätsmedizin Berlin, Charité - Universitätsmedizin Berlin.
Despite improved treatments options for melanoma available today, patients with advanced malignant melanoma still have a poor prognosis for progression-free and overall survival. Therefore, translational research needs to provide further molecular evidence to improve targeted therapies for malignant melanomas. In the past, oncogenic mechanisms related to melanoma were extensively studied in established cell lines. On the way to more personalized treatment regimens based on individual genetic profiles, we propose to use patient-derived cell lines instead of generic cell lines. Together with high quality clinical data, especially on patient follow-up, these cells will be instrumental to better understand the molecular mechanisms behind melanoma progression. Here, we report the establishment of primary melanoma cultures from dissected fresh tumor tissue. This procedure includes mincing and dissociation of the tissue into single cells, removal of contaminations with erythrocytes and fibroblasts as well as primary culture and reliable verification of the cells' melanoma origin. Recent reports revealed that melanomas, like the majority of tumors, harbor a small subpopulation of cancer stem cells (CSCs), which seem to exclusively fuel tumor initiation and progression towards the metastatic state. One of the key markers for CSC identification and isolation in melanoma is CD133. To isolate CD133+ CSCs from primary melanoma cultures, we have modified and optimized the Magnetic-Activated Cell Sorting (MACS) procedure from Miltenyi resulting in high sorting purity and viability of CD133+ CSCs and CD133- bulk, which can be cultivated and functionally analyzed thereafter.
Cancer Biology, Issue 73, Medicine, Stem Cell Biology, Cellular Biology, Molecular Biology, Biomedical Engineering, Genetics, Oncology, Primary cell culture, melanoma, MACS, cancer stem cells, CD133, cancer, prostate cancer cells, melanoma, stem cells, cell culture, personalized treatment
Play Button
In vitro Method to Observe E-selectin-mediated Interactions Between Prostate Circulating Tumor Cells Derived From Patients and Human Endothelial Cells
Authors: Gunjan Gakhar, Neil H. Bander, David M. Nanus.
Institutions: Weill Cornell Medical College, Weill Cornell Medical College.
Metastasis is a process in which tumor cells shed from the primary tumor intravasate blood vascular and lymphatic system, thereby, gaining access to extravasate and form a secondary niche. The extravasation of tumor cells from the blood vascular system can be studied using endothelial cells (ECs) and tumor cells obtained from different cell lines. Initial studies were conducted using static conditions but it has been well documented that ECs behave differently under physiological flow conditions. Therefore, different flow chamber assemblies are currently being used to studying cancer cell interactions with ECs. Current flow chamber assemblies offer reproducible results using either different cell lines or fluid at different shear stress conditions. However, to observe and study interactions with rare cells such as circulating tumor cells (CTCs), certain changes are required to be made to the conventional flow chamber assembly. CTCs are a rare cell population among millions of blood cells. Consequently, it is difficult to obtain a pure population of CTCs. Contamination of CTCs with different types of cells normally found in the circulation is inevitable using present enrichment or depletion techniques. In the present report, we describe a unique method to fluorescently label circulating prostate cancer cells and study their interactions with ECs in a self-assembled flow chamber system. This technique can be further applied to observe interactions between prostate CTCs and any protein of interest.
Medicine, Issue 87, E-selectin, Metastasis, Microslides, Circulating tumor cells, PSMA, Prostate cancer, rolling velocity, immunostaining, HUVECs, flow chambers
Play Button
A Matrigel-Based Tube Formation Assay to Assess the Vasculogenic Activity of Tumor Cells
Authors: Ralph A. Francescone III, Michael Faibish, Rong Shao.
Institutions: University of Massachusetts, University of Massachusetts, University of Massachusetts.
Over the past several decades, a tube formation assay using growth factor-reduced Matrigel has been typically employed to demonstrate the angiogenic activity of vascular endothelial cells in vitro1-5. However, recently growing evidence has shown that this assay is not limited to test vascular behavior for endothelial cells. Instead, it also has been used to test the ability of a number of tumor cells to develop a vascular phenotype6-8. This capability was consistent with their vasculogenic behavior identified in xenotransplanted animals, a process known as vasculogenic mimicry (VM)9. There is a multitude of evidence demonstrating that tumor cell-mediated VM plays a vital role in the tumor development, independent of endothelial cell angiogenesis6, 10-13. For example, tumor cells were found to participate in the blood perfused, vascular channel formation in tissue samples from melanoma and glioblastoma patients8, 10, 11. Here, we described this tubular network assay as a useful tool in evaluation of vasculogenic activity of tumor cells. We found that some tumor cell lines such as melanoma B16F1 cells, glioblastoma U87 cells, and breast cancer MDA-MB-435 cells are able to form vascular tubules; but some do not such as colon cancer HCT116 cells. Furthermore, this vascular phenotype is dependent on cell numbers plated on the Matrigel. Therefore, this assay may serve as powerful utility to screen the vascular potential of a variety of cell types including vascular cells, tumor cells as well as other cells.
Cancer Biology, Issue 55, tumor, vascular, endothelial, tube formation, Matrigel, in vitro
Play Button
Experimental Metastasis Assay
Authors: Sonali Mohanty, Lei Xu.
Institutions: University of Rochester Medical Center, University of Rochester Medical Center.
Metastasis is the leading cause of death in cancer patients. To understand the mechanism of metastasis, an experimental metastasis assay was established using immunodeficient mice. This article delineates the procedures involved in this assay, including sample preparation, intravenous injection, and culturing cells from lung metastases. Briefly, a pre-determined number of human cancer cells were prepared in vitro and directly injected into the circulation of immunodeficient mice through their tail veins. A small number of cells survive the turbulence in the circulation and grow as metastases in internal organs, such as lung. The injected mice are dissected after a certain period. The tissue distribution of metastases is determined under a dissecting microscope. The number of metastases in a specific tissue is counted and it directly correlates with the metastatic ability of the injected cancer cells. The arisen metastases are isolated and cultured in vitro as cell lines, which often show enhanced metastatic abilities than the parental line when injected again into immunodeficient mice. These highly metastatic derivatives become useful tools for identifying genes or molecular pathways that regulate metastatic progression.
medicine, Issue 42, cancer, metastasis, experimental, mouse, intravenous injection, lung
Play Button
Quantification of Breast Cancer Cell Invasiveness Using a Three-dimensional (3D) Model
Authors: Donna Cvetković, Cameron Glenn-Franklin Goertzen, Moshmi Bhattacharya.
Institutions: University of Western Ontario, University of Western Ontario, Lawson Health Research Institute.
It is now well known that the cellular and tissue microenvironment are critical regulators influencing tumor initiation and progression. Moreover, the extracellular matrix (ECM) has been demonstrated to be a critical regulator of cell behavior in culture and homeostasis in vivo. The current approach of culturing cells on two-dimensional (2D), plastic surfaces results in the disturbance and loss of complex interactions between cells and their microenvironment. Through the use of three-dimensional (3D) culture assays, the conditions for cell-microenvironment interaction are established resembling the in vivo microenvironment. This article provides a detailed methodology to grow breast cancer cells in a 3D basement membrane protein matrix, exemplifying the potential of 3D culture in the assessment of cell invasion into the surrounding environment. In addition, we discuss how these 3D assays have the potential to examine the loss of signaling molecules that regulate epithelial morphology by immunostaining procedures. These studies aid to identify important mechanistic details into the processes regulating invasion, required for the spread of breast cancer.
Medicine, Issue 88, Breast cancer, cell invasion, extracellular matrix (ECM), three-dimensional (3D) cultures, immunocytochemistry, Matrigel, basement membrane matrix
Play Button
Monitoring Tumor Metastases and Osteolytic Lesions with Bioluminescence and Micro CT Imaging
Authors: Ed Lim, Kshitij Modi, Anna Christensen, Jeff Meganck, Stephen Oldfield, Ning Zhang.
Institutions: Caliper Life Sciences.
Following intracardiac delivery of MDA-MB-231-luc-D3H2LN cells to Nu/Nu mice, systemic metastases developed in the injected animals. Bioluminescence imaging using IVIS Spectrum was employed to monitor the distribution and development of the tumor cells following the delivery procedure including DLIT reconstruction to measure the tumor signal and its location. Development of metastatic lesions to the bone tissues triggers osteolytic activity and lesions to tibia and femur were evaluated longitudinally using micro CT. Imaging was performed using a Quantum FX micro CT system with fast imaging and low X-ray dose. The low radiation dose allows multiple imaging sessions to be performed with a cumulative X-ray dosage far below LD50. A mouse imaging shuttle device was used to sequentially image the mice with both IVIS Spectrum and Quantum FX achieving accurate animal positioning in both the bioluminescence and CT images. The optical and CT data sets were co-registered in 3-dimentions using the Living Image 4.1 software. This multi-mode approach allows close monitoring of tumor growth and development simultaneously with osteolytic activity.
Medicine, Issue 50, osteolytic lesions, micro CT, tumor, bioluminescence, in vivo, imaging, IVIS, luciferase, low dose, co-registration, 3D reconstruction
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.