JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Amplitude reduction and phase shifts of melatonin, cortisol and other circadian rhythms after a gradual advance of sleep and light exposure in humans.
The phase and amplitude of rhythms in physiology and behavior are generated by circadian oscillators and entrained to the 24-h day by exposure to the light-dark cycle and feedback from the sleep-wake cycle. The extent to which the phase and amplitude of multiple rhythms are similarly affected during altered timing of light exposure and the sleep-wake cycle has not been fully characterized.
Authors: Tara A. LeGates, Cara M. Altimus.
Published: 02-04-2011
Circadian rhythms are physiological functions that cycle over a period of approximately 24 hours (circadian- circa: approximate and diem: day)1, 2. They are responsible for timing our sleep/wake cycles and hormone secretion. Since this timing is not precisely 24-hours, it is synchronized to the solar day by light input. This is accomplished via photic input from the retina to the suprachiasmatic nucleus (SCN) which serves as the master pacemaker synchronizing peripheral clocks in other regions of the brain and peripheral tissues to the environmental light dark cycle3-7. The alignment of rhythms to this environmental light dark cycle organizes particular physiological events to the correct temporal niche, which is crucial for survival8. For example, mice sleep during the day and are active at night. This ability to consolidate activity to either the light or dark portion of the day is referred to as circadian photoentrainment and requires light input to the circadian clock9. Activity of mice at night is robust particularly in the presence of a running wheel. Measuring this behavior is a minimally invasive method that can be used to evaluate the functionality of the circadian system as well as light input to this system. Methods that will covered here are used to examine the circadian clock, light input to this system, as well as the direct influence of light on wheel running behavior.
13 Related JoVE Articles!
Play Button
Slice Preparation, Organotypic Tissue Culturing and Luciferase Recording of Clock Gene Activity in the Suprachiasmatic Nucleus
Authors: Sergey A. Savelyev, Karin C. Larsson, Anne-Sofie Johansson, Gabriella B. S. Lundkvist.
Institutions: Karolinska Institutet.
A central circadian (~24 hr) clock coordinating daily rhythms in physiology and behavior resides in the suprachiasmatic nucleus (SCN) located in the anterior hypothalamus. The clock is directly synchronized by light via the retina and optic nerve. Circadian oscillations are generated by interacting negative feedback loops of a number of so called "clock genes" and their protein products, including the Period (Per) genes. The core clock is also dependent on membrane depolarization, calcium and cAMP 1. The SCN shows daily oscillations in clock gene expression, metabolic activity and spontaneous electrical activity. Remarkably, this endogenous cyclic activity persists in adult tissue slices of the SCN 2-4. In this way, the biological clock can easily be studied in vitro, allowing molecular, electrophysiological and metabolic investigations of the pacemaker function. The SCN is a small, well-defined bilateral structure located right above the optic chiasm 5. In the rat it contains ~8.000 neurons in each nucleus and has dimensions of approximately 947 μm (length, rostrocaudal axis) x 424 μm (width) x 390 μm (height) 6. To dissect out the SCN it is necessary to cut a brain slice at the specific level of the brain where the SCN can be identified. Here, we describe the dissecting and slicing procedure of the SCN, which is similar for mouse and rat brains. Further, we show how to culture the dissected tissue organotypically on a membrane 7, a technique developed for SCN tissue culture by Yamazaki et al. 8. Finally, we demonstrate how transgenic tissue can be used for measuring expression of clock genes/proteins using dynamic luciferase reporter technology, a method that originally was used for circadian measurements by Geusz et al. 9. We here use SCN tissues from the transgenic knock-in PERIOD2::LUCIFERASE mice produced by Yoo et al. 10. The mice contain a fusion protein of PERIOD (PER) 2 and the firefly enzyme LUCIFERASE. When PER2 is translated in the presence of the substrate for luciferase, i.e. luciferin, the PER2 expression can be monitored as bioluminescence when luciferase catalyzes the oxidation of luciferin. The number of emitted photons positively correlates to the amount of produced PER2 protein, and the bioluminescence rhythms match the PER2 protein rhythm in vivo 10. In this way the cyclic variation in PER2 expression can be continuously monitored real time during many days. The protocol we follow for tissue culturing and real-time bioluminescence recording has been thoroughly described by Yamazaki and Takahashi 11.
Neuroscience, Issue 48, suprachiasmatic nucleus, mice, organotypic tissue culture, circadian rhythm, clock gene, Period 2, luciferase
Play Button
Design and Analysis of Temperature Preference Behavior and its Circadian Rhythm in Drosophila
Authors: Tadahiro Goda, Jennifer R. Leslie, Fumika N. Hamada.
Institutions: Cincinnati Childrens Hospital Medical Center, JST.
The circadian clock regulates many aspects of life, including sleep, locomotor activity, and body temperature (BTR) rhythms1,2. We recently identified a novel Drosophila circadian output, called the temperature preference rhythm (TPR), in which the preferred temperature in flies rises during the day and falls during the night 3. Surprisingly, the TPR and locomotor activity are controlled through distinct circadian neurons3. Drosophila locomotor activity is a well known circadian behavioral output and has provided strong contributions to the discovery of many conserved mammalian circadian clock genes and mechanisms4. Therefore, understanding TPR will lead to the identification of hitherto unknown molecular and cellular circadian mechanisms. Here, we describe how to perform and analyze the TPR assay. This technique not only allows for dissecting the molecular and neural mechanisms of TPR, but also provides new insights into the fundamental mechanisms of the brain functions that integrate different environmental signals and regulate animal behaviors. Furthermore, our recently published data suggest that the fly TPR shares features with the mammalian BTR3. Drosophila are ectotherms, in which the body temperature is typically behaviorally regulated. Therefore, TPR is a strategy used to generate a rhythmic body temperature in these flies5-8. We believe that further exploration of Drosophila TPR will facilitate the characterization of the mechanisms underlying body temperature control in animals.
Basic Protocol, Issue 83, Drosophila, circadian clock, temperature, temperature preference rhythm, locomotor activity, body temperature rhythms
Play Button
Eye Tracking, Cortisol, and a Sleep vs. Wake Consolidation Delay: Combining Methods to Uncover an Interactive Effect of Sleep and Cortisol on Memory
Authors: Kelly A. Bennion, Katherine R. Mickley Steinmetz, Elizabeth A. Kensinger, Jessica D. Payne.
Institutions: Boston College, Wofford College, University of Notre Dame.
Although rises in cortisol can benefit memory consolidation, as can sleep soon after encoding, there is currently a paucity of literature as to how these two factors may interact to influence consolidation. Here we present a protocol to examine the interactive influence of cortisol and sleep on memory consolidation, by combining three methods: eye tracking, salivary cortisol analysis, and behavioral memory testing across sleep and wake delays. To assess resting cortisol levels, participants gave a saliva sample before viewing negative and neutral objects within scenes. To measure overt attention, participants’ eye gaze was tracked during encoding. To manipulate whether sleep occurred during the consolidation window, participants either encoded scenes in the evening, slept overnight, and took a recognition test the next morning, or encoded scenes in the morning and remained awake during a comparably long retention interval. Additional control groups were tested after a 20 min delay in the morning or evening, to control for time-of-day effects. Together, results showed that there is a direct relation between resting cortisol at encoding and subsequent memory, only following a period of sleep. Through eye tracking, it was further determined that for negative stimuli, this beneficial effect of cortisol on subsequent memory may be due to cortisol strengthening the relation between where participants look during encoding and what they are later able to remember. Overall, results obtained by a combination of these methods uncovered an interactive effect of sleep and cortisol on memory consolidation.
Behavior, Issue 88, attention, consolidation, cortisol, emotion, encoding, glucocorticoids, memory, sleep, stress
Play Button
Recording and Analysis of Circadian Rhythms in Running-wheel Activity in Rodents
Authors: Michael Verwey, Barry Robinson, Shimon Amir.
Institutions: McGill University , Concordia University.
When rodents have free access to a running wheel in their home cage, voluntary use of this wheel will depend on the time of day1-5. Nocturnal rodents, including rats, hamsters, and mice, are active during the night and relatively inactive during the day. Many other behavioral and physiological measures also exhibit daily rhythms, but in rodents, running-wheel activity serves as a particularly reliable and convenient measure of the output of the master circadian clock, the suprachiasmatic nucleus (SCN) of the hypothalamus. In general, through a process called entrainment, the daily pattern of running-wheel activity will naturally align with the environmental light-dark cycle (LD cycle; e.g. 12 hr-light:12 hr-dark). However circadian rhythms are endogenously generated patterns in behavior that exhibit a ~24 hr period, and persist in constant darkness. Thus, in the absence of an LD cycle, the recording and analysis of running-wheel activity can be used to determine the subjective time-of-day. Because these rhythms are directed by the circadian clock the subjective time-of-day is referred to as the circadian time (CT). In contrast, when an LD cycle is present, the time-of-day that is determined by the environmental LD cycle is called the zeitgeber time (ZT). Although circadian rhythms in running-wheel activity are typically linked to the SCN clock6-8, circadian oscillators in many other regions of the brain and body9-14 could also be involved in the regulation of daily activity rhythms. For instance, daily rhythms in food-anticipatory activity do not require the SCN15,16 and instead, are correlated with changes in the activity of extra-SCN oscillators17-20. Thus, running-wheel activity recordings can provide important behavioral information not only about the output of the master SCN clock, but also on the activity of extra-SCN oscillators. Below we describe the equipment and methods used to record, analyze and display circadian locomotor activity rhythms in laboratory rodents.
Neuroscience, Issue 71, Medicine, Neurobiology, Physiology, Anatomy, Psychology, Psychiatry, Behavior, Suprachiasmatic nucleus, locomotor activity, mouse, rat, hamster, light-dark cycle, free-running activity, entrainment, circadian period, circadian rhythm, phase shift, animal model
Play Button
Monitoring Cell-autonomous Circadian Clock Rhythms of Gene Expression Using Luciferase Bioluminescence Reporters
Authors: Chidambaram Ramanathan, Sanjoy K. Khan, Nimish D. Kathale, Haiyan Xu, Andrew C. Liu.
Institutions: The University of Memphis.
In mammals, many aspects of behavior and physiology such as sleep-wake cycles and liver metabolism are regulated by endogenous circadian clocks (reviewed1,2). The circadian time-keeping system is a hierarchical multi-oscillator network, with the central clock located in the suprachiasmatic nucleus (SCN) synchronizing and coordinating extra-SCN and peripheral clocks elsewhere1,2. Individual cells are the functional units for generation and maintenance of circadian rhythms3,4, and these oscillators of different tissue types in the organism share a remarkably similar biochemical negative feedback mechanism. However, due to interactions at the neuronal network level in the SCN and through rhythmic, systemic cues at the organismal level, circadian rhythms at the organismal level are not necessarily cell-autonomous5-7. Compared to traditional studies of locomotor activity in vivo and SCN explants ex vivo, cell-based in vitro assays allow for discovery of cell-autonomous circadian defects5,8. Strategically, cell-based models are more experimentally tractable for phenotypic characterization and rapid discovery of basic clock mechanisms5,8-13. Because circadian rhythms are dynamic, longitudinal measurements with high temporal resolution are needed to assess clock function. In recent years, real-time bioluminescence recording using firefly luciferase as a reporter has become a common technique for studying circadian rhythms in mammals14,15, as it allows for examination of the persistence and dynamics of molecular rhythms. To monitor cell-autonomous circadian rhythms of gene expression, luciferase reporters can be introduced into cells via transient transfection13,16,17 or stable transduction5,10,18,19. Here we describe a stable transduction protocol using lentivirus-mediated gene delivery. The lentiviral vector system is superior to traditional methods such as transient transfection and germline transmission because of its efficiency and versatility: it permits efficient delivery and stable integration into the host genome of both dividing and non-dividing cells20. Once a reporter cell line is established, the dynamics of clock function can be examined through bioluminescence recording. We first describe the generation of P(Per2)-dLuc reporter lines, and then present data from this and other circadian reporters. In these assays, 3T3 mouse fibroblasts and U2OS human osteosarcoma cells are used as cellular models. We also discuss various ways of using these clock models in circadian studies. Methods described here can be applied to a great variety of cell types to study the cellular and molecular basis of circadian clocks, and may prove useful in tackling problems in other biological systems.
Genetics, Issue 67, Molecular Biology, Cellular Biology, Chemical Biology, Circadian clock, firefly luciferase, real-time bioluminescence technology, cell-autonomous model, lentiviral vector, RNA interference (RNAi), high-throughput screening (HTS)
Play Button
Assaying Locomotor Activity to Study Circadian Rhythms and Sleep Parameters in Drosophila
Authors: Joanna C. Chiu, Kwang Huei Low, Douglas H. Pike, Evrim Yildirim, Isaac Edery.
Institutions: Rutgers University, University of California, Davis, Rutgers University.
Most life forms exhibit daily rhythms in cellular, physiological and behavioral phenomena that are driven by endogenous circadian (≡24 hr) pacemakers or clocks. Malfunctions in the human circadian system are associated with numerous diseases or disorders. Much progress towards our understanding of the mechanisms underlying circadian rhythms has emerged from genetic screens whereby an easily measured behavioral rhythm is used as a read-out of clock function. Studies using Drosophila have made seminal contributions to our understanding of the cellular and biochemical bases underlying circadian rhythms. The standard circadian behavioral read-out measured in Drosophila is locomotor activity. In general, the monitoring system involves specially designed devices that can measure the locomotor movement of Drosophila. These devices are housed in environmentally controlled incubators located in a darkroom and are based on using the interruption of a beam of infrared light to record the locomotor activity of individual flies contained inside small tubes. When measured over many days, Drosophila exhibit daily cycles of activity and inactivity, a behavioral rhythm that is governed by the animal's endogenous circadian system. The overall procedure has been simplified with the advent of commercially available locomotor activity monitoring devices and the development of software programs for data analysis. We use the system from Trikinetics Inc., which is the procedure described here and is currently the most popular system used worldwide. More recently, the same monitoring devices have been used to study sleep behavior in Drosophila. Because the daily wake-sleep cycles of many flies can be measured simultaneously and only 1 to 2 weeks worth of continuous locomotor activity data is usually sufficient, this system is ideal for large-scale screens to identify Drosophila manifesting altered circadian or sleep properties.
Neuroscience, Issue 43, circadian rhythm, locomotor activity, Drosophila, period, sleep, Trikinetics
Play Button
Drosophila Adult Olfactory Shock Learning
Authors: Bilal R. Malik, James J.L. Hodge.
Institutions: University of Bristol.
Drosophila have been used in classical conditioning experiments for over 40 years, thus greatly facilitating our understanding of memory, including the elucidation of the molecular mechanisms involved in cognitive diseases1-7. Learning and memory can be assayed in larvae to study the effect of neurodevelopmental genes8-10 and in flies to measure the contribution of adult plasticity genes1-7. Furthermore, the short lifespan of Drosophila facilitates the analysis of genes mediating age-related memory impairment5,11-13. The availability of many inducible promoters that subdivide the Drosophila nervous system makes it possible to determine when and where a gene of interest is required for normal memory as well as relay of different aspects of the reinforcement signal3,4,14,16. Studying memory in adult Drosophila allows for a detailed analysis of the behavior and circuitry involved and a measurement of long-term memory15-17. The length of the adult stage accommodates longer-term genetic, behavioral, dietary and pharmacological manipulations of memory, in addition to determining the effect of aging and neurodegenerative disease on memory3-6,11-13,15-21. Classical conditioning is induced by the simultaneous presentation of a neutral odor cue (conditioned stimulus, CS+) and a reinforcement stimulus, e.g., an electric shock or sucrose, (unconditioned stimulus, US), that become associated with one another by the animal1,16. A second conditioned stimulus (CS-) is subsequently presented without the US. During the testing phase, Drosophila are simultaneously presented with CS+ and CS- odors. After the Drosophila are provided time to choose between the odors, the distribution of the animals is recorded. This procedure allows associative aversive or appetitive conditioning to be reliably measured without a bias introduced by the innate preference for either of the conditioned stimuli. Various control experiments are also performed to test whether all genotypes respond normally to odor and reinforcement alone.
Neuroscience, Issue 90, Drosophila, Pavlovian learning, classical conditioning, learning, memory, olfactory, electric shock, associative memory
Play Button
Light Preference Assay to Study Innate and Circadian Regulated Photobehavior in Drosophila Larvae
Authors: Abud J. Farca Luna, Alina M. H. J. von Essen, Yves F. Widmer, Simon G. Sprecher.
Institutions: University of Fribourg.
Light acts as environmental signal to control animal behavior at various levels. The Drosophila larval nervous system is used as a unique model to answer basic questions on how light information is processed and shared between rapid and circadian behaviors. Drosophila larvae display a stereotypical avoidance behavior when exposed to light. To investigate light dependent behaviors comparably simple light-dark preference tests can be applied. In vertebrates and arthropods the neural pathways involved in sensing and processing visual inputs partially overlap with those processing photic circadian information. The fascinating question of how the light sensing system and the circadian system interact to keep behavioral outputs coordinated remains largely unexplored. Drosophila is an impacting biological model to approach these questions, due to a small number of neurons in the brain and the availability of genetic tools for neuronal manipulation. The presented light-dark preference assay allows the investigation of a range of visual behaviors including circadian control of phototaxis.
Neuroscience, Issue 74, Developmental Biology, Neurobiology, Behavior, Molecular Biology, Cellular Biology, Physiology, Anatomy, Light, preference test, Drosophila, larva, fruit fly, visual behavior, circadian rhythm, visual system, animal model, assay
Play Button
Simultaneous Electroencephalography, Real-time Measurement of Lactate Concentration and Optogenetic Manipulation of Neuronal Activity in the Rodent Cerebral Cortex
Authors: William C. Clegern, Michele E. Moore, Michelle A. Schmidt, Jonathan Wisor.
Institutions: Washington State University.
Although the brain represents less than 5% of the body by mass, it utilizes approximately one quarter of the glucose used by the body at rest1. The function of non rapid eye movement sleep (NREMS), the largest portion of sleep by time, is uncertain. However, one salient feature of NREMS is a significant reduction in the rate of cerebral glucose utilization relative to wakefulness2-4. This and other findings have led to the widely held belief that sleep serves a function related to cerebral metabolism. Yet, the mechanisms underlying the reduction in cerebral glucose metabolism during NREMS remain to be elucidated. One phenomenon associated with NREMS that might impact cerebral metabolic rate is the occurrence of slow waves, oscillations at frequencies less than 4 Hz, in the electroencephalogram5,6. These slow waves detected at the level of the skull or cerebral cortical surface reflect the oscillations of underlying neurons between a depolarized/up state and a hyperpolarized/down state7. During the down state, cells do not undergo action potentials for intervals of up to several hundred milliseconds. Restoration of ionic concentration gradients subsequent to action potentials represents a significant metabolic load on the cell8; absence of action potentials during down states associated with NREMS may contribute to reduced metabolism relative to wake. Two technical challenges had to be addressed in order for this hypothetical relationship to be tested. First, it was necessary to measure cerebral glycolytic metabolism with a temporal resolution reflective of the dynamics of the cerebral EEG (that is, over seconds rather than minutes). To do so, we measured the concentration of lactate, the product of aerobic glycolysis, and therefore a readout of the rate of glucose metabolism in the brains of mice. Lactate was measured using a lactate oxidase based real time sensor embedded in the frontal cortex. The sensing mechanism consists of a platinum-iridium electrode surrounded by a layer of lactate oxidase molecules. Metabolism of lactate by lactate oxidase produces hydrogen peroxide, which produces a current in the platinum-iridium electrode. So a ramping up of cerebral glycolysis provides an increase in the concentration of substrate for lactate oxidase, which then is reflected in increased current at the sensing electrode. It was additionally necessary to measure these variables while manipulating the excitability of the cerebral cortex, in order to isolate this variable from other facets of NREMS. We devised an experimental system for simultaneous measurement of neuronal activity via the elecetroencephalogram, measurement of glycolytic flux via a lactate biosensor, and manipulation of cerebral cortical neuronal activity via optogenetic activation of pyramidal neurons. We have utilized this system to document the relationship between sleep-related electroencephalographic waveforms and the moment-to-moment dynamics of lactate concentration in the cerebral cortex. The protocol may be useful for any individual interested in studying, in freely behaving rodents, the relationship between neuronal activity measured at the electroencephalographic level and cellular energetics within the brain.
Neuroscience, Issue 70, Physiology, Anatomy, Medicine, Pharmacology, Surgery, Sleep, rapid eye movement, glucose, glycolysis, pyramidal neurons, channelrhodopsin, optogenetics, optogenetic stimulation, electroencephalogram, EEG, EMG, brain, animal model
Play Button
Getting to Compliance in Forced Exercise in Rodents: A Critical Standard to Evaluate Exercise Impact in Aging-related Disorders and Disease
Authors: Jennifer C. Arnold, Michael F. Salvatore.
Institutions: Louisiana State University Health Sciences Center.
There is a major increase in the awareness of the positive impact of exercise on improving several disease states with neurobiological basis; these include improving cognitive function and physical performance. As a result, there is an increase in the number of animal studies employing exercise. It is argued that one intrinsic value of forced exercise is that the investigator has control over the factors that can influence the impact of exercise on behavioral outcomes, notably exercise frequency, duration, and intensity of the exercise regimen. However, compliance in forced exercise regimens may be an issue, particularly if potential confounds of employing foot-shock are to be avoided. It is also important to consider that since most cognitive and locomotor impairments strike in the aged individual, determining impact of exercise on these impairments should consider using aged rodents with a highest possible level of compliance to ensure minimal need for test subjects. Here, the pertinent steps and considerations necessary to achieve nearly 100% compliance to treadmill exercise in an aged rodent model will be presented and discussed. Notwithstanding the particular exercise regimen being employed by the investigator, our protocol should be of use to investigators that are particularly interested in the potential impact of forced exercise on aging-related impairments, including aging-related Parkinsonism and Parkinson’s disease.
Behavior, Issue 90, Exercise, locomotor, Parkinson’s disease, aging, treadmill, bradykinesia, Parkinsonism
Play Button
Automated, Quantitative Cognitive/Behavioral Screening of Mice: For Genetics, Pharmacology, Animal Cognition and Undergraduate Instruction
Authors: C. R. Gallistel, Fuat Balci, David Freestone, Aaron Kheifets, Adam King.
Institutions: Rutgers University, Koç University, New York University, Fairfield University.
We describe a high-throughput, high-volume, fully automated, live-in 24/7 behavioral testing system for assessing the effects of genetic and pharmacological manipulations on basic mechanisms of cognition and learning in mice. A standard polypropylene mouse housing tub is connected through an acrylic tube to a standard commercial mouse test box. The test box has 3 hoppers, 2 of which are connected to pellet feeders. All are internally illuminable with an LED and monitored for head entries by infrared (IR) beams. Mice live in the environment, which eliminates handling during screening. They obtain their food during two or more daily feeding periods by performing in operant (instrumental) and Pavlovian (classical) protocols, for which we have written protocol-control software and quasi-real-time data analysis and graphing software. The data analysis and graphing routines are written in a MATLAB-based language created to simplify greatly the analysis of large time-stamped behavioral and physiological event records and to preserve a full data trail from raw data through all intermediate analyses to the published graphs and statistics within a single data structure. The data-analysis code harvests the data several times a day and subjects it to statistical and graphical analyses, which are automatically stored in the "cloud" and on in-lab computers. Thus, the progress of individual mice is visualized and quantified daily. The data-analysis code talks to the protocol-control code, permitting the automated advance from protocol to protocol of individual subjects. The behavioral protocols implemented are matching, autoshaping, timed hopper-switching, risk assessment in timed hopper-switching, impulsivity measurement, and the circadian anticipation of food availability. Open-source protocol-control and data-analysis code makes the addition of new protocols simple. Eight test environments fit in a 48 in x 24 in x 78 in cabinet; two such cabinets (16 environments) may be controlled by one computer.
Behavior, Issue 84, genetics, cognitive mechanisms, behavioral screening, learning, memory, timing
Play Button
The FlyBar: Administering Alcohol to Flies
Authors: Kim van der Linde, Emiliano Fumagalli, Gregg Roman, Lisa C. Lyons.
Institutions: Florida State University, University of Houston.
Fruit flies (Drosophila melanogaster) are an established model for both alcohol research and circadian biology. Recently, we showed that the circadian clock modulates alcohol sensitivity, but not the formation of tolerance. Here, we describe our protocol in detail. Alcohol is administered to the flies using the FlyBar. In this setup, saturated alcohol vapor is mixed with humidified air in set proportions, and administered to the flies in four tubes simultaneously. Flies are reared under standardized conditions in order to minimize variation between the replicates. Three-day old flies of different genotypes or treatments are used for the experiments, preferably by matching flies of two different time points (e.g., CT 5 and CT 17) making direct comparisons possible. During the experiment, flies are exposed for 1 hr to the pre-determined percentage of alcohol vapor and the number of flies that exhibit the Loss of Righting reflex (LoRR) or sedation are counted every 5 min. The data can be analyzed using three different statistical approaches. The first is to determine the time at which 50% of the flies have lost their righting reflex and use an Analysis of the Variance (ANOVA) to determine whether significant differences exist between time points. The second is to determine the percentage flies that show LoRR after a specified number of minutes, followed by an ANOVA analysis. The last method is to analyze the whole times series using multivariate statistics. The protocol can also be used for non-circadian experiments or comparisons between genotypes.
Neuroscience, Issue 87, neuroscience, alcohol sensitivity, Drosophila, Circadian, sedation, biological rhythms, undergraduate research
Play Button
Quantitative Measurement of the Immune Response and Sleep in Drosophila
Authors: Tzu-Hsing Kuo, Arun Handa, Julie A. Williams.
Institutions: University of Pennsylvania Perelman School of Medicine.
A complex interaction between the immune response and host behavior has been described in a wide range of species. Excess sleep, in particular, is known to occur as a response to infection in mammals 1 and has also recently been described in Drosophila melanogaster2. It is generally accepted that sleep is beneficial to the host during an infection and that it is important for the maintenance of a robust immune system3,4. However, experimental evidence that supports this hypothesis is limited4, and the function of excess sleep during an immune response remains unclear. We have used a multidisciplinary approach to address this complex problem, and have conducted studies in the simple genetic model system, the fruitfly Drosophila melanogaster. We use a standard assay for measuring locomotor behavior and sleep in flies, and demonstrate how this assay is used to measure behavior in flies infected with a pathogenic strain of bacteria. This assay is also useful for monitoring the duration of survival in individual flies during an infection. Additional measures of immune function include the ability of flies to clear an infection and the activation of NFκB, a key transcription factor that is central to the innate immune response in Drosophila. Both survival outcome and bacterial clearance during infection together are indicators of resistance and tolerance to infection. Resistance refers to the ability of flies to clear an infection, while tolerance is defined as the ability of the host to limit damage from an infection and thereby survive despite high levels of pathogen within the system5. Real-time monitoring of NFκB activity during infection provides insight into a molecular mechanism of survival during infection. The use of Drosophila in these straightforward assays facilitates the genetic and molecular analyses of sleep and the immune response and how these two complex systems are reciprocally influenced.
Immunology, Issue 70, Neuroscience, Medicine, Physiology, Pathology, Microbiology, immune response, sleep, Drosophila, infection, bacteria, luciferase reporter assay, animal model
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.