JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Differences in MEF2 and NFAT transcriptional pathways according to human heart failure aetiology.
PLoS ONE
Ca(2+) handling machinery modulates the activation of cardiac transcription pathways involved in heart failure (HF). The present study investigated the effect of HF aetiology on Ca(+2) handling proteins and NFAT1, MEF2C and GATA4 (transcription factors) in the same cardiac tissue.
Authors: Iki Adachi, David S. L. Morales.
Published: 07-18-2014
ABSTRACT
In patients with end-stage heart failure (HF), a total artificial heart (TAH) may be implanted as a bridge to cardiac transplant. However, in congenital heart disease (CHD), the malformed heart presents a challenge to TAH implantation. In the case presented here, a 17 year-old patient with congenital transposition of the great arteries (CCTGA) experienced progressively worsening HF due to his congenital condition. He was hospitalized multiple times and received an implantable cardioverter defibrillator (ICD). However, his condition soon deteriorated to end-stage HF with multisystem organ failure. Due to the patient's grave clinical condition and the presence of complex cardiac lesions, the decision was made to proceed with a TAH. The abnormal arrangement of the patient's ventricles and great arteries required modifications to the TAH during implantation. With the TAH in place, the patient was able to return home and regain strength and physical well-being while awaiting a donor heart. He was successfully bridged to heart transplantation 5 months after receiving the device. This report highlights the TAH is feasible even in patients with structurally abnormal hearts, with technical modification.
22 Related JoVE Articles!
Play Button
Isolation of Cardiomyocyte Nuclei from Post-mortem Tissue
Authors: Olaf Bergmann, Stefan Jovinge.
Institutions: University of Lund, University of Lund.
Identification of cardiomyocyte nuclei has been challenging in tissue sections as most strategies rely only on cytoplasmic marker proteins1. Rare events in cardiac myocytes such as proliferation and apoptosis require an accurate identification of cardiac myocyte nuclei to analyze cellular renewal in homeostasis and in pathological conditions2. Here, we provide a method to isolate cardiomyocyte nuclei from post mortem tissue by density sedimentation and immunolabeling with antibodies against pericentriolar material 1 (PCM-1) and subsequent flow cytometry sorting. This strategy allows a high throughput analysis and isolation with the advantage of working equally well on fresh tissue and frozen archival material. This makes it possible to study material already collected in biobanks. This technique is applicable and tested in a wide range of species and suitable for multiple downstream applications such as carbon-14 dating3, cell-cycle analysis4, visualization of thymidine analogues (e.g. BrdU and IdU)4, transcriptome and epigenetic analysis.
Medicine, Issue 65, Stem Cell Biology, Cardiology, Physiology, Tissue Engineering, cardiomyocyte, post mortem, nuclei isolation, flow cytometry, pericentriolar material 1, PCM-1
4205
Play Button
Murine Echocardiography and Ultrasound Imaging
Authors: Andrew Pistner, Stephen Belmonte, Tonya Coulthard, Burns C. Blaxall.
Institutions: University of Rochester, University of Rochester, Visualsonics, University of Rochester.
Rodent models of cardiac pathophysiology represent a valuable research tool to investigate mechanism of disease as well as test new therapeutics.1 Echocardiography provides a powerful, non-invasive tool to serially assess cardiac morphometry and function in a living animal.2 However, using this technique on mice poses unique challenges owing to the small size and rapid heart rate of these animals.3 Until recently, few ultrasound systems were capable of performing quality echocardiography on mice, and those generally lacked the image resolution and frame rate necessary to obtain truly quantitative measurements. Newly released systems such as the VisualSonics Vevo2100 provide new tools for researchers to carefully and non-invasively investigate cardiac function in mice. This system generates high resolution images and provides analysis capabilities similar to those used with human patients. Although color Doppler has been available for over 30 years in humans, this valuable technology has only recently been possible in rodent ultrasound.4,5 Color Doppler has broad applications for echocardiography, including the ability to quickly assess flow directionality in vessels and through valves, and to rapidly identify valve regurgitation. Strain analysis is a critical advance that is utilized to quantitatively measure regional myocardial function.6 This technique has the potential to detect changes in pathology, or resolution of pathology, earlier than conventional techniques. Coupled with the addition of three-dimensional image reconstruction, volumetric assessment of whole-organs is possible, including visualization and assessment of cardiac and vascular structures. Murine-compatible contrast imaging can also allow for volumetric measurements and tissue perfusion assessment.
Medicine, Issue 42, echocardiography, heart, mouse, strain imaging, high frequency ultrasound, contrast imaging
2100
Play Button
Acute Myocardial Infarction in Rats
Authors: Yewen Wu, Xing Yin, Cori Wijaya, Ming-He Huang, Bradley K. McConnell.
Institutions: University of Texas Medical Branch, University of Houston (UH), Texas Medical Center.
With heart failure leading the cause of death in the USA (Hunt), biomedical research is fundamental to advance medical treatments for cardiovascular diseases. Animal models that mimic human cardiac disease, such as myocardial infarction (MI) and ischemia-reperfusion (IR) that induces heart failure as well as pressure-overload (transverse aortic constriction) that induces cardiac hypertrophy and heart failure (Goldman and Tarnavski), are useful models to study cardiovascular disease. In particular, myocardial ischemia (MI) is a leading cause for cardiovascular morbidity and mortality despite controlling certain risk factors such as arteriosclerosis and treatments via surgical intervention (Thygesen). Furthermore, an acute loss of the myocardium following myocardial ischemia (MI) results in increased loading conditions that induces ventricular remodeling of the infarcted border zone and the remote non-infarcted myocardium. Myocyte apoptosis, necrosis and the resultant increased hemodynamic load activate multiple biochemical intracellular signaling that initiates LV dilatation, hypertrophy, ventricular shape distortion, and collagen scar formation. This pathological remodeling and failure to normalize the increased wall stresses results in progressive dilatation, recruitment of the border zone myocardium into the scar, and eventually deterioration in myocardial contractile function (i.e. heart failure). The progression of LV dysfunction and heart failure in rats is similar to that observed in patients who sustain a large myocardial infarction, survive and subsequently develops heart failure (Goldman). The acute myocardial infarction (AMI) model in rats has been used to mimic human cardiovascular disease; specifically used to study cardiac signaling mechanisms associated with heart failure as well as to assess the contribution of therapeutic strategies for the treatment of heart failure. The method described in this report is the rat model of acute myocardial infarction (AMI). This model is also referred to as an acute ischemic cardiomyopathy or ischemia followed by reperfusion (IR); which is induced by an acute 30-minute period of ischemia by ligation of the left anterior descending artery (LAD) followed by reperfusion of the tissue by releasing the LAD ligation (Vasilyev and McConnell). This protocol will focus on assessment of the infarct size and the area-at-risk (AAR) by Evan's blue dye and triphenyl tetrazolium chloride (TTC) following 4-hours of reperfusion; additional comments toward the evaluation of cardiac function and remodeling by modifying the duration of reperfusion, is also presented. Overall, this AMI rat animal model is useful for studying the consequence of a myocardial infarction on cardiac pathophysiological and physiological function.
Medicine, Issue 48, Cardiovascular (CV), Heart Failure (HF), Acute Myocardial Infarction (AMI), Ischemia-Reperfusion (IR), Left Anterior Descending Artery (LAD)
2464
Play Button
Transverse Aortic Constriction in Mice
Authors: Angela C. deAlmeida, Ralph J. van Oort, Xander H.T. Wehrens.
Institutions: Baylor College of Medicine (BCM), Baylor College of Medicine (BCM).
Transverse aortic constriction (TAC) in the mouse is a commonly used experimental model for pressure overload-induced cardiac hypertrophy and heart failure.1 TAC initially leads to compensated hypertrophy of the heart, which often is associated with a temporary enhancement of cardiac contractility. Over time, however, the response to the chronic hemodynamic overload becomes maladaptive, resulting in cardiac dilatation and heart failure.2 The murine TAC model was first validated by Rockman et al.1, and has since been extensively used as a valuable tool to mimic human cardiovascular diseases and elucidate fundamental signaling processes involved in the cardiac hypertrophic response and heart failure development. When compared to other experimental models of heart failure, such as complete occlusion of the left anterior descending (LAD) coronary artery, TAC provides a more reproducible model of cardiac hypertrophy and a more gradual time course in the development of heart failure. Here, we describe a step-by-step procedure to perform surgical TAC in mice. To determine the level of pressure overload produced by the aortic ligation, a high frequency Doppler probe is used to measure the ratio between blood flow velocities in the right and left carotid arteries.3, 4 With surgical survival rates of 80-90%, transverse aortic banding is an effective technique of inducing left ventricular hypertrophy and heart failure in mice.
Medicine, Issue 38, Aorta, heart failure, hypertrophy, mouse, pressure-overload
1729
Play Button
Fluorescent Labeling of Drosophila Heart Structures
Authors: Nakissa N. Alayari, Georg Vogler, Ouarda Taghli-Lamallem, Karen Ocorr, Rolf Bodmer, Anthony Cammarato.
Institutions: San Diego State University, The Sanford Burnham Institute for Medical Research.
The Drosophila melanogaster dorsal vessel, or heart, is a tubular structure comprised of a single layer of contractile cardiomyocytes, pericardial cells that align along each side of the heart wall, supportive alary muscles and, in adults, a layer of ventral longitudinal muscle cells. The contractile fibers house conserved constituents of the muscle cytoarchitecture including densely packed bundles of myofibrils and cytoskeletal/submembranous protein complexes, which interact with homologous components of the extracellular matrix. Here we describe a protocol for the fixation and the fluorescent labeling of particular myocardial elements from the hearts of dissected larvae and semi-intact adult Drosophila. Specifically, we demonstrate the labeling of sarcomeric F-actin and of α-actinin in larval hearts. Additionally, we perform labeling of F-actin and α-actinin in myosin-GFP expressing adult flies and of α-actinin and pericardin, a type IV extracellular matrix collagen, in wild type adult hearts. Particular attention is given to a mounting strategy for semi-intact adult hearts that minimizes handling and optimizes the opportunity for maintaining the integrity of the cardiac tubes and the associated tissues. These preparations are suitable for imaging via fluorescent and confocal microscopy. Overall, this procedure allows for careful and detailed analysis of the structural characteristics of the heart from a powerful genetically tractable model system.
Cellular Biology, Issue 32, Cardiac, cardiomyopathy, dorsal vessel, fluorescence, staining, GFP, larva, immunohistochemistry, microscopy, imaging
1423
Play Button
Ascending Aortic Constriction in Rats for Creation of Pressure Overload Cardiac Hypertrophy Model
Authors: Ajith Kumar GS, Binil Raj, Santhosh Kumar S, Sanjay G, Chandrasekharan Cheranellore Kartha.
Institutions: Rajiv Gandhi Centre for Biotechnology, Rajiv Gandhi Centre for Biotechnology, Sree Chitra Tirunal Institute for Medical Sciences & Technology.
Ascending aortic constriction is the most common and successful surgical model for creating pressure overload induced cardiac hypertrophy and heart failure. Here, we describe a detailed surgical procedure for creating pressure overload and cardiac hypertrophy in rats by constriction of the ascending aorta using a small metallic clip. After anesthesia, the trachea is intubated by inserting a cannula through a half way incision made between two cartilage rings of trachea. Then a skin incision is made at the level of the second intercostal space on the left chest wall and muscle layers are cleared to locate the ascending portion of aorta. The ascending aorta is constricted to 50–60% of its original diameter by application of a small sized titanium clip. Following aortic constriction, the second and third ribs are approximated with prolene sutures. The tracheal cannula is removed once spontaneous breathing was re-established. The animal is allowed to recover on the heating pad by gradually lowering anesthesia. The intensity of pressure overload created by constriction of the ascending aorta is determined by recording the pressure gradient using trans-thoracic two dimensional Doppler-echocardiography. Overall this protocol is useful to study the remodeling events and contractile properties of the heart during the gradual onset and progression from compensated cardiac hypertrophy to heart failure stage.
Medicine, Issue 88, ascending aorta, cardiac hypertrophy, pressure overload, aortic constriction, thoracotomy, surgical model.
50983
Play Button
Quantitative Analysis of Chromatin Proteomes in Disease
Authors: Emma Monte, Haodong Chen, Maria Kolmakova, Michelle Parvatiyar, Thomas M. Vondriska, Sarah Franklin.
Institutions: David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah.
In the nucleus reside the proteomes whose functions are most intimately linked with gene regulation. Adult mammalian cardiomyocyte nuclei are unique due to the high percentage of binucleated cells,1 the predominantly heterochromatic state of the DNA, and the non-dividing nature of the cardiomyocyte which renders adult nuclei in a permanent state of interphase.2 Transcriptional regulation during development and disease have been well studied in this organ,3-5 but what remains relatively unexplored is the role played by the nuclear proteins responsible for DNA packaging and expression, and how these proteins control changes in transcriptional programs that occur during disease.6 In the developed world, heart disease is the number one cause of mortality for both men and women.7 Insight on how nuclear proteins cooperate to regulate the progression of this disease is critical for advancing the current treatment options. Mass spectrometry is the ideal tool for addressing these questions as it allows for an unbiased annotation of the nuclear proteome and relative quantification for how the abundance of these proteins changes with disease. While there have been several proteomic studies for mammalian nuclear protein complexes,8-13 until recently14 there has been only one study examining the cardiac nuclear proteome, and it considered the entire nucleus, rather than exploring the proteome at the level of nuclear sub compartments.15 In large part, this shortage of work is due to the difficulty of isolating cardiac nuclei. Cardiac nuclei occur within a rigid and dense actin-myosin apparatus to which they are connected via multiple extensions from the endoplasmic reticulum, to the extent that myocyte contraction alters their overall shape.16 Additionally, cardiomyocytes are 40% mitochondria by volume17 which necessitates enrichment of the nucleus apart from the other organelles. Here we describe a protocol for cardiac nuclear enrichment and further fractionation into biologically-relevant compartments. Furthermore, we detail methods for label-free quantitative mass spectrometric dissection of these fractions-techniques amenable to in vivo experimentation in various animal models and organ systems where metabolic labeling is not feasible.
Medicine, Issue 70, Molecular Biology, Immunology, Genetics, Genomics, Physiology, Protein, DNA, Chromatin, cardiovascular disease, proteomics, mass spectrometry
4294
Play Button
Comprehensive Analysis of Transcription Dynamics from Brain Samples Following Behavioral Experience
Authors: Hagit Turm, Diptendu Mukherjee, Doron Haritan, Maayan Tahor, Ami Citri.
Institutions: The Hebrew University of Jerusalem.
The encoding of experiences in the brain and the consolidation of long-term memories depend on gene transcription. Identifying the function of specific genes in encoding experience is one of the main objectives of molecular neuroscience. Furthermore, the functional association of defined genes with specific behaviors has implications for understanding the basis of neuropsychiatric disorders. Induction of robust transcription programs has been observed in the brains of mice following various behavioral manipulations. While some genetic elements are utilized recurrently following different behavioral manipulations and in different brain nuclei, transcriptional programs are overall unique to the inducing stimuli and the structure in which they are studied1,2. In this publication, a protocol is described for robust and comprehensive transcriptional profiling from brain nuclei of mice in response to behavioral manipulation. The protocol is demonstrated in the context of analysis of gene expression dynamics in the nucleus accumbens following acute cocaine experience. Subsequent to a defined in vivo experience, the target neural tissue is dissected; followed by RNA purification, reverse transcription and utilization of microfluidic arrays for comprehensive qPCR analysis of multiple target genes. This protocol is geared towards comprehensive analysis (addressing 50-500 genes) of limiting quantities of starting material, such as small brain samples or even single cells. The protocol is most advantageous for parallel analysis of multiple samples (e.g. single cells, dynamic analysis following pharmaceutical, viral or behavioral perturbations). However, the protocol could also serve for the characterization and quality assurance of samples prior to whole-genome studies by microarrays or RNAseq, as well as validation of data obtained from whole-genome studies.
Behavior, Issue 90, Brain, behavior, RNA, transcription, nucleus accumbens, cocaine, high-throughput qPCR, experience-dependent plasticity, gene regulatory networks, microdissection
51642
Play Button
In Vitro Assay to Evaluate the Impact of Immunoregulatory Pathways on HIV-specific CD4 T Cell Effector Function
Authors: Filippos Porichis, Meghan G. Hart, Jennifer Zupkosky, Lucie Barblu, Daniel E. Kaufmann.
Institutions: The Ragon Institute of MGH, MIT and Harvard, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM).
T cell exhaustion is a major factor in failed pathogen clearance during chronic viral infections. Immunoregulatory pathways, such as PD-1 and IL-10, are upregulated upon this ongoing antigen exposure and contribute to loss of proliferation, reduced cytolytic function, and impaired cytokine production by CD4 and CD8 T cells. In the murine model of LCMV infection, administration of blocking antibodies against these two pathways augmented T cell responses. However, there is currently no in vitro assay to measure the impact of such blockade on cytokine secretion in cells from human samples. Our protocol and experimental approach enable us to accurately and efficiently quantify the restoration of cytokine production by HIV-specific CD4 T cells from HIV infected subjects. Here, we depict an in vitro experimental design that enables measurements of cytokine secretion by HIV-specific CD4 T cells and their impact on other cell subsets. CD8 T cells were depleted from whole blood and remaining PBMCs were isolated via Ficoll separation method. CD8-depleted PBMCs were then incubated with blocking antibodies against PD-L1 and/or IL-10Rα and, after stimulation with an HIV-1 Gag peptide pool, cells were incubated at 37 °C, 5% CO2. After 48 hr, supernatant was collected for cytokine analysis by beads arrays and cell pellets were collected for either phenotypic analysis using flow cytometry or transcriptional analysis using qRT-PCR. For more detailed analysis, different cell populations were obtained by selective subset depletion from PBMCs or by sorting using flow cytometry before being assessed in the same assays. These methods provide a highly sensitive and specific approach to determine the modulation of cytokine production by antigen-specific T-helper cells and to determine functional interactions between different populations of immune cells.
Immunology, Issue 80, Virus Diseases, Immune System Diseases, HIV, CD4 T cell, CD8 T cell, antigen-presenting cell, Cytokines, immunoregulatory networks, PD-1: IL-10, exhaustion, monocytes
50821
Play Button
Immunostaining of Dissected Zebrafish Embryonic Heart
Authors: Jingchun Yang, Xiaolei Xu.
Institutions: Mayo Clinic College of Medicine.
Zebrafish embryo becomes a popular in vivo vertebrate model for studying cardiac development and human heart diseases due to its advantageous embryology and genetics 1,2. About 100-200 embryos are readily available every week from a single pair of adult fish. The transparent embryos that develop ex utero make them ideal for assessing cardiac defects 3. The expression of any gene can be manipulated via morpholino technology or RNA injection 4. Moreover, forward genetic screens have already generated a list of mutants that affect different perspectives of cardiogenesis 5. Whole mount immunostaining is an important technique in this animal model to reveal the expression pattern of the targeted protein to a particular tissue 6. However, high resolution images that can reveal cellular or subcellular structures have been difficult, mainly due to the physical location of the heart and the poor penetration of the antibodies. Here, we present a method to address these bottlenecks by dissecting heart first and then conducting the staining process on the surface of a microscope slide. To prevent the loss of small heart samples and to facilitate solution handling, we restricted the heart samples within a circle on the surface of the microscope slides drawn by an immEdge pen. After the staining, the fluorescence signals can be directly observed by a compound microscope. Our new method significantly improves the penetration for antibodies, since a heart from an embryonic fish only consists of few cell layers. High quality images from intact hearts can be obtained within a much reduced procession time for zebrafish embryos aged from day 2 to day 6. Our method can be potentially extended to stain other organs dissected from either zebrafish or other small animals.
Developmental Biology, Issue 59, Zebrafish, Danio rerio, Embryonic Heart, Cardiology, Dissection, Immunostaining
3510
Play Button
Efficient Chromatin Immunoprecipitation using Limiting Amounts of Biomass
Authors: Dean Tantin, Warren P. Voth, Arvind Shakya.
Institutions: University of Utah School of Medicine.
Chromatin immunoprecipitation (ChIP) is a widely-used method for determining the interactions of different proteins with DNA in chromatin of living cells. Examples include sequence-specific DNA binding transcription factors, histones and their different modification states, enzymes such as RNA polymerases and ancillary factors, and DNA repair components. Despite its ubiquity, there is a lack of up-to-date, detailed methodologies for both bench preparation of material and for accurate analysis allowing quantitative metrics of interaction. Due to this lack of information, and also because, like any immunoprecipitation, conditions must be re-optimized for new sets of experimental conditions, the ChIP assay is susceptible to inaccurate or poorly quantitative results. Our protocol is ultimately derived from seminal work on transcription factor:DNA interactions1,2 , but incorporates a number of improvements to sensitivity and reproducibility for difficult-to-obtain cell types. The protocol has been used successfully3,4 , both using qPCR to quantify DNA enrichment, or using a semi-quantitative variant of the below protocol. This quantitative analysis of PCR-amplified material is performed computationally, and represents a limiting factor in the assay. Important controls and other considerations include the use of an isotype-matched antibody, as well as evaluation of a control region of genomic DNA, such as an intergenic region predicted not to be bound by the protein under study (or anticipated not to show changes under the experimental conditions). In addition, a standard curve of input material for every ChIP sample is used to derive absolute levels of enrichment in the experimental material. Use of standard curves helps to take into account differences between primer sets, regardless of how carefully they are designed, and also efficiency differences throughout the range of template concentrations for a single primer set. Our protocol is different from others that are available5-8 in that we extensively cover the later, analysis phase.
Molecular Biology, Issue 75, Genetics, Cellular Biology, Biomedical Engineering, Microbiology, Immunology, Biochemistry, Proteins, life sciences, animal models, chromatin immunoprecipitation, ChIP, chromatin, immunoprecipitation, gene regulation, T lymphocyte, transcription factor, chromatin modification, DNA, quantitative PCR, PCR, cells, isolation, animal model
50064
Play Button
High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry
Authors: Subarna Bhattacharya, Paul W. Burridge, Erin M. Kropp, Sandra L. Chuppa, Wai-Meng Kwok, Joseph C. Wu, Kenneth R. Boheler, Rebekah L. Gundry.
Institutions: Medical College of Wisconsin, Stanford University School of Medicine, Medical College of Wisconsin, Hong Kong University, Johns Hopkins University School of Medicine, Medical College of Wisconsin.
There is an urgent need to develop approaches for repairing the damaged heart, discovering new therapeutic drugs that do not have toxic effects on the heart, and improving strategies to accurately model heart disease. The potential of exploiting human induced pluripotent stem cell (hiPSC) technology to generate cardiac muscle “in a dish” for these applications continues to generate high enthusiasm. In recent years, the ability to efficiently generate cardiomyogenic cells from human pluripotent stem cells (hPSCs) has greatly improved, offering us new opportunities to model very early stages of human cardiac development not otherwise accessible. In contrast to many previous methods, the cardiomyocyte differentiation protocol described here does not require cell aggregation or the addition of Activin A or BMP4 and robustly generates cultures of cells that are highly positive for cardiac troponin I and T (TNNI3, TNNT2), iroquois-class homeodomain protein IRX-4 (IRX4), myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC2v) and myosin regulatory light chain 2, atrial isoform (MLC2a) by day 10 across all human embryonic stem cell (hESC) and hiPSC lines tested to date. Cells can be passaged and maintained for more than 90 days in culture. The strategy is technically simple to implement and cost-effective. Characterization of cardiomyocytes derived from pluripotent cells often includes the analysis of reference markers, both at the mRNA and protein level. For protein analysis, flow cytometry is a powerful analytical tool for assessing quality of cells in culture and determining subpopulation homogeneity. However, technical variation in sample preparation can significantly affect quality of flow cytometry data. Thus, standardization of staining protocols should facilitate comparisons among various differentiation strategies. Accordingly, optimized staining protocols for the analysis of IRX4, MLC2v, MLC2a, TNNI3, and TNNT2 by flow cytometry are described.
Cellular Biology, Issue 91, human induced pluripotent stem cell, flow cytometry, directed differentiation, cardiomyocyte, IRX4, TNNI3, TNNT2, MCL2v, MLC2a
52010
Play Button
Analysis of Tubular Membrane Networks in Cardiac Myocytes from Atria and Ventricles
Authors: Eva Wagner, Sören Brandenburg, Tobias Kohl, Stephan E. Lehnart.
Institutions: Heart Research Center Goettingen, University Medical Center Goettingen, German Center for Cardiovascular Research (DZHK) partner site Goettingen, University of Maryland School of Medicine.
In cardiac myocytes a complex network of membrane tubules - the transverse-axial tubule system (TATS) - controls deep intracellular signaling functions. While the outer surface membrane and associated TATS membrane components appear to be continuous, there are substantial differences in lipid and protein content. In ventricular myocytes (VMs), certain TATS components are highly abundant contributing to rectilinear tubule networks and regular branching 3D architectures. It is thought that peripheral TATS components propagate action potentials from the cell surface to thousands of remote intracellular sarcoendoplasmic reticulum (SER) membrane contact domains, thereby activating intracellular Ca2+ release units (CRUs). In contrast to VMs, the organization and functional role of TATS membranes in atrial myocytes (AMs) is significantly different and much less understood. Taken together, quantitative structural characterization of TATS membrane networks in healthy and diseased myocytes is an essential prerequisite towards better understanding of functional plasticity and pathophysiological reorganization. Here, we present a strategic combination of protocols for direct quantitative analysis of TATS membrane networks in living VMs and AMs. For this, we accompany primary cell isolations of mouse VMs and/or AMs with critical quality control steps and direct membrane staining protocols for fluorescence imaging of TATS membranes. Using an optimized workflow for confocal or superresolution TATS image processing, binarized and skeletonized data are generated for quantitative analysis of the TATS network and its components. Unlike previously published indirect regional aggregate image analysis strategies, our protocols enable direct characterization of specific components and derive complex physiological properties of TATS membrane networks in living myocytes with high throughput and open access software tools. In summary, the combined protocol strategy can be readily applied for quantitative TATS network studies during physiological myocyte adaptation or disease changes, comparison of different cardiac or skeletal muscle cell types, phenotyping of transgenic models, and pharmacological or therapeutic interventions.
Bioengineering, Issue 92, cardiac myocyte, atria, ventricle, heart, primary cell isolation, fluorescence microscopy, membrane tubule, transverse-axial tubule system, image analysis, image processing, T-tubule, collagenase
51823
Play Button
Isolation and Physiological Analysis of Mouse Cardiomyocytes
Authors: Gretchen M. Roth, David M. Bader, Elise R. Pfaltzgraff.
Institutions: Vanderbilt University, Vanderbilt University.
Cardiomyocytes, the workhorse cell of the heart, contain exquisitely organized cytoskeletal and contractile elements that generate the contractile force used to pump blood. Individual cardiomyocytes were first isolated over 40 years ago in order to better study the physiology and structure of heart muscle. Techniques have rapidly improved to include enzymatic digestion via coronary perfusion. More recently, analyzing the contractility and calcium flux of isolated myocytes has provided a vital tool in the cellular and sub-cellular analysis of heart failure. Echocardiography and EKGs provide information about the heart at an organ level only. Cardiomyocyte cell culture systems exist, but cells lack physiologically essential structures such as organized sarcomeres and t-tubules required for myocyte function within the heart. In the protocol presented here, cardiomyocytes are isolated via Langendorff perfusion. The heart is removed from the mouse, mounted via the aorta to a cannula, perfused with digestion enzymes, and cells are introduced to increasing calcium concentrations. Edge and sarcomere detection software is used to analyze contractility, and a calcium binding fluorescent dye is used to visualize calcium transients of electrically paced cardiomyocytes; increasing understanding of the role cellular changes play in heart dysfunction. Traditionally used to test drug effects on cardiomyocytes, we employ this system to compare myocytes from WT mice and mice with a mutation that causes dilated cardiomyopathy. This protocol is unique in its comparison of live cells from mice with known heart function and known genetics. Many experimental conditions are reliably compared, including genetic or environmental manipulation, infection, drug treatment, and more. Beyond physiologic data, isolated cardiomyocytes are easily fixed and stained for cytoskeletal elements. Isolating cardiomyocytes via perfusion is an extremely versatile method, useful in studying cellular changes that accompany or lead to heart failure in a variety of experimental conditions.
Cellular Biology, Issue 91, cardiomyocyte isolation, Langendorff, contractility, calcium transients
51109
Play Button
Isolation and Functional Characterization of Human Ventricular Cardiomyocytes from Fresh Surgical Samples
Authors: Raffaele Coppini, Cecila Ferrantini, Alessandro Aiazzi, Luca Mazzoni, Laura Sartiani, Alessandro Mugelli, Corrado Poggesi, Elisabetta Cerbai.
Institutions: University of Florence, University of Florence.
Cardiomyocytes from diseased hearts are subjected to complex remodeling processes involving changes in cell structure, excitation contraction coupling and membrane ion currents. Those changes are likely to be responsible for the increased arrhythmogenic risk and the contractile alterations leading to systolic and diastolic dysfunction in cardiac patients. However, most information on the alterations of myocyte function in cardiac diseases has come from animal models. Here we describe and validate a protocol to isolate viable myocytes from small surgical samples of ventricular myocardium from patients undergoing cardiac surgery operations. The protocol is described in detail. Electrophysiological and intracellular calcium measurements are reported to demonstrate the feasibility of a number of single cell measurements in human ventricular cardiomyocytes obtained with this method. The protocol reported here can be useful for future investigations of the cellular and molecular basis of functional alterations of the human heart in the presence of different cardiac diseases. Further, this method can be used to identify novel therapeutic targets at cellular level and to test the effectiveness of new compounds on human cardiomyocytes, with direct translational value.
Medicine, Issue 86, cardiology, cardiac cells, electrophysiology, excitation-contraction coupling, action potential, calcium, myocardium, hypertrophic cardiomyopathy, cardiac patients, cardiac disease
51116
Play Button
Isolation, Culture, and Functional Characterization of Adult Mouse Cardiomyoctyes
Authors: Evan Lee Graham, Cristina Balla, Hannabeth Franchino, Yonathan Melman, Federica del Monte, Saumya Das.
Institutions: Beth Israel Deaconess Medical Center, Harvard Medical School, Sapienza University.
The use of primary cardiomyocytes (CMs) in culture has provided a powerful complement to murine models of heart disease in advancing our understanding of heart disease. In particular, the ability to study ion homeostasis, ion channel function, cellular excitability and excitation-contraction coupling and their alterations in diseased conditions and by disease-causing mutations have led to significant insights into cardiac diseases. Furthermore, the lack of an adequate immortalized cell line to mimic adult CMs, and the limitations of neonatal CMs (which lack many of the structural and functional biomechanics characteristic of adult CMs) in culture have hampered our understanding of the complex interplay between signaling pathways, ion channels and contractile properties in the adult heart strengthening the importance of studying adult isolated cardiomyocytes. Here, we present methods for the isolation, culture, manipulation of gene expression by adenoviral-expressed proteins, and subsequent functional analysis of cardiomyocytes from the adult mouse. The use of these techniques will help to develop mechanistic insight into signaling pathways that regulate cellular excitability, Ca2+ dynamics and contractility and provide a much more physiologically relevant characterization of cardiovascular disease.
Cellular Biology, Issue 79, Medicine, Cardiology, Cellular Biology, Anatomy, Physiology, Mice, Ion Channels, Primary Cell Culture, Cardiac Electrophysiology, adult mouse cardiomyocytes, cell isolation, IonOptix, Cell Culture, adenoviral transfection, patch clamp, fluorescent nanosensor
50289
Play Button
Patient-specific Modeling of the Heart: Estimation of Ventricular Fiber Orientations
Authors: Fijoy Vadakkumpadan, Hermenegild Arevalo, Natalia A. Trayanova.
Institutions: Johns Hopkins University.
Patient-specific simulations of heart (dys)function aimed at personalizing cardiac therapy are hampered by the absence of in vivo imaging technology for clinically acquiring myocardial fiber orientations. The objective of this project was to develop a methodology to estimate cardiac fiber orientations from in vivo images of patient heart geometries. An accurate representation of ventricular geometry and fiber orientations was reconstructed, respectively, from high-resolution ex vivo structural magnetic resonance (MR) and diffusion tensor (DT) MR images of a normal human heart, referred to as the atlas. Ventricular geometry of a patient heart was extracted, via semiautomatic segmentation, from an in vivo computed tomography (CT) image. Using image transformation algorithms, the atlas ventricular geometry was deformed to match that of the patient. Finally, the deformation field was applied to the atlas fiber orientations to obtain an estimate of patient fiber orientations. The accuracy of the fiber estimates was assessed using six normal and three failing canine hearts. The mean absolute difference between inclination angles of acquired and estimated fiber orientations was 15.4 °. Computational simulations of ventricular activation maps and pseudo-ECGs in sinus rhythm and ventricular tachycardia indicated that there are no significant differences between estimated and acquired fiber orientations at a clinically observable level.The new insights obtained from the project will pave the way for the development of patient-specific models of the heart that can aid physicians in personalized diagnosis and decisions regarding electrophysiological interventions.
Bioengineering, Issue 71, Biomedical Engineering, Medicine, Anatomy, Physiology, Cardiology, Myocytes, Cardiac, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, MRI, Diffusion Magnetic Resonance Imaging, Cardiac Electrophysiology, computerized simulation (general), mathematical modeling (systems analysis), Cardiomyocyte, biomedical image processing, patient-specific modeling, Electrophysiology, simulation
50125
Play Button
Isolation and Culture of Neonatal Mouse Cardiomyocytes
Authors: Elisabeth Ehler, Thomas Moore-Morris, Stephan Lange.
Institutions: King’s College London, University of California San Diego .
Cultured neonatal cardiomyocytes have long been used to study myofibrillogenesis and myofibrillar functions. Cultured cardiomyocytes allow for easy investigation and manipulation of biochemical pathways, and their effect on the biomechanical properties of spontaneously beating cardiomyocytes. The following 2-day protocol describes the isolation and culture of neonatal mouse cardiomyocytes. We show how to easily dissect hearts from neonates, dissociate the cardiac tissue and enrich cardiomyocytes from the cardiac cell-population. We discuss the usage of different enzyme mixes for cell-dissociation, and their effects on cell-viability. The isolated cardiomyocytes can be subsequently used for a variety of morphological, electrophysiological, biochemical, cell-biological or biomechanical assays. We optimized the protocol for robustness and reproducibility, by using only commercially available solutions and enzyme mixes that show little lot-to-lot variability. We also address common problems associated with the isolation and culture of cardiomyocytes, and offer a variety of options for the optimization of isolation and culture conditions.
Cellular Biology, Issue 79, Biomedical Engineering, Bioengineering, Molecular Biology, Cell Culture Techniques, Primary Cell Culture, Cell Culture Techniques, Primary Cell Culture, Cell Culture Techniques, Primary Cell Culture, Cell Culture Techniques, Disease Models, Animal, Models, Cardiovascular, Cell Biology, neonatal mouse, cardiomyocytes, isolation, culture, primary cells, NMC, heart cells, animal model
50154
Play Button
Characterization of Complex Systems Using the Design of Experiments Approach: Transient Protein Expression in Tobacco as a Case Study
Authors: Johannes Felix Buyel, Rainer Fischer.
Institutions: RWTH Aachen University, Fraunhofer Gesellschaft.
Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.
Bioengineering, Issue 83, design of experiments (DoE), transient protein expression, plant-derived biopharmaceuticals, promoter, 5'UTR, fluorescent reporter protein, model building, incubation conditions, monoclonal antibody
51216
Play Button
Rapid Synthesis and Screening of Chemically Activated Transcription Factors with GFP-based Reporters
Authors: R. Scott McIsaac, Benjamin L. Oakes, David Botstein, Marcus B. Noyes.
Institutions: Princeton University, Princeton University, California Institute of Technology.
Synthetic biology aims to rationally design and build synthetic circuits with desired quantitative properties, as well as provide tools to interrogate the structure of native control circuits. In both cases, the ability to program gene expression in a rapid and tunable fashion, with no off-target effects, can be useful. We have constructed yeast strains containing the ACT1 promoter upstream of a URA3 cassette followed by the ligand-binding domain of the human estrogen receptor and VP16. By transforming this strain with a linear PCR product containing a DNA binding domain and selecting against the presence of URA3, a constitutively expressed artificial transcription factor (ATF) can be generated by homologous recombination. ATFs engineered in this fashion can activate a unique target gene in the presence of inducer, thereby eliminating both the off-target activation and nonphysiological growth conditions found with commonly used conditional gene expression systems. A simple method for the rapid construction of GFP reporter plasmids that respond specifically to a native or artificial transcription factor of interest is also provided.
Genetics, Issue 81, transcription, transcription factors, artificial transcription factors, zinc fingers, Zif268, synthetic biology
51153
Play Button
Anatomical Reconstructions of the Human Cardiac Venous System using Contrast-computed Tomography of Perfusion-fixed Specimens
Authors: Julianne Spencer, Emily Fitch, Paul A. Iaizzo.
Institutions: University of Minnesota , University of Minnesota , University of Minnesota , University of Minnesota , University of Minnesota .
A detailed understanding of the complexity and relative variability within the human cardiac venous system is crucial for the development of cardiac devices that require access to these vessels. For example, cardiac venous anatomy is known to be one of the key limitations for the proper delivery of cardiac resynchronization therapy (CRT)1 Therefore, the development of a database of anatomical parameters for human cardiac venous systems can aid in the design of CRT delivery devices to overcome such a limitation. In this research project, the anatomical parameters were obtained from 3D reconstructions of the venous system using contrast-computed tomography (CT) imaging and modeling software (Materialise, Leuven, Belgium). The following parameters were assessed for each vein: arc length, tortuousity, branching angle, distance to the coronary sinus ostium, and vessel diameter. CRT is a potential treatment for patients with electromechanical dyssynchrony. Approximately 10-20% of heart failure patients may benefit from CRT2. Electromechanical dyssynchrony implies that parts of the myocardium activate and contract earlier or later than the normal conduction pathway of the heart. In CRT, dyssynchronous areas of the myocardium are treated with electrical stimulation. CRT pacing typically involves pacing leads that stimulate the right atrium (RA), right ventricle (RV), and left ventricle (LV) to produce more resynchronized rhythms. The LV lead is typically implanted within a cardiac vein, with the aim to overlay it within the site of latest myocardial activation. We believe that the models obtained and the analyses thereof will promote the anatomical education for patients, students, clinicians, and medical device designers. The methodologies employed here can also be utilized to study other anatomical features of our human heart specimens, such as the coronary arteries. To further encourage the educational value of this research, we have shared the venous models on our free access website: www.vhlab.umn.edu/atlas.
Biomedical Engineering, Issue 74, Medicine, Bioengineering, Anatomy, Physiology, Surgery, Cardiology, Coronary Vessels, Heart, Heart Conduction System, Heart Ventricles, Myocardium, cardiac veins, coronary veins, perfusion-fixed human hearts, Computed Tomography, CT, CT scan, contrast injections, 3D modeling, Device Development, vessel parameters, imaging, clinical techniques
50258
Play Button
Drawing Blood from Rats through the Saphenous Vein and by Cardiac Puncture
Authors: Christine Beeton, Adriana Garcia, K. George Chandy.
Institutions: University of California, Irvine (UCI).
Drawing blood from rodents is necessary for a large number of both in vitro and in vivo studies. Sites of blood draws are numerous in rodents: retro-orbital sinus, jugular vein, maxillary vein, saphenous vein, heart. Each technique has its advantages and disadvantages, and some are not approved any more in some countries (e.g., retro-orbital draws in Holland). A discussion of different techniques for drawing blood are available 1-3. Here, we present two techniques for drawing blood from rats, each with its specific applications. Blood draw from the saphenous vein, provided it is done properly, induces minimal distress in animals and does not require anesthesia. This technique allows repeated draws of small amounts of blood, such as needed for pharmacokinetic studies 4,5, determining plasma chemistry, or blood counts 6. Cardiac puncture allows the collection of large amounts of blood from a single animal (up to 10 ml of blood can be drawn from a 150 g rat). This technique is therefore very useful as a terminal procedure when drawing blood from the saphenous would not provide a large enough sample. We use cardiac puncture when we need sufficient amounts of serum from a specific strain of rats to grow T lymphocyte lines in vitro 4-9.
Immunology, Issue 7, Blood Sampling Method, Rodent, Blood Draw, Heart, Pharmacokinetics, Serum, Plasma, Blood Collection, Bleeding, Hematology
266
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.