JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Uptake mechanism of ApoE-modified nanoparticles on brain capillary endothelial cells as a blood-brain barrier model.
The blood-brain barrier (BBB) represents an insurmountable obstacle for most drugs thus obstructing an effective treatment of many brain diseases. One solution for overcoming this barrier is a transport by binding of these drugs to surface-modified nanoparticles. Especially apolipoprotein E (ApoE) appears to play a major role in the nanoparticle-mediated drug transport across the BBB. However, at present the underlying mechanism is incompletely understood.
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Published: 06-28-2014
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
15 Related JoVE Articles!
Play Button
Isolation of Primary Murine Brain Microvascular Endothelial Cells
Authors: Tobias Ruck, Stefan Bittner, Lisa Epping, Alexander M. Herrmann, Sven G. Meuth.
Institutions: University of Münster, Interdisciplinary Center for Clinical Research (IZKF) Münster, University of Münster.
The blood-brain-barrier is ultrastructurally assembled by a monolayer of brain microvascular endothelial cells (BMEC) interconnected by a junctional complex of tight and adherens junctions. Together with other cell-types such as astrocytes or pericytes, they form the neurovascular unit (NVU), which specifically regulates the interchange of fluids, molecules and cells between the peripheral blood and the CNS. Through this complex and dynamic system BMECs are involved in various processes maintaining the homeostasis of the CNS. A dysfunction of the BBB is observed as an essential step in the pathogenesis of many severe CNS diseases. However, specific and targeted therapies are very limited, as the underlying mechanisms are still far from being understood. Animal and in vitro models have been extensively used to gain in-depth understanding of complex physiological and pathophysiological processes. By reduction and simplification it is possible to focus the investigation on the subject of interest and to exclude a variety of confounding factors. However, comparability and transferability are also reduced in model systems, which have to be taken into account for evaluation. The most common animal models are based on mice, among other reasons, mainly due to the constantly increasing possibilities of methodology. In vitro studies of isolated murine BMECs might enable an in-depth analysis of their properties and of the blood-brain-barrier under physiological and pathophysiological conditions. Further insights into the complex mechanisms at the BBB potentially provide the basis for new therapeutic strategies. This protocol describes a method to isolate primary murine microvascular endothelial cells by a sequence of physical and chemical purification steps. Special considerations for purity and cultivation of MBMECs as well as quality control, potential applications and limitations are discussed.
Neuroscience, Issue 93, Blood brain barrier, central nervous system, endothelial cells, immune cell trafficking, neuroinflammation, neurodegeneration, neurovascular unit
Play Button
Stretch in Brain Microvascular Endothelial Cells (cEND) as an In Vitro Traumatic Brain Injury Model of the Blood Brain Barrier
Authors: Ellaine Salvador, Winfried Neuhaus, Carola Foerster.
Institutions: Zentrum für operative Medizin der Universität Würzburg, University of Vienna.
Due to the high mortality incident brought about by traumatic brain injury (TBI), methods that would enable one to better understand the underlying mechanisms involved in it are useful for treatment. There are both in vivo and in vitro methods available for this purpose. In vivo models can mimic actual head injury as it occurs during TBI. However, in vivo techniques may not be exploited for studies at the cell physiology level. Hence, in vitro methods are more advantageous for this purpose since they provide easier access to the cells and the extracellular environment for manipulation. Our protocol presents an in vitro model of TBI using stretch injury in brain microvascular endothelial cells. It utilizes pressure applied to the cells cultured in flexible-bottomed wells. The pressure applied may easily be controlled and can produce injury that ranges from low to severe. The murine brain microvascular endothelial cells (cEND) generated in our laboratory is a well-suited model for the blood brain barrier (BBB) thus providing an advantage to other systems that employ a similar technique. In addition, due to the simplicity of the method, experimental set-ups are easily duplicated. Thus, this model can be used in studying the cellular and molecular mechanisms involved in TBI at the BBB.
Medicine, Issue 80, stretch injury, traumatic brain injury, blood-brain barrier, brain microvascular endothelial cells (cEND)
Play Button
Heterotopic Mucosal Engrafting Procedure for Direct Drug Delivery to the Brain in Mice
Authors: Richie E. Kohman, Xue Han, Benjamin S. Bleier.
Institutions: Boston University, Harvard Medical School.
Delivery of therapeutics into the brain is impeded by the presence of the blood-brain barrier (BBB) which restricts the passage of polar and high molecular weight compounds from the bloodstream and into brain tissue. Some direct delivery success in humans has been achieved via implantation of transcranial catheters; however this method is highly invasive and associated with numerous complications. A less invasive alternative would be to dose the brain through a surgically implanted, semipermeable membrane such as the nasal mucosa that is used to repair skull base defects following endoscopic transnasal tumor removal surgery in humans. Drug transfer though this membrane would effectively bypass the BBB and diffuse directly into the brain and cerebrospinal fluid. Inspired by this approach, a surgical approach in mice was developed that uses a donor septal mucosal membrane engrafted over an extracranial surgical BBB defect. This model has been shown to effectively allow the passage of high molecular weight compounds into the brain. Since numerous drug candidates are incapable of crossing the BBB, this model is valuable for performing preclinical testing of novel therapies for neurological and psychiatric diseases.
Medicine, Issue 89, drug delivery, mucosa membrane, blood-brain barrier, neurosurgery, transnasal, mouse model
Play Button
Improved Method for the Preparation of a Human Cell-based, Contact Model of the Blood-Brain Barrier
Authors: Be'eri Niego, Robert L. Medcalf.
Institutions: Monash University.
The blood-brain barrier (BBB) comprises impermeable but adaptable brain capillaries which tightly control the brain environment. Failure of the BBB has been implied in the etiology of many brain pathologies, creating a need for development of human in vitro BBB models to assist in clinically-relevant research. Among the numerous BBB models thus far described, a static (without flow), contact BBB model, where astrocytes and brain endothelial cells (BECs) are cocultured on the opposite sides of a porous membrane, emerged as a simplified yet authentic system to simulate the BBB with high throughput screening capacity. Nevertheless the generation of such model presents few technical challenges. Here, we describe a protocol for preparation of a contact human BBB model utilizing a novel combination of primary human BECs and immortalized human astrocytes. Specifically, we detail an innovative method for cell-seeding on inverted inserts as well as specify insert staining techniques and exemplify how we use our model for BBB-related research.
Bioengineering, Issue 81, Blood-brain barrier, model, cell culture, astrocytes, brain endothelial cells, insert, membranes
Play Button
A Dual Tracer PET-MRI Protocol for the Quantitative Measure of Regional Brain Energy Substrates Uptake in the Rat
Authors: Maggie Roy, Scott Nugent, Sébastien Tremblay, Maxime Descoteaux, Jean-François Beaudoin, Luc Tremblay, Roger Lecomte, Stephen C Cunnane.
Institutions: Université de Sherbrooke, Université de Sherbrooke, Université de Sherbrooke, Université de Sherbrooke.
We present a method for comparing the uptake of the brain's two key energy substrates: glucose and ketones (acetoacetate [AcAc] in this case) in the rat. The developed method is a small-animal positron emission tomography (PET) protocol, in which 11C-AcAc and 18F-fluorodeoxyglucose (18F-FDG) are injected sequentially in each animal. This dual tracer PET acquisition is possible because of the short half-life of 11C (20.4 min). The rats also undergo a magnetic resonance imaging (MRI) acquisition seven days before the PET protocol. Prior to image analysis, PET and MRI images are coregistered to allow the measurement of regional cerebral uptake (cortex, hippocampus, striatum, and cerebellum). A quantitative measure of 11C-AcAc and 18F-FDG brain uptake (cerebral metabolic rate; μmol/100 g/min) is determined by kinetic modeling using the image-derived input function (IDIF) method. Our new dual tracer PET protocol is robust and flexible; the two tracers used can be replaced by different radiotracers to evaluate other processes in the brain. Moreover, our protocol is applicable to the study of brain fuel supply in multiple conditions such as normal aging and neurodegenerative pathologies such as Alzheimer's and Parkinson's diseases.
Neuroscience, Issue 82, positron emission tomography (PET), 18F-fluorodeoxyglucose, 11C-acetoacetate, magnetic resonance imaging (MRI), kinetic modeling, cerebral metabolic rate, rat
Play Button
Formulation of Diblock Polymeric Nanoparticles through Nanoprecipitation Technique
Authors: Shrirang Karve, Michael E. Werner, Natalie D. Cummings, Rohit Sukumar, Edina C. Wang, Ying-Ao Zhang, Andrew Z. Wang.
Institutions: University of North Carolina School of Medicine, University of North Carolina .
Nanotechnology is a relatively new branch of science that involves harnessing the unique properties of particles that are nanometers in scale (nanoparticles). Nanoparticles can be engineered in a precise fashion where their size, composition and surface chemistry can be carefully controlled. This enables unprecedented freedom to modify some of the fundamental properties of their cargo, such as solubility, diffusivity, biodistribution, release characteristics and immunogenicity. Since their inception, nanoparticles have been utilized in many areas of science and medicine, including drug delivery, imaging, and cell biology1-4. However, it has not been fully utilized outside of "nanotechnology laboratories" due to perceived technical barrier. In this article, we describe a simple method to synthesize a polymer based nanoparticle platform that has a wide range of potential applications. The first step is to synthesize a diblock co-polymer that has both a hydrophobic domain and hydrophilic domain. Using PLGA and PEG as model polymers, we described a conjugation reaction using EDC/NHS chemistry5 (Fig 1). We also discuss the polymer purification process. The synthesized diblock co-polymer can self-assemble into nanoparticles in the nanoprecipitation process through hydrophobic-hydrophilic interactions. The described polymer nanoparticle is very versatile. The hydrophobic core of the nanoparticle can be utilized to carry poorly soluble drugs for drug delivery experiments6. Furthermore, the nanoparticles can overcome the problem of toxic solvents for poorly soluble molecular biology reagents, such as wortmannin, which requires a solvent like DMSO. However, DMSO can be toxic to cells and interfere with the experiment. These poorly soluble drugs and reagents can be effectively delivered using polymer nanoparticles with minimal toxicity. Polymer nanoparticles can also be loaded with fluorescent dye and utilized for intracellular trafficking studies. Lastly, these polymer nanoparticles can be conjugated to targeting ligands through surface PEG. Such targeted nanoparticles can be utilized to label specific epitopes on or in cells7-10.
Bioengineering, Issue 55, Nanoparticles, nanomedicine, drug delivery, polymeric micelles, polymeric nanoparticles, diblock co-polymers, nanoplatform, nanoparticle molecular imaging, polymer conjugation.
Play Button
MRI-guided Disruption of the Blood-brain Barrier using Transcranial Focused Ultrasound in a Rat Model
Authors: Meaghan A. O'Reilly, Adam C. Waspe, Rajiv Chopra, Kullervo Hynynen.
Institutions: Sunnybrook Research Institute, University of Toronto, University of Toronto.
Focused ultrasound (FUS) disruption of the blood-brain barrier (BBB) is an increasingly investigated technique for circumventing the BBB1-5. The BBB is a significant obstacle to pharmaceutical treatments of brain disorders as it limits the passage of molecules from the vasculature into the brain tissue to molecules less than approximately 500 Da in size6. FUS induced BBB disruption (BBBD) is temporary and reversible4 and has an advantage over chemical means of inducing BBBD by being highly localized. FUS induced BBBD provides a means for investigating the effects of a wide range of therapeutic agents on the brain, which would not otherwise be deliverable to the tissue in sufficient concentration. While a wide range of ultrasound parameters have proven successful at disrupting the BBB2,5,7, there are several critical steps in the experimental procedure to ensure successful disruption with accurate targeting. This protocol outlines how to achieve MRI-guided FUS induced BBBD in a rat model, with a focus on the critical animal preparation and microbubble handling steps of the experiment.
Medicine, Issue 61, Blood-Brain Barrier, Focused Ultrasound, Therapeutic Ultrasound, Ultrasound Bioeffects, Microbubbles, Drug Delivery
Play Button
Direct Intraventricular Delivery of Drugs to the Rodent Central Nervous System
Authors: Sarah L. DeVos, Timothy M. Miller.
Institutions: Washington University in St. Louis School of Medicine.
Due to an inability to cross the blood brain barrier, certain drugs need to be directly delivered into the central nervous system (CNS). Our lab focuses specifically on antisense oligonucleotides (ASOs), though the techniques shown in the video here can also be used to deliver a plethora of other drugs to the CNS. Antisense oligonucleotides (ASOs) have the capability to knockdown sequence-specific targets 1 as well as shift isoform ratios of specific genes 2. To achieve widespread gene knockdown or splicing in the CNS of mice, the ASOs can be delivered into the brain using two separate routes of administration, both of which we demonstrate in the video. The first uses Alzet osmotic pumps, connected to a catheter that is surgically implanted into the lateral ventricle. This allows the ASOs to be continuously infused into the CNS for a designated period of time. The second involves a single bolus injection of a high concentration of ASO into the right lateral ventricle. Both methods use the mouse cerebral ventricular system to deliver the ASO to the entire brain and spinal cord, though depending on the needs of the study, one method may be preferred over the other.
Neurobiology, Issue 75, Neuroscience, Medicine, Biomedical Engineering, Genetics, Anatomy, Physiology, Surgery, Pharmacology, Cerebrospinal Fluid, Rodentia, Oligonucleotides, Antisense, Drug Administration Routes, Injections, Intraventricular, Drug Delivery Systems, mouse, rat, brain, antisense oligonucleotide, osmotic pump, Bolus, Ventricle, Neurosciences, Translational, Cerebrospinal fluid, CNS, cannula, catheter, animal model, surgical techniques
Play Button
A Mouse Model for Pathogen-induced Chronic Inflammation at Local and Systemic Sites
Authors: George Papadopoulos, Carolyn D. Kramer, Connie S. Slocum, Ellen O. Weinberg, Ning Hua, Cynthia V. Gudino, James A. Hamilton, Caroline A. Genco.
Institutions: Boston University School of Medicine, Boston University School of Medicine.
Chronic inflammation is a major driver of pathological tissue damage and a unifying characteristic of many chronic diseases in humans including neoplastic, autoimmune, and chronic inflammatory diseases. Emerging evidence implicates pathogen-induced chronic inflammation in the development and progression of chronic diseases with a wide variety of clinical manifestations. Due to the complex and multifactorial etiology of chronic disease, designing experiments for proof of causality and the establishment of mechanistic links is nearly impossible in humans. An advantage of using animal models is that both genetic and environmental factors that may influence the course of a particular disease can be controlled. Thus, designing relevant animal models of infection represents a key step in identifying host and pathogen specific mechanisms that contribute to chronic inflammation. Here we describe a mouse model of pathogen-induced chronic inflammation at local and systemic sites following infection with the oral pathogen Porphyromonas gingivalis, a bacterium closely associated with human periodontal disease. Oral infection of specific-pathogen free mice induces a local inflammatory response resulting in destruction of tooth supporting alveolar bone, a hallmark of periodontal disease. In an established mouse model of atherosclerosis, infection with P. gingivalis accelerates inflammatory plaque deposition within the aortic sinus and innominate artery, accompanied by activation of the vascular endothelium, an increased immune cell infiltrate, and elevated expression of inflammatory mediators within lesions. We detail methodologies for the assessment of inflammation at local and systemic sites. The use of transgenic mice and defined bacterial mutants makes this model particularly suitable for identifying both host and microbial factors involved in the initiation, progression, and outcome of disease. Additionally, the model can be used to screen for novel therapeutic strategies, including vaccination and pharmacological intervention.
Immunology, Issue 90, Pathogen-Induced Chronic Inflammation; Porphyromonas gingivalis; Oral Bone Loss; Periodontal Disease; Atherosclerosis; Chronic Inflammation; Host-Pathogen Interaction; microCT; MRI
Play Button
Generation of an Immortalized Murine Brain Microvascular Endothelial Cell Line as an In Vitro Blood Brain Barrier Model
Authors: Malgorzata Burek, Ellaine Salvador, Carola Y. Förster.
Institutions: University of Wurzburg.
Epithelial and endothelial cells (EC) are building paracellular barriers which protect the tissue from the external and internal environment. The blood-brain barrier (BBB) consisting of EC, astrocyte end-feet, pericytes and the basal membrane is responsible for the protection and homeostasis of the brain parenchyma. In vitro BBB models are common tools to study the structure and function of the BBB at the cellular level. A considerable number of different in vitro BBB models have been established for research in different laboratories to date. Usually, the cells are obtained from bovine, porcine, rat or mouse brain tissue (discussed in detail in the review by Wilhelm et al. 1). Human tissue samples are available only in a restricted number of laboratories or companies 2,3. While primary cell preparations are time consuming and the EC cultures can differ from batch to batch, the establishment of immortalized EC lines is the focus of scientific interest. Here, we present a method for establishing an immortalized brain microvascular EC line from neonatal mouse brain. We describe the procedure step-by-step listing the reagents and solutions used. The method established by our lab allows the isolation of a homogenous immortalized endothelial cell line within four to five weeks. The brain microvascular endothelial cell lines termed cEND 4 (from cerebral cortex) and cerebEND 5 (from cerebellar cortex), were isolated according to this procedure in the Förster laboratory and have been effectively used for explanation of different physiological and pathological processes at the BBB. Using cEND and cerebEND we have demonstrated that these cells respond to glucocorticoid- 4,6-9 and estrogen-treatment 10 as well as to pro-infammatory mediators, such as TNFalpha 5,8. Moreover, we have studied the pathology of multiple sclerosis 11 and hypoxia 12,13 on the EC-level. The cEND and cerebEND lines can be considered as a good tool for studying the structure and function of the BBB, cellular responses of ECs to different stimuli or interaction of the EC with lymphocytes or cancer cells.
Immunology, Issue 66, Neuroscience, Blood-brain barrier, in vitro cell culture models, brain, microvascular endothelial cells, immortalization, cEND
Play Button
Determination of the Transport Rate of Xenobiotics and Nanomaterials Across the Placenta using the ex vivo Human Placental Perfusion Model
Authors: Stefanie Grafmüller, Pius Manser, Harald F. Krug, Peter Wick, Ursula von Mandach.
Institutions: University Hospital Zurich, EMPA Swiss Federal Laboratories for Materials Testing and Research, University of Bern.
Decades ago the human placenta was thought to be an impenetrable barrier between mother and unborn child. However, the discovery of thalidomide-induced birth defects and many later studies afterwards proved the opposite. Today several harmful xenobiotics like nicotine, heroin, methadone or drugs as well as environmental pollutants were described to overcome this barrier. With the growing use of nanotechnology, the placenta is likely to come into contact with novel nanoparticles either accidentally through exposure or intentionally in the case of potential nanomedical applications. Data from animal experiments cannot be extrapolated to humans because the placenta is the most species-specific mammalian organ 1. Therefore, the ex vivo dual recirculating human placental perfusion, developed by Panigel et al. in 1967 2 and continuously modified by Schneider et al. in 1972 3, can serve as an excellent model to study the transfer of xenobiotics or particles. Here, we focus on the ex vivo dual recirculating human placental perfusion protocol and its further development to acquire reproducible results. The placentae were obtained after informed consent of the mothers from uncomplicated term pregnancies undergoing caesarean delivery. The fetal and maternal vessels of an intact cotyledon were cannulated and perfused at least for five hours. As a model particle fluorescently labelled polystyrene particles with sizes of 80 and 500 nm in diameter were added to the maternal circuit. The 80 nm particles were able to cross the placental barrier and provide a perfect example for a substance which is transferred across the placenta to the fetus while the 500 nm particles were retained in the placental tissue or maternal circuit. The ex vivo human placental perfusion model is one of few models providing reliable information about the transport behavior of xenobiotics at an important tissue barrier which delivers predictive and clinical relevant data.
Biomedical Engineering, Issue 76, Medicine, Bioengineering, Anatomy, Physiology, Molecular Biology, Biochemistry, Biophysics, Pharmacology, Obstetrics, Nanotechnology, Placenta, Pharmacokinetics, Nanomedicine, humans, ex vivo perfusion, perfusion, biological barrier, xenobiotics, nanomaterials, clinical model
Play Button
Models and Methods to Evaluate Transport of Drug Delivery Systems Across Cellular Barriers
Authors: Rasa Ghaffarian, Silvia Muro.
Institutions: University of Maryland, University of Maryland.
Sub-micrometer carriers (nanocarriers; NCs) enhance efficacy of drugs by improving solubility, stability, circulation time, targeting, and release. Additionally, traversing cellular barriers in the body is crucial for both oral delivery of therapeutic NCs into the circulation and transport from the blood into tissues, where intervention is needed. NC transport across cellular barriers is achieved by: (i) the paracellular route, via transient disruption of the junctions that interlock adjacent cells, or (ii) the transcellular route, where materials are internalized by endocytosis, transported across the cell body, and secreted at the opposite cell surface (transyctosis). Delivery across cellular barriers can be facilitated by coupling therapeutics or their carriers with targeting agents that bind specifically to cell-surface markers involved in transport. Here, we provide methods to measure the extent and mechanism of NC transport across a model cell barrier, which consists of a monolayer of gastrointestinal (GI) epithelial cells grown on a porous membrane located in a transwell insert. Formation of a permeability barrier is confirmed by measuring transepithelial electrical resistance (TEER), transepithelial transport of a control substance, and immunostaining of tight junctions. As an example, ~200 nm polymer NCs are used, which carry a therapeutic cargo and are coated with an antibody that targets a cell-surface determinant. The antibody or therapeutic cargo is labeled with 125I for radioisotope tracing and labeled NCs are added to the upper chamber over the cell monolayer for varying periods of time. NCs associated to the cells and/or transported to the underlying chamber can be detected. Measurement of free 125I allows subtraction of the degraded fraction. The paracellular route is assessed by determining potential changes caused by NC transport to the barrier parameters described above. Transcellular transport is determined by addressing the effect of modulating endocytosis and transcytosis pathways.
Bioengineering, Issue 80, Antigens, Enzymes, Biological Therapy, bioengineering (general), Pharmaceutical Preparations, Macromolecular Substances, Therapeutics, Digestive System and Oral Physiological Phenomena, Biological Phenomena, Cell Physiological Phenomena, drug delivery systems, targeted nanocarriers, transcellular transport, epithelial cells, tight junctions, transepithelial electrical resistance, endocytosis, transcytosis, radioisotope tracing, immunostaining
Play Button
Functional Neuroimaging Using Ultrasonic Blood-brain Barrier Disruption and Manganese-enhanced MRI
Authors: Gabriel P. Howles, Yi Qi, Stephen J. Rosenzweig, Kathryn R. Nightingale, G. Allan Johnson.
Institutions: Stanford University , Duke University Medical Center, Duke University .
Although mice are the dominant model system for studying the genetic and molecular underpinnings of neuroscience, functional neuroimaging in mice remains technically challenging. One approach, Activation-Induced Manganese-enhanced MRI (AIM MRI), has been used successfully to map neuronal activity in rodents 1-5. In AIM MRI, Mn2+ acts a calcium analog and accumulates in depolarized neurons 6,7. Because Mn2+ shortens the T1 tissue property, regions of elevated neuronal activity will enhance in MRI. Furthermore, Mn2+ clears slowly from the activated regions; therefore, stimulation can be performed outside the magnet prior to imaging, enabling greater experimental flexibility. However, because Mn2+ does not readily cross the blood-brain barrier (BBB), the need to open the BBB has limited the use of AIM MRI, especially in mice. One tool for opening the BBB is ultrasound. Though potentially damaging, if ultrasound is administered in combination with gas-filled microbubbles (i.e., ultrasound contrast agents), the acoustic pressure required for BBB opening is considerably lower. This combination of ultrasound and microbubbles can be used to reliably open the BBB without causing tissue damage 8-11. Here, a method is presented for performing AIM MRI by using microbubbles and ultrasound to open the BBB. After an intravenous injection of perflutren microbubbles, an unfocused pulsed ultrasound beam is applied to the shaved mouse head for 3 minutes. For simplicity, we refer to this technique of BBB Opening with Microbubbles and UltraSound as BOMUS 12. Using BOMUS to open the BBB throughout both cerebral hemispheres, manganese is administered to the whole mouse brain. After experimental stimulation of the lightly sedated mice, AIM MRI is used to map the neuronal response. To demonstrate this approach, herein BOMUS and AIM MRI are used to map unilateral mechanical stimulation of the vibrissae in lightly sedated mice 13. Because BOMUS can open the BBB throughout both hemispheres, the unstimulated side of the brain is used to control for nonspecific background stimulation. The resultant 3D activation map agrees well with published representations of the vibrissae regions of the barrel field cortex 14. The ultrasonic opening of the BBB is fast, noninvasive, and reversible; and thus this approach is suitable for high-throughput and/or longitudinal studies in awake mice.
Neuroscience, Issue 65, Molecular Biology, Biomedical Engineering, mouse, ultrasound, blood-brain barrier, functional MRI, fMRI, manganese-enhanced MRI, MEMRI
Play Button
Therapeutic Gene Delivery and Transfection in Human Pancreatic Cancer Cells using Epidermal Growth Factor Receptor-targeted Gelatin Nanoparticles
Authors: Jing Xu, Mansoor Amiji.
Institutions: Northeastern University.
More than 32,000 patients are diagnosed with pancreatic cancer in the United States per year and the disease is associated with very high mortality 1. Urgent need exists to develop novel clinically-translatable therapeutic strategies that can improve on the dismal survival statistics of pancreatic cancer patients. Although gene therapy in cancer has shown a tremendous promise, the major challenge is in the development of safe and effective delivery system, which can lead to sustained transgene expression. Gelatin is one of the most versatile natural biopolymer, widely used in food and pharmaceutical products. Previous studies from our laboratory have shown that type B gelatin could physical encapsulate DNA, which preserved the supercoiled structure of the plasmid and improved transfection efficiency upon intracellular delivery. By thiolation of gelatin, the sulfhydryl groups could be introduced into the polymer and would form disulfide bond within nanoparticles, which stabilizes the whole complex and once disulfide bond is broken due to the presence of glutathione in cytosol, payload would be released 2-5. Poly(ethylene glycol) (PEG)-modified GENS, when administered into the systemic circulation, provides long-circulation times and preferentially targets to the tumor mass due to the hyper-permeability of the neovasculature by the enhanced permeability and retention effect 6. Studies have shown over-expression of the epidermal growth factor receptor (EGFR) on Panc-1 human pancreatic adenocarcinoma cells 7. In order to actively target pancreatic cancer cell line, EGFR specific peptide was conjugated on the particle surface through a PEG spacer.8 Most anti-tumor gene therapies are focused on administration of the tumor suppressor genes, such as wild-type p53 (wt-p53), to restore the pro-apoptotic function in the cells 9. The p53 mechanism functions as a critical signaling pathway in cell growth, which regulates apoptosis, cell cycle arrest, metabolism and other processes 10. In pancreatic cancer, most cells have mutations in p53 protein, causing the loss of apoptotic activity. With the introduction of wt-p53, the apoptosis could be repaired and further triggers cell death in cancer cells 11. Based on the above rationale, we have designed EGFR targeting peptide-modified thiolated gelatin nanoparticles for wt-p53 gene delivery and evaluated delivery efficiency and transfection in Panc-1 cells.
Bioengineering, Issue 59, Gelatin Nanoparticle, Gene Therapy, Targeted Delivery, Pancreatic Cancer, Epidermal Growth Factor Receptor, EGFR
Play Button
Rat Model of Blood-brain Barrier Disruption to Allow Targeted Neurovascular Therapeutics
Authors: Jacob A. Martin, Alexander S. Maris, Moneeb Ehtesham, Robert J. Singer.
Institutions: Vanderbilt University School of Medicine.
Endothelial cells with tight junctions along with the basement membrane and astrocyte end feet surround cerebral blood vessels to form the blood-brain barrier1. The barrier selectively excludes molecules from crossing between the blood and the brain based upon their size and charge. This function can impede the delivery of therapeutics for neurological disorders. A number of chemotherapeutic drugs, for example, will not effectively cross the blood-brain barrier to reach tumor cells2. Thus, improving the delivery of drugs across the blood-brain barrier is an area of interest. The most prevalent methods for enhancing the delivery of drugs to the brain are direct cerebral infusion and blood-brain barrier disruption3. Direct intracerebral infusion guarantees that therapies reach the brain; however, this method has a limited ability to disperse the drug4. Blood-brain barrier disruption (BBBD) allows drugs to flow directly from the circulatory system into the brain and thus more effectively reach dispersed tumor cells. Three methods of barrier disruption include osmotic barrier disruption, pharmacological barrier disruption, and focused ultrasound with microbubbles. Osmotic disruption, pioneered by Neuwelt, uses a hypertonic solution of 25% mannitol that dehydrates the cells of the blood-brain barrier causing them to shrink and disrupt their tight junctions. Barrier disruption can also be accomplished pharmacologically with vasoactive compounds such as histamine5 and bradykinin6. This method, however, is selective primarily for the brain-tumor barrier7. Additionally, RMP-7, an analog of the peptide bradykinin, was found to be inferior when compared head-to-head with osmotic BBBD with 25% mannitol8. Another method, focused ultrasound (FUS) in conjunction with microbubble ultrasound contrast agents, has also been shown to reversibly open the blood-brain barrier9. In comparison to FUS, though, 25% mannitol has a longer history of safety in human patients that makes it a proven tool for translational research10-12. In order to accomplish BBBD, mannitol must be delivered at a high rate directly into the brain's arterial circulation. In humans, an endovascular catheter is guided to the brain where rapid, direct flow can be accomplished. This protocol models human BBBD as closely as possible. Following a cut-down to the bifurcation of the common carotid artery, a catheter is inserted retrograde into the ECA and used to deliver mannitol directly into the internal carotid artery (ICA) circulation. Propofol and N2O anesthesia are used for their ability to maximize the effectiveness of barrier disruption13. If executed properly, this procedure has the ability to safely, effectively, and reversibly open the blood-brain barrier and improve the delivery of drugs that do not ordinarily reach the brain 8,13,14.
Medicine, Issue 69, Neuroscience, Immunology, Cancer Biology, Blood-brain barrier disruption, neurovascular, endovascular, intra-arterial, neurosurgery, oncology, neuro-oncology, animal model, rat
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.