JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
A switch in hepatic cortisol metabolism across the spectrum of non alcoholic fatty liver disease.
PLoS ONE
Non alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome. NAFLD represents a spectrum of liver disease ranging from reversible hepatic steatosis, to non alcoholic steato-hepatitis (NASH) and cirrhosis. The potential role of glucocorticoids (GC) in the pathogenesis of NAFLD is highlighted in patients with GC excess, Cushings syndrome, who develop central adiposity, insulin resistance and in 20% of cases, NAFLD. Although in most cases of NAFLD, circulating cortisol levels are normal, hepatic cortisol availability is controlled by enzymes that regenerate cortisol (F) from inactive cortisone (E) (11?-hydroxysteroid dehydrogenase type 1, 11?-HSD1), or inactivate cortisol through A-ring metabolism (5?- and 5?-reductase, 5?R and 5?R).
Authors: Kelly A. Bennion, Katherine R. Mickley Steinmetz, Elizabeth A. Kensinger, Jessica D. Payne.
Published: 06-18-2014
ABSTRACT
Although rises in cortisol can benefit memory consolidation, as can sleep soon after encoding, there is currently a paucity of literature as to how these two factors may interact to influence consolidation. Here we present a protocol to examine the interactive influence of cortisol and sleep on memory consolidation, by combining three methods: eye tracking, salivary cortisol analysis, and behavioral memory testing across sleep and wake delays. To assess resting cortisol levels, participants gave a saliva sample before viewing negative and neutral objects within scenes. To measure overt attention, participants’ eye gaze was tracked during encoding. To manipulate whether sleep occurred during the consolidation window, participants either encoded scenes in the evening, slept overnight, and took a recognition test the next morning, or encoded scenes in the morning and remained awake during a comparably long retention interval. Additional control groups were tested after a 20 min delay in the morning or evening, to control for time-of-day effects. Together, results showed that there is a direct relation between resting cortisol at encoding and subsequent memory, only following a period of sleep. Through eye tracking, it was further determined that for negative stimuli, this beneficial effect of cortisol on subsequent memory may be due to cortisol strengthening the relation between where participants look during encoding and what they are later able to remember. Overall, results obtained by a combination of these methods uncovered an interactive effect of sleep and cortisol on memory consolidation.
21 Related JoVE Articles!
Play Button
Assessing Hepatic Metabolic Changes During Progressive Colonization of Germ-free Mouse by 1H NMR Spectroscopy
Authors: Peter Heath, Sandrine Paule Claus.
Institutions: The University of Reading, The University of Reading .
It is well known that gut bacteria contribute significantly to the host homeostasis, providing a range of benefits such as immune protection and vitamin synthesis. They also supply the host with a considerable amount of nutrients, making this ecosystem an essential metabolic organ. In the context of increasing evidence of the link between the gut flora and the metabolic syndrome, understanding the metabolic interaction between the host and its gut microbiota is becoming an important challenge of modern biology.1-4 Colonization (also referred to as normalization process) designates the establishment of micro-organisms in a former germ-free animal. While it is a natural process occurring at birth, it is also used in adult germ-free animals to control the gut floral ecosystem and further determine its impact on the host metabolism. A common procedure to control the colonization process is to use the gavage method with a single or a mixture of micro-organisms. This method results in a very quick colonization and presents the disadvantage of being extremely stressful5. It is therefore useful to minimize the stress and to obtain a slower colonization process to observe gradually the impact of bacterial establishment on the host metabolism. In this manuscript, we describe a procedure to assess the modification of hepatic metabolism during a gradual colonization process using a non-destructive metabolic profiling technique. We propose to monitor gut microbial colonization by assessing the gut microbial metabolic activity reflected by the urinary excretion of microbial co-metabolites by 1H NMR-based metabolic profiling. This allows an appreciation of the stability of gut microbial activity beyond the stable establishment of the gut microbial ecosystem usually assessed by monitoring fecal bacteria by DGGE (denaturing gradient gel electrophoresis).6 The colonization takes place in a conventional open environment and is initiated by a dirty litter soiled by conventional animals, which will serve as controls. Rodents being coprophagous animals, this ensures a homogenous colonization as previously described.7 Hepatic metabolic profiling is measured directly from an intact liver biopsy using 1H High Resolution Magic Angle Spinning NMR spectroscopy. This semi-quantitative technique offers a quick way to assess, without damaging the cell structure, the major metabolites such as triglycerides, glucose and glycogen in order to further estimate the complex interaction between the colonization process and the hepatic metabolism7-10. This method can also be applied to any tissue biopsy11,12.
Immunology, Issue 58, Germ-free animal, colonization, NMR, HR MAS NMR, metabonomics
3642
Play Button
Visualization and Analysis of Blood Flow and Oxygen Consumption in Hepatic Microcirculation: Application to an Acute Hepatitis Model
Authors: Kosuke Tsukada, Makoto Suematsu.
Institutions: Keio University, Keio University, Japan Science and Technology Agency (JST).
There is a considerable discrepancy between oxygen supply and demand in the liver because hepatic oxygen consumption is relatively high but about 70% of the hepatic blood supply is poorly oxygenated portal vein blood derived from the gastrointestinal tract and spleen. Oxygen is delivered to hepatocytes by blood flowing from a terminal branch of the portal vein to a central venule via sinusoids, and this makes an oxygen gradient in hepatic lobules. The oxygen gradient is an important physical parameter that involves the expression of enzymes upstream and downstream in hepatic microcirculation, but the lack of techniques for measuring oxygen consumption in the hepatic microcirculation has delayed the elucidation of mechanisms relating to oxygen metabolism in liver. We therefore used FITC-labeled erythrocytes to visualize the hepatic microcirculation and used laser-assisted phosphorimetry to measure the partial pressure of oxygen in the microvessels there. Noncontact and continuous optical measurement can quantify blood flow velocities, vessel diameters, and oxygen gradients related to oxygen consumption in the liver. In an acute hepatitis model we made by administering acetaminophen to mice we observed increased oxygen pressure in both portal and central venules but a decreased oxygen gradient in the sinusoids, indicating that hepatocyte necrosis in the pericentral zone could shift the oxygen pressure up and affect enzyme expression in the periportal zone. In conclusion, our optical methods for measuring hepatic hemodynamics and oxygen consumption can reveal mechanisms related to hepatic disease.
Medicine, Issue 66, Physics, Biochemistry, Immunology, Physiology, microcirculation, liver, blood flow, oxygen consumption, phosphorescence, hepatitis
3996
Play Button
Use of a Hanging-weight System for Liver Ischemia in Mice
Authors: Michael Zimmerman, Eunyoung Tak, Maria Kaplan, Mercedes Susan Mandell, Holger K. Eltzschig, Almut Grenz.
Institutions: University of Colorado, Denver, University of Colorado, Denver.
Acute liver injury due to ischemia can occur during several clinical procedures e.g. liver transplantation, hepatic tumor resection or trauma repair and can result in liver failure which has a high mortality rate1-2. Therefore murine studies of hepatic ischemia have become an important field of research by providing the opportunity to utilize pharmacological and genetic studies3-9. Specifically, conditional mice with tissue specific deletion of a gene (cre, flox system) provide insights into the role of proteins in particular tissues10-13 . Because of the technical difficulty associated with manually clamping the portal triad in mice, we performed a systematic evaluation using a hanging-weight system for portal triad occlusion which has been previously described3. By using a hanging-weight system we place a suture around the left branch of the portal triad without causing any damage to the hepatic lobes, since also the finest clamps available can cause hepatic tissue damage because of the close location of liver tissue to the vessels. Furthermore, the right branch of the hepatic triad is still perfused thus no intestinal congestion occurs with this technique as blood flow to the right hepatic lobes is preserved. Furthermore, the portal triad is only manipulated once throughout the entire surgical procedure. As a result, procedures like pre-conditioning, with short times of ischemia and reperfusion, can be easily performed. Systematic evaluation of this model by performing different ischemia and reperfusion times revealed a close correlation of hepatic ischemia time with liver damage as measured by alanine (ALT) and aspartate (AST) aminotransferase serum levels3,9. Taken together, these studies confirm highly reproducible liver injury when using the hanging-weight system for hepatic ischemia and intermittent reperfusion. Thus, this technique might be useful for other investigators interested in liver ischemia studies in mice. Therefore the video clip provides a detailed step-by-step description of this technique.
Medicine, Issue 66, Physiology, Immunology, targeted gene deletion, murine model, liver failure, ischemia, reperfusion, video demonstration
2550
Play Button
Seven Steps to Stellate Cells
Authors: Patrick Maschmeyer, Melanie Flach, Florian Winau.
Institutions: Harvard Medical School.
Hepatic stellate cells are liver-resident cells of star-like morphology and are located in the space of Disse between liver sinusoidal endothelial cells and hepatocytes1,2. Stellate cells are derived from bone marrow precursors and store up to 80% of the total body vitamin A1, 2. Upon activation, stellate cells differentiate into myofibroblasts to produce extracellular matrix, thus contributing to liver fibrosis3. Based on their ability to contract, myofibroblastic stellate cells can regulate the vascular tone associated with portal hypertension4. Recently, we demonstrated that hepatic stellate cells are potent antigen presenting cells and can activate NKT cells as well as conventional T lymphocytes5. Here we present a method for the efficient preparation of hepatic stellate cells from mouse liver. Due to their perisinusoidal localization, the isolation of hepatic stellate cells is a multi-step process. In order to render stellate cells accessible to isolation from the space of Disse, mouse livers are perfused in situ with the digestive enzymes Pronase E and Collagenase P. Following perfusion, the liver tissue is subjected to additional enzymatic treatment with Pronase E and Collagenase P in vitro. Subsequently, the method takes advantage of the massive amount of vitamin A-storing lipid droplets in hepatic stellate cells. This feature allows the separation of stellate cells from other hepatic cell types by centrifugation on an 8% Nycodenz gradient. The protocol described here yields a highly pure and homogenous population of stellate cells. Purity of preparations can be assessed by staining for the marker molecule glial fibrillary acidic protein (GFAP), prior to analysis by fluorescence microscopy or flow cytometry. Further, light microscopy reveals the unique appearance of star-shaped hepatic stellate cells that harbor high amounts of lipid droplets. Taken together, we present a detailed protocol for the efficient isolation of hepatic stellate cells, including representative images of their morphological appearance and GFAP expression that help to define the stellate cell entity.
Immunology, Issue 51, Hepatic Stellate Cell, Ito Cell, Liver Immunology, Retinoic Acid, Cell Isolation
2710
Play Button
The Trier Social Stress Test Protocol for Inducing Psychological Stress
Authors: Melissa A. Birkett.
Institutions: Northern Arizona University.
This article demonstrates a psychological stress protocol for use in a laboratory setting. Protocols that allow researchers to study the biological pathways of the stress response in health and disease are fundamental to the progress of research in stress and anxiety.1 Although numerous protocols exist for inducing stress response in the laboratory, many neglect to provide a naturalistic context or to incorporate aspects of social and psychological stress. Of psychological stress protocols, meta-analysis suggests that the Trier Social Stress Test (TSST) is the most useful and appropriate standardized protocol for studies of stress hormone reactivity.2 In the original description of the TSST, researchers sought to design and evaluate a procedure capable of inducing a reliable stress response in the majority of healthy volunteers.3 These researchers found elevations in heart rate, blood pressure and several endocrine stress markers in response to the TSST (a psychological stressor) compared to a saline injection (a physical stressor).3 Although the TSST has been modified to meet the needs of various research groups, it generally consists of a waiting period upon arrival, anticipatory speech preparation, speech performance, and verbal arithmetic performance periods, followed by one or more recovery periods. The TSST requires participants to prepare and deliver a speech, and verbally respond to a challenging arithmetic problem in the presence of a socially evaluative audience.3 Social evaluation and uncontrollability have been identified as key components of stress induction by the TSST.4 In use for over a decade, the goal of the TSST is to systematically induce a stress response in order to measure differences in reactivity, anxiety and activation of the hypothalamic-pituitary-adrenal (HPA) or sympathetic-adrenal-medullary (SAM) axis during the task.1 Researchers generally assess changes in self-reported anxiety, physiological measures (e.g. heart rate), and/or neuroendocrine indices (e.g. the stress hormone cortisol) in response to the TSST. Many investigators have adopted salivary sampling for stress markers such as cortisol and alpha-amylase (a marker of autonomic nervous system activation) as an alternative to blood sampling to reduce the confounding stress of blood-collection techniques. In addition to changes experienced by an individual completing the TSST, researchers can compare changes between different treatment groups (e.g. clinical versus healthy control samples) or the effectiveness of stress-reducing interventions.1
Medicine, Issue 56, Stress, anxiety, laboratory stressor, cortisol, physiological response, psychological stressor
3238
Play Button
The Use of Gas Chromatography to Analyze Compositional Changes of Fatty Acids in Rat Liver Tissue during Pregnancy
Authors: Helena L. Fisk, Annette L. West, Caroline E. Childs, Graham C. Burdge, Philip C. Calder.
Institutions: University of Southampton.
Gas chromatography (GC) is a highly sensitive method used to identify and quantify the fatty acid content of lipids from tissues, cells, and plasma/serum, yielding results with high accuracy and high reproducibility. In metabolic and nutrition studies GC allows assessment of changes in fatty acid concentrations following interventions or during changes in physiological state such as pregnancy. Solid phase extraction (SPE) using aminopropyl silica cartridges allows separation of the major lipid classes including triacylglycerols, different phospholipids, and cholesteryl esters (CE). GC combined with SPE was used to analyze the changes in fatty acid composition of the CE fraction in the livers of virgin and pregnant rats that had been fed various high and low fat diets. There are significant diet/pregnancy interaction effects upon the omega-3 and omega-6 fatty acid content of liver CE, indicating that pregnant females have a different response to dietary manipulation than is seen among virgin females.
Chemistry, Issue 85, gas chromatography, fatty acid, pregnancy, cholesteryl ester, solid phase extraction, polyunsaturated fatty acids
51445
Play Button
Biochemical and High Throughput Microscopic Assessment of Fat Mass in Caenorhabditis Elegans
Authors: Elizabeth C. Pino, Christopher M. Webster, Christopher E. Carr, Alexander A. Soukas.
Institutions: Massachusetts General Hospital and Harvard Medical School, Massachusetts Institute of Technology.
The nematode C. elegans has emerged as an important model for the study of conserved genetic pathways regulating fat metabolism as it relates to human obesity and its associated pathologies. Several previous methodologies developed for the visualization of C. elegans triglyceride-rich fat stores have proven to be erroneous, highlighting cellular compartments other than lipid droplets. Other methods require specialized equipment, are time-consuming, or yield inconsistent results. We introduce a rapid, reproducible, fixative-based Nile red staining method for the accurate and rapid detection of neutral lipid droplets in C. elegans. A short fixation step in 40% isopropanol makes animals completely permeable to Nile red, which is then used to stain animals. Spectral properties of this lipophilic dye allow it to strongly and selectively fluoresce in the yellow-green spectrum only when in a lipid-rich environment, but not in more polar environments. Thus, lipid droplets can be visualized on a fluorescent microscope equipped with simple GFP imaging capability after only a brief Nile red staining step in isopropanol. The speed, affordability, and reproducibility of this protocol make it ideally suited for high throughput screens. We also demonstrate a paired method for the biochemical determination of triglycerides and phospholipids using gas chromatography mass-spectrometry. This more rigorous protocol should be used as confirmation of results obtained from the Nile red microscopic lipid determination. We anticipate that these techniques will become new standards in the field of C. elegans metabolic research.
Genetics, Issue 73, Biochemistry, Cellular Biology, Molecular Biology, Developmental Biology, Physiology, Anatomy, Caenorhabditis elegans, Obesity, Energy Metabolism, Lipid Metabolism, C. elegans, fluorescent lipid staining, lipids, Nile red, fat, high throughput screening, obesity, gas chromatography, mass spectrometry, GC/MS, animal model
50180
Play Button
Heterotopic Auxiliary Rat Liver Transplantation With Flow-regulated Portal Vein Arterialization in Acute Hepatic Failure
Authors: Karina Schleimer, Johannes Kalder, Jochen Grommes, Houman Jalaie, Samir Tawadros, Andreas Greiner, Michael Jacobs, Maria Kokozidou.
Institutions: University Hospital RWTH Aachen.
In acute hepatic failure auxiliary liver transplantation is an interesting alternative approach. The aim is to provide a temporary support until the failing native liver has regenerated.1-3 The APOLT-method, the orthotopic implantation of auxiliary segments- averts most of the technical problems. However this method necessitates extensive resections of both the native liver and the graft.4 In 1998, Erhard developed the heterotopic auxiliary liver transplantation (HALT) utilizing portal vein arterialization (PVA) (Figure 1). This technique showed promising initial clinical results.5-6 We developed a HALT-technique with flow-regulated PVA in the rat to examine the influence of flow-regulated PVA on graft morphology and function (Figure 2). A liver graft reduced to 30 % of its original size, was heterotopically implanted in the right renal region of the recipient after explantation of the right kidney.  The infra-hepatic caval vein of the graft was anastomosed with the infrahepatic caval vein of the recipient. The arterialization of the donor’s portal vein was carried out via the recipient’s right renal artery with the stent technique. The blood-flow regulation of the arterialized portal vein was achieved with the use of a stent with an internal diameter of 0.3 mm. The celiac trunk of the graft was end-to-side anastomosed with the recipient’s aorta and the bile duct was implanted into the duodenum. A subtotal resection of the native liver was performed to induce acute hepatic failure. 7 In this manner 112 transplantations were performed. The perioperative survival rate was 90% and the 6-week survival rate was 80%. Six weeks after operation, the native liver regenerated, showing an increase in weight from 2.3±0.8 g to 9.8±1 g. At this time, the graft’s weight decreased from 3.3±0.8 g to 2.3±0.8 g. We were able to obtain promising long-term results in terms of graft morphology and function. HALT with flow-regulated PVA reliably bridges acute hepatic failure until the native liver regenerates.
Medicine, Issue 91, auxiliary liver transplantation, rat, portal vein arterialization, flow-regulation, acute hepatic failure
51115
Play Button
A Flow Adhesion Assay to Study Leucocyte Recruitment to Human Hepatic Sinusoidal Endothelium Under Conditions of Shear Stress
Authors: Shishir Shetty, Christopher J. Weston, David H. Adams, Patricia F. Lalor.
Institutions: University of Birmingham.
Leucocyte infiltration into human liver tissue is a common process in all adult inflammatory liver diseases. Chronic infiltration can drive the development of fibrosis and progression to cirrhosis. Understanding the molecular mechanisms that mediate leucocyte recruitment to the liver could identify important therapeutic targets for liver disease. The key interaction during leucocyte recruitment is that of inflammatory cells with endothelium under conditions of shear stress. Recruitment to the liver occurs within the low shear channels of the hepatic sinusoids which are lined by hepatic sinusoidal endothelial cells (HSEC). The conditions within the hepatic sinusoids can be recapitulated by perfusing leucocytes through channels lined by human HSEC monolayers at specific flow rates. In these conditions leucocytes undergo a brief tethering step followed by activation and firm adhesion, followed by a crawling step and subsequent transmigration across the endothelial layer. Using phase contrast microscopy, each step of this 'adhesion cascade' can be visualized and recorded followed by offline analysis. Endothelial cells or leucocytes can be pretreated with inhibitors to determine the role of specific molecules during this process.
Immunology, Issue 85, Leucocyte trafficking, liver, hepatic sinusoidal endothelial cells, peripheral blood lymphocytes, flow adhesion assay
51330
Play Button
Steps for the Autologous Ex vivo Perfused Porcine Liver-kidney Experiment
Authors: Wen Yuan Chung, Amar M. Eltweri, John Isherwood, Jonathan Haqq, Seok Ling Ong, Gianpiero Gravante, David M. Lloyd, Matthew S. Metcalfe, Ashley R. Dennison.
Institutions: University Hospitals of Leicester.
The use of ex vivo perfused models can mimic the physiological conditions of the liver for short periods, but to maintain normal homeostasis for an extended perfusion period is challenging. We have added the kidney to our previous ex vivo perfused liver experiment model to reproduce a more accurate physiological state for prolonged experiments without using live animals. Five intact livers and kidneys were retrieved post-mortem from sacrificed pigs on different days and perfused for a minimum of 6 hr. Hourly arterial blood gases were obtained to analyze pH, lactate, glucose and renal parameters. The primary endpoint was to investigate the effect of adding one kidney to the model on the acid base balance, glucose, and electrolyte levels. The result of this liver-kidney experiment was compared to the results of five previous liver only perfusion models. In summary, with the addition of one kidney to the ex vivo liver circuit, hyperglycemia and metabolic acidosis were improved. In addition this model reproduces the physiological and metabolic responses of the liver sufficiently accurately to obviate the need for the use of live animals. The ex vivo liver-kidney perfusion model can be used as an alternative method in organ specific studies. It provides a disconnection from numerous systemic influences and allows specific and accurate adjustments of arterial and venous pressures and flow.
Medicine, Issue 82, Ex vivo, porcine, perfusion model, acid base balance, glucose, liver function, kidney function, cytokine response
50567
Play Button
Generation of Subcutaneous and Intrahepatic Human Hepatocellular Carcinoma Xenografts in Immunodeficient Mice
Authors: Sharif U. Ahmed, Murtuza Zair, Kui Chen, Matthew Iu, Feng He, Oyedele Adeyi, Sean P. Cleary, Anand Ghanekar.
Institutions: University Health Network, University Health Network, University Health Network.
In vivo experimental models of hepatocellular carcinoma (HCC) that recapitulate the human disease provide a valuable platform for research into disease pathophysiology and for the preclinical evaluation of novel therapies. We present a variety of methods to generate subcutaneous or orthotopic human HCC xenografts in immunodeficient mice that could be utilized in a variety of research applications. With a focus on the use of primary tumor tissue from patients undergoing surgical resection as a starting point, we describe the preparation of cell suspensions or tumor fragments for xenografting. We describe specific techniques to xenograft these tissues i) subcutaneously; or ii) intrahepatically, either by direct implantation of tumor cells or fragments into the liver, or indirectly by injection of cells into the mouse spleen. We also describe the use of partial resection of the native mouse liver at the time of xenografting as a strategy to induce a state of active liver regeneration in the recipient mouse that may facilitate the intrahepatic engraftment of primary human tumor cells. The expected results of these techniques are illustrated. The protocols described have been validated using primary human HCC samples and xenografts, which typically perform less robustly than the well-established human HCC cell lines that are widely used and frequently cited in the literature. In comparison with cell lines, we discuss factors which may contribute to the relatively low chance of primary HCC engraftment in xenotransplantation models and comment on technical issues that may influence the kinetics of xenograft growth. We also suggest methods that should be applied to ensure that xenografts obtained accurately resemble parent HCC tissues.
Medicine, Issue 79, Liver Neoplasms, Hepatectomy, animal models, hepatocellular carcinoma, xenograft, cancer, liver, subcutaneous, intrahepatic, orthotopic, mouse, human, immunodeficient
50544
Play Button
Extraction and Analysis of Cortisol from Human and Monkey Hair
Authors: Jerrold Meyer, Melinda Novak, Amanda Hamel, Kendra Rosenberg.
Institutions: University of Massachusetts, Amherst, University of Massachusetts, Amherst.
The stress hormone cortisol (CORT) is slowly incorporated into the growing hair shaft of humans, nonhuman primates, and other mammals. We developed and validated a method for CORT extraction and analysis from rhesus monkey hair and subsequently adapted this method for use with human scalp hair. In contrast to CORT "point samples" obtained from plasma or saliva, hair CORT provides an integrated measure of hypothalamic-pituitary-adrenocortical (HPA) system activity, and thus physiological stress, during the period of hormone incorporation. Because human scalp hair grows at an average rate of 1 cm/month, CORT levels obtained from hair segments several cm in length can potentially serve as a biomarker of stress experienced over a number of months. In our method, each hair sample is first washed twice in isopropanol to remove any CORT from the outside of the hair shaft that has been deposited from sweat or sebum. After drying, the sample is ground to a fine powder to break up the hair's protein matrix and increase the surface area for extraction. CORT from the interior of the hair shaft is extracted into methanol, the methanol is evaporated, and the extract is reconstituted in assay buffer. Extracted CORT, along with standards and quality controls, is then analyzed by means of a sensitive and specific commercially available enzyme immunoassay (EIA) kit. Readout from the EIA is converted to pg CORT per mg powdered hair weight. This method has been used in our laboratory to analyze hair CORT in humans, several species of macaque monkeys, marmosets, dogs, and polar bears. Many studies both from our lab and from other research groups have demonstrated the broad applicability of hair CORT for assessing chronic stress exposure in natural as well as laboratory settings.
Basic Protocol, Issue 83, cortisol, hypothalamic-pituitary-adrenocortical axis, hair, stress, humans, monkeys
50882
Play Button
Technique of Subnormothermic Ex Vivo Liver Perfusion for the Storage, Assessment, and Repair of Marginal Liver Grafts
Authors: Jan M. Knaak, Vinzent N. Spetzler, Nicolas Goldaracena, Kristine S. Louis, Nazia Selzner, Markus Selzner.
Institutions: Toronto General Hospital, Toronto General Hospital, Toronto General Hospital.
The success of liver transplantation has resulted in a dramatic organ shortage. In most transplant regions 20-30% of patients on the waiting list for liver transplantation die without receiving an organ transplant or are delisted for disease progression. One strategy to increase the donor pool is the utilization of marginal grafts, such as fatty livers, grafts from older donors, or donation after cardiac death (DCD). The current preservation technique of cold static storage is only poorly tolerated by marginal livers resulting in significant organ damage. In addition, cold static organ storage does not allow graft assessment or repair prior to transplantation. These shortcomings of cold static preservation have triggered an interest in warm perfused organ preservation to reduce cold ischemic injury, assess liver grafts during preservation, and explore the opportunity to repair marginal livers prior to transplantation. The optimal pressure and flow conditions, perfusion temperature, composition of the perfusion solution and the need for an oxygen carrier has been controversial in the past. In spite of promising results in several animal studies, the complexity and the costs have prevented a broader clinical application so far. Recently, with enhanced technology and a better understanding of liver physiology during ex vivo perfusion the outcome of warm liver perfusion has improved and consistently good results can be achieved. This paper will provide information about liver retrieval, storage techniques, and isolated liver perfusion in pigs. We will illustrate a) the requirements to ensure sufficient oxygen supply to the organ, b) technical considerations about the perfusion machine and the perfusion solution, and c) biochemical aspects of isolated organs.
Medicine, Issue 90, ex vivo liver perfusion, marginal grafts, DCD
51419
Play Button
A Chemical Screening Procedure for Glucocorticoid Signaling with a Zebrafish Larva Luciferase Reporter System
Authors: Benjamin D. Weger, Meltem Weger, Nicole Jung, Christin Lederer, Stefan Bräse, Thomas Dickmeis.
Institutions: Karlsruhe Institute of Technology - Campus North, Karlsruhe Institute of Technology - Campus North, Karlsruhe Institute of Technology - Campus South.
Glucocorticoid stress hormones and their artificial derivatives are widely used drugs to treat inflammation, but long-term treatment with glucocorticoids can lead to severe side effects. Test systems are needed to search for novel compounds influencing glucocorticoid signaling in vivo or to determine unwanted effects of compounds on the glucocorticoid signaling pathway. We have established a transgenic zebrafish assay which allows the measurement of glucocorticoid signaling activity in vivo and in real-time, the GRIZLY assay (Glucocorticoid Responsive In vivo Zebrafish Luciferase activitY). The luciferase-based assay detects effects on glucocorticoid signaling with high sensitivity and specificity, including effects by compounds that require metabolization or affect endogenous glucocorticoid production. We present here a detailed protocol for conducting chemical screens with this assay. We describe data acquisition, normalization, and analysis, placing a focus on quality control and data visualization. The assay provides a simple, time-resolved, and quantitative readout. It can be operated as a stand-alone platform, but is also easily integrated into high-throughput screening workflows. It furthermore allows for many applications beyond chemical screening, such as environmental monitoring of endocrine disruptors or stress research.
Developmental Biology, Issue 79, Biochemistry, Vertebrates, Zebrafish, environmental effects (biological and animal), genetics (animal), life sciences, animal biology, animal models, biochemistry, bioengineering (general), Hormones, Hormone Substitutes, and Hormone Antagonists, zebrafish, Danio rerio, chemical screening, luciferase, glucocorticoid, stress, high-throughput screening, receiver operating characteristic curve, in vivo, animal model
50439
Play Button
Surgical Procedures for a Rat Model of Partial Orthotopic Liver Transplantation with Hepatic Arterial Reconstruction
Authors: Kazuyuki Nagai, Shintaro Yagi, Shinji Uemoto, Rene H. Tolba.
Institutions: RWTH-Aachen University, Kyoto University .
Orthotopic liver transplantation (OLT) in rats using a whole or partial graft is an indispensable experimental model for transplantation research, such as studies on graft preservation and ischemia-reperfusion injury 1,2, immunological responses 3,4, hemodynamics 5,6, and small-for-size syndrome 7. The rat OLT is among the most difficult animal models in experimental surgery and demands advanced microsurgical skills that take a long time to learn. Consequently, the use of this model has been limited. Since the reliability and reproducibility of results are key components of the experiments in which such complex animal models are used, it is essential for surgeons who are involved in rat OLT to be trained in well-standardized and sophisticated procedures for this model. While various techniques and modifications of OLT in rats have been reported 8 since the first model was described by Lee et al. 9 in 1973, the elimination of the hepatic arterial reconstruction 10 and the introduction of the cuff anastomosis technique by Kamada et al. 11 were a major advancement in this model, because they simplified the reconstruction procedures to a great degree. In the model by Kamada et al., the hepatic rearterialization was also eliminated. Since rats could survive without hepatic arterial flow after liver transplantation, there was considerable controversy over the value of hepatic arterialization. However, the physiological superiority of the arterialized model has been increasingly acknowledged, especially in terms of preserving the bile duct system 8,12 and the liver integrity 8,13,14. In this article, we present detailed surgical procedures for a rat model of OLT with hepatic arterial reconstruction using a 50% partial graft after ex vivo liver resection. The reconstruction procedures for each vessel and the bile duct are performed by the following methods: a 7-0 polypropylene continuous suture for the supra- and infrahepatic vena cava; a cuff technique for the portal vein; and a stent technique for the hepatic artery and the bile duct.
Medicine, Issue 73, Biomedical Engineering, Anatomy, Physiology, Immunology, Surgery, liver transplantation, liver, hepatic, partial, orthotopic, split, rat, graft, transplantation, microsurgery, procedure, clinical, technique, artery, arterialization, arterialized, anastomosis, reperfusion, rat, animal model
4376
Play Button
Monitoring of Systemic and Hepatic Hemodynamic Parameters in Mice
Authors: Chichi Xie, Weiwei Wei, Tao Zhang, Olaf Dirsch, Uta Dahmen.
Institutions: Jena University Hospital, Jena University Hospital, The First Affiliated Hospital of Wenzhou Medical University.
The use of mouse models in experimental research is of enormous importance for the study of hepatic physiology and pathophysiological disturbances. However, due to the small size of the mouse, technical details of the intraoperative monitoring procedure suitable for the mouse were rarely described. Previously we have reported a monitoring procedure to obtain hemodynamic parameters for rats. Now, we adapted the procedure to acquire systemic and hepatic hemodynamic parameters in mice, a species ten-fold smaller than rats. This film demonstrates the instrumentation of the animals as well as the data acquisition process needed to assess systemic and hepatic hemodynamics in mice. Vital parameters, including body temperature, respiratory rate and heart rate were recorded throughout the whole procedure. Systemic hemodynamic parameters consist of carotid artery pressure (CAP) and central venous pressure (CVP). Hepatic perfusion parameters include portal vein pressure (PVP), portal flow rate as well as the flow rate of the common hepatic artery (table 1). Instrumentation and data acquisition to record the normal values was completed within 1.5 h. Systemic and hepatic hemodynamic parameters remained within normal ranges during this procedure. This procedure is challenging but feasible. We have already applied this procedure to assess hepatic hemodynamics in normal mice as well as during 70% partial hepatectomy and in liver lobe clamping experiments. Mean PVP after resection (n= 20), was 11.41±2.94 cmH2O which was significantly higher (P<0.05) than before resection (6.87±2.39 cmH2O). The results of liver lobe clamping experiment indicated that this monitoring procedure is sensitive and suitable for detecting small changes in portal pressure and portal flow rate. In conclusion, this procedure is reliable in the hands of an experienced micro-surgeon but should be limited to experiments where mice are absolutely needed.
Medicine, Issue 92, mice, hemodynamics, hepatic perfusion, CAP, CVP, surgery, intraoperative monitoring, portal vein pressure, blood flow
51955
Play Button
A Microplate Assay to Assess Chemical Effects on RBL-2H3 Mast Cell Degranulation: Effects of Triclosan without Use of an Organic Solvent
Authors: Lisa M. Weatherly, Rachel H. Kennedy, Juyoung Shim, Julie A. Gosse.
Institutions: University of Maine, Orono, University of Maine, Orono.
Mast cells play important roles in allergic disease and immune defense against parasites. Once activated (e.g. by an allergen), they degranulate, a process that results in the exocytosis of allergic mediators. Modulation of mast cell degranulation by drugs and toxicants may have positive or adverse effects on human health. Mast cell function has been dissected in detail with the use of rat basophilic leukemia mast cells (RBL-2H3), a widely accepted model of human mucosal mast cells3-5. Mast cell granule component and the allergic mediator β-hexosaminidase, which is released linearly in tandem with histamine from mast cells6, can easily and reliably be measured through reaction with a fluorogenic substrate, yielding measurable fluorescence intensity in a microplate assay that is amenable to high-throughput studies1. Originally published by Naal et al.1, we have adapted this degranulation assay for the screening of drugs and toxicants and demonstrate its use here. Triclosan is a broad-spectrum antibacterial agent that is present in many consumer products and has been found to be a therapeutic aid in human allergic skin disease7-11, although the mechanism for this effect is unknown. Here we demonstrate an assay for the effect of triclosan on mast cell degranulation. We recently showed that triclosan strongly affects mast cell function2. In an effort to avoid use of an organic solvent, triclosan is dissolved directly into aqueous buffer with heat and stirring, and resultant concentration is confirmed using UV-Vis spectrophotometry (using ε280 = 4,200 L/M/cm)12. This protocol has the potential to be used with a variety of chemicals to determine their effects on mast cell degranulation, and more broadly, their allergic potential.
Immunology, Issue 81, mast cell, basophil, degranulation, RBL-2H3, triclosan, irgasan, antibacterial, β-hexosaminidase, allergy, Asthma, toxicants, ionophore, antigen, fluorescence, microplate, UV-Vis
50671
Play Button
Laparoscopic Left Liver Sectoriectomy of Caroli's Disease Limited to Segment II and III
Authors: Luigi Boni, Gianlorenzo Dionigi, Francesca Rovera, Matteo Di Giuseppe.
Institutions: University of Insubria, University of Insubria.
Caroli's disease is defined as a abnormal dilatation of the intra-hepatica bile ducts: Its incidence is extremely low (1 in 1,000,000 population) and in most of the cases the whole liver is interested and liver transplantation is the treatment of choice. In case of dilatation limited to the left or right lobe, liver resection can be performed. For many year the standard approach for liver resection has been a formal laparotomy by means of a large incision of abdomen that is characterized by significant post-operatie morbidity. More recently, minimally invasive, laparoscopic approach has been proposed as possible surgical technique for liver resection both for benign and malignant diseases. The main benefits of the minimally invasive approach is represented by a significant reduction of the surgical trauma that allows a faster recovery a less post-operative complications. This video shows a case of Caroli s disease occured in a 58 years old male admitted at the gastroenterology department for sudden onset of abdominal pain associated with fever (>38C° ), nausea and shivering. Abdominal ultrasound demonstrated a significant dilatation of intra-hepatic left sited bile ducts with no evidences of gallbladder or common bile duct stones. Such findings were confirmed abdominal high resolution computer tomography. Laparoscopic left sectoriectomy was planned. Five trocars and 30° optic was used, exploration of the abdominal cavity showed no adhesions or evidences of other diseases. In order to control blood inflow to the liver, vascular clamp was placed on the hepatic pedicle (Pringle s manouvre), Parenchymal division is carried out with a combined use of 5 mm bipolar forceps and 5 mm ultrasonic dissector. A severely dilated left hepatic duct was isolated and divided using a 45mm endoscopic vascular stapler. Liver dissection was continued up to isolation of the main left portal branch that was then divided with a further cartridge of 45 mm vascular stapler. At his point the left liver remains attached only by the left hepatic vein: division of the triangular ligament was performed using monopolar hook and the hepatic vein isolated and the divided using vascular stapler. Haemostatis was refined by application of argon beam coagulation and no bleeding was revealed even after removal of the vascular clamp (total Pringle s time 27 minutes). Postoperative course was uneventful, minimal elevation of the liver function tests was recorded in post-operative day 1 but returned to normal at discharged on post-operative day 3.
Medicine, Issue 24, Laparoscopy, Liver resection, Caroli's disease, Left sectoriectomy
1118
Play Button
Isolation and Primary Culture of Rat Hepatic Cells
Authors: Ling Shen, Allix Hillebrand, David Q.-H. Wang, Min Liu.
Institutions: University of Cincinnati College of Medicine, American University in Washington, D.C., Saint Louis University School of Medicine.
Primary hepatocyte culture is a valuable tool that has been extensively used in basic research of liver function, disease, pathophysiology, pharmacology and other related subjects. The method based on two-step collagenase perfusion for isolation of intact hepatocytes was first introduced by Berry and Friend in 1969 1 and, since then, has undergone many modifications. The most commonly used technique was described by Seglenin 1976 2. Essentially, hepatocytes are dissociated from anesthetized adult rats by a non-recirculating collagenase perfusion through the portal vein. The isolated cells are then filtered through a 100 μm pore size mesh nylon filter, and cultured onto plates. After 4-hour culture, the medium is replaced with serum-containing or serum-free medium, e.g. HepatoZYME-SFM, for additional time to culture. These procedures require surgical and sterile culture steps that can be better demonstrated by video than by text. Here, we document the detailed steps for these procedures by both video and written protocol, which allow consistently in the generation of viable hepatocytes in large numbers.
Cellular Biology, Issue 64, Physiology, Medicine, Primary cell culture, hepatic cells, hepatocyte, rat
3917
Play Button
Creation of Reversible Cholestatic Rat Model
Authors: Gokulakkrishna Subhas, Jasneet Bhullar, Vijay K. Mittal, Michael J. Jacobs.
Institutions: Providence Hospital and Medical Centers.
Cholestasis is a clinical condition commonly encountered by both surgeons and gastroenterologists. Cholestasis can cause various physiological changes and affect the nutritional status and surgical outcomes. Study of the pathophysiological changes occurring in the liver and other organs is of importance. Various studies have been done in cholestatic rat models. We used a reversible cholestatic rat model in our recent study looking at the role of methylprednisolone in the ischemia reperfusion injury. Various techniques for creation of a reversible cholestatic model have been described. Creation of a reversible cholestatic rat model can be challenging in view of the smaller size and unique hepatopancreatobiliary anatomy in rats. This video article demonstrates the creation of a reversible cholestatic model. This model can be used in various studies, such as looking at the changes in nutritional, physiological, pathological, histological and immunological changes in the gastrointestinal tract. This model can also be used to see the effects of cholestasis and various therapeutic interventions on major hepatic surgeries.
Medicine, Issue 51, Cholestasis, Rat model, Reversible cholestasis, Choledochoduodenostomy, Bile duct obstruction, Cholestasis
2692
Play Button
Right Hemihepatectomy by Suprahilar Intrahepatic Transection of the Right Hemipedicle using a Vascular Stapler
Authors: Ingmar Königsrainer, Silvio Nadalin, Alfred Königsrainer.
Institutions: Tübingen University Hospital.
Successful hepatic resection requires profound anatomical knowledge and delicate surgical technique. Hemihepatectomies are mostly performed after preparing the extrahepatic hilar structures within the hepatoduodenal ligament, even in benign tumours or liver metastasis.1-5. Regional extrahepatic lymphadenectomy is an oncological standard in hilar cholangiocarcinoma, intrahepatic cholangio-cellular carcinoma and hepatocellular carcinoma, whereas lymph node metastases in the hepatic hilus in patients with liver metastasis are rarely occult. Major disadvantages of these procedures are the complex preparation of the hilus with the risk of injuring contralateral structures and the possibility of bleeding from portal vein side-branches or impaired perfusion of bile ducts. We developed a technique of right hemihepatectomy or resection of the left lateral segments with intrahepatic transection of the pedicle that leaves the hepatoduodenal ligament completely untouched. 6 However, if intraoperative visualization or palpation of the ligament is suspicious for tumor infiltration or lymph node metastasis, the hilus should be explored and a lymphadenectomy performed.
Medicine, Issue 35, Liver resection, liver tumour, intrahepatic hilus stapling, right hemipedicle
1750
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.