JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Economic evaluation of first-line treatments for metastatic renal cell carcinoma: a cost-effectiveness analysis in a health resource-limited setting.
PLoS ONE
To estimate, from the perspective of the Chinese healthcare system, the economic outcomes of five different first-line strategies among patients with metastatic renal cell carcinoma (mRCC).
Authors: Amanda Tracz, Michalis Mastri, Christina R. Lee, Roberto Pili, John M. L. Ebos.
Published: 04-29-2014
ABSTRACT
One of the key challenges to improved testing of new experimental therapeutics in renal cell carcinoma (RCC) is the development of models that faithfully recapitulate early- and late-stage metastatic disease progression. Typical tumor implantation models utilize ectopic or orthotopic primary tumor implantation, but few include systemic spontaneous metastatic disease that mimics the clinical setting. This protocol describes the key steps to develop RCC disease progression stages similar to patients. First, it uses a highly metastatic mouse tumor cell line in a syngeneic model to show orthotopic tumor cell implantation. Methods include superficial and internal implantation into the sub-capsular space with cells combined with matrigel to prevent leakage and early spread. Next it describes the procedures for excision of tumor-bearing kidney (nephrectomy), with critical pre- and post- surgical mouse care. Finally, it outlines the steps necessary to monitor and assess micro-and macro-metastatic disease progression, including bioluminescent imaging as well provides a detailed visual necropsy guide to score systemic disease distribution. The goal of this protocol description is to facilitate the widespread use of clinically relevant metastatic RCC models to improve the predictive value of future therapeutic testing. 
19 Related JoVE Articles!
Play Button
Thermal Ablation for the Treatment of Abdominal Tumors
Authors: Christopher L. Brace, J. Louis Hinshaw, Meghan G. Lubner.
Institutions: University of Wisconsin-Madison, University of Wisconsin-Madison.
Percutaneous thermal ablation is an emerging treatment option for many tumors of the abdomen not amenable to conventional treatments. During a thermal ablation procedure, a thin applicator is guided into the target tumor under imaging guidance. Energy is then applied to the tissue until temperatures rise to cytotoxic levels (50-60 °C). Various energy sources are available to heat biological tissues, including radiofrequency (RF) electrical current, microwaves, laser light and ultrasonic waves. Of these, RF and microwave ablation are most commonly used worldwide. During RF ablation, alternating electrical current (~500 kHz) produces resistive heating around the interstitial electrode. Skin surface electrodes (ground pads) are used to complete the electrical circuit. RF ablation has been in use for nearly 20 years, with good results for local tumor control, extended survival and low complication rates1,2. Recent studies suggest RF ablation may be a first-line treatment option for small hepatocellular carcinoma and renal-cell carcinoma3-5. However, RF heating is hampered by local blood flow and high electrical impedance tissues (eg, lung, bone, desiccated or charred tissue)6,7. Microwaves may alleviate some of these problems by producing faster, volumetric heating8-10. To create larger or conformal ablations, multiple microwave antennas can be used simultaneously while RF electrodes require sequential operation, which limits their efficiency. Early experiences with microwave systems suggest efficacy and safety similar to, or better than RF devices11-13. Alternatively, cryoablation freezes the target tissues to lethal levels (-20 to -40 °C). Percutaneous cryoablation has been shown to be effective against RCC and many metastatic tumors, particularly colorectal cancer, in the liver14-16. Cryoablation may also be associated with less post-procedure pain and faster recovery for some indications17. Cryoablation is often contraindicated for primary liver cancer due to underlying coagulopathy and associated bleeding risks frequently seen in cirrhotic patients. In addition, sudden release of tumor cellular contents when the frozen tissue thaws can lead to a potentially serious condition known as cryoshock 16. Thermal tumor ablation can be performed at open surgery, laparoscopy or using a percutaneous approach. When performed percutaneously, the ablation procedure relies on imaging for diagnosis, planning, applicator guidance, treatment monitoring and follow-up. Ultrasound is the most popular modality for guidance and treatment monitoring worldwide, but computed tomography (CT) and magnetic resonance imaging (MRI) are commonly used as well. Contrast-enhanced CT or MRI are typically employed for diagnosis and follow-up imaging.
Medicine, Issue 49, Thermal ablation, interventional oncology, image-guided therapy, radiology, cancer
2596
Play Button
The Use of Reverse Phase Protein Arrays (RPPA) to Explore Protein Expression Variation within Individual Renal Cell Cancers
Authors: Fiach C. O'Mahony, Jyoti Nanda, Alexander Laird, Peter Mullen, Helen Caldwell, Ian M. Overton, Lel Eory, Marie O'Donnell, Dana Faratian, Thomas Powles, David J. Harrison, Grant D. Stewart.
Institutions: University of Edinburgh, University of St Andrews, University of Edinburgh, University of Edinburgh, Western General Hospital, University of Edinburgh, Queen Mary University of London.
Currently there is no curative treatment for metastatic clear cell renal cell cancer, the commonest variant of the disease. A key factor in this treatment resistance is thought to be the molecular complexity of the disease 1. Targeted therapy such as the tyrosine kinase inhibitor (TKI)-sunitinib have been utilized, but only 40% of patients will respond, with the overwhelming majority of these patients relapsing within 1 year 2. As such the question of intrinsic and acquired resistance in renal cell cancer patients is highly relevant 3. In order to study resistance to TKIs, with the ultimate goal of developing effective, personalized treatments, sequential tissue after a specific period of targeted therapy is required, an approach which had proved successful in chronic myeloid leukaemia 4. However the application of such a strategy in renal cell carcinoma is complicated by the high level of both inter- and intratumoral heterogeneity, which is a feature of renal cell carcinoma5,6 as well as other solid tumors 7. Intertumoral heterogeneity due to transcriptomic and genetic differences is well established even in patients with similar presentation, stage and grade of tumor. In addition it is clear that there is great morphological (intratumoral) heterogeneity in RCC, which is likely to represent even greater molecular heterogeneity. Detailed mapping and categorization of RCC tumors by combined morphological analysis and Fuhrman grading allows the selection of representative areas for proteomic analysis. Protein based analysis of RCC8 is attractive due to its widespread availability in pathology laboratories; however, its application can be problematic due to the limited availability of specific antibodies 9. Due to the dot blot nature of the Reverse Phase Protein Arrays (RPPA), antibody specificity must be pre-validated; as such strict quality control of antibodies used is of paramount importance. Despite this limitation the dot blot format does allow assay miniaturization, allowing for the printing of hundreds of samples onto a single nitrocellulose slide. Printed slides can then be analyzed in a similar fashion to Western analysis with the use of target specific primary antibodies and fluorescently labelled secondary antibodies, allowing for multiplexing. Differential protein expression across all the samples on a slide can then be analyzed simultaneously by comparing the relative level of fluorescence in a more cost-effective and high-throughput manner.
Cancer Biology, Issue 71, Bioengineering, Medicine, Biomedical Engineering, Cellular Biology, Molecular Biology, Genetics, Pathology, Oncology, Proteins, Early Detection of Cancer, Translational Medical Research, RPPA, RCC, Heterogeneity, Proteomics, Tumor Grade, intertumoral, tumor, metastatic, carcinoma, renal cancer, clear cell renal cell cancer, cancer, assay
50221
Play Button
An Affordable HIV-1 Drug Resistance Monitoring Method for Resource Limited Settings
Authors: Justen Manasa, Siva Danaviah, Sureshnee Pillay, Prevashinee Padayachee, Hloniphile Mthiyane, Charity Mkhize, Richard John Lessells, Christopher Seebregts, Tobias F. Rinke de Wit, Johannes Viljoen, David Katzenstein, Tulio De Oliveira.
Institutions: University of KwaZulu-Natal, Durban, South Africa, Jembi Health Systems, University of Amsterdam, Stanford Medical School.
HIV-1 drug resistance has the potential to seriously compromise the effectiveness and impact of antiretroviral therapy (ART). As ART programs in sub-Saharan Africa continue to expand, individuals on ART should be closely monitored for the emergence of drug resistance. Surveillance of transmitted drug resistance to track transmission of viral strains already resistant to ART is also critical. Unfortunately, drug resistance testing is still not readily accessible in resource limited settings, because genotyping is expensive and requires sophisticated laboratory and data management infrastructure. An open access genotypic drug resistance monitoring method to manage individuals and assess transmitted drug resistance is described. The method uses free open source software for the interpretation of drug resistance patterns and the generation of individual patient reports. The genotyping protocol has an amplification rate of greater than 95% for plasma samples with a viral load >1,000 HIV-1 RNA copies/ml. The sensitivity decreases significantly for viral loads <1,000 HIV-1 RNA copies/ml. The method described here was validated against a method of HIV-1 drug resistance testing approved by the United States Food and Drug Administration (FDA), the Viroseq genotyping method. Limitations of the method described here include the fact that it is not automated and that it also failed to amplify the circulating recombinant form CRF02_AG from a validation panel of samples, although it amplified subtypes A and B from the same panel.
Medicine, Issue 85, Biomedical Technology, HIV-1, HIV Infections, Viremia, Nucleic Acids, genetics, antiretroviral therapy, drug resistance, genotyping, affordable
51242
Play Button
A Manual Small Molecule Screen Approaching High-throughput Using Zebrafish Embryos
Authors: Shahram Jevin Poureetezadi, Eric K. Donahue, Rebecca A. Wingert.
Institutions: University of Notre Dame.
Zebrafish have become a widely used model organism to investigate the mechanisms that underlie developmental biology and to study human disease pathology due to their considerable degree of genetic conservation with humans. Chemical genetics entails testing the effect that small molecules have on a biological process and is becoming a popular translational research method to identify therapeutic compounds. Zebrafish are specifically appealing to use for chemical genetics because of their ability to produce large clutches of transparent embryos, which are externally fertilized. Furthermore, zebrafish embryos can be easily drug treated by the simple addition of a compound to the embryo media. Using whole-mount in situ hybridization (WISH), mRNA expression can be clearly visualized within zebrafish embryos. Together, using chemical genetics and WISH, the zebrafish becomes a potent whole organism context in which to determine the cellular and physiological effects of small molecules. Innovative advances have been made in technologies that utilize machine-based screening procedures, however for many labs such options are not accessible or remain cost-prohibitive. The protocol described here explains how to execute a manual high-throughput chemical genetic screen that requires basic resources and can be accomplished by a single individual or small team in an efficient period of time. Thus, this protocol provides a feasible strategy that can be implemented by research groups to perform chemical genetics in zebrafish, which can be useful for gaining fundamental insights into developmental processes, disease mechanisms, and to identify novel compounds and signaling pathways that have medically relevant applications.
Developmental Biology, Issue 93, zebrafish, chemical genetics, chemical screen, in vivo small molecule screen, drug discovery, whole mount in situ hybridization (WISH), high-throughput screening (HTS), high-content screening (HCS)
52063
Play Button
An In Vitro System to Study Tumor Dormancy and the Switch to Metastatic Growth
Authors: Dalit Barkan, Jeffrey E. Green.
Institutions: University of Haifa, National Cancer Institute.
Recurrence of breast cancer often follows a long latent period in which there are no signs of cancer, and metastases may not become clinically apparent until many years after removal of the primary tumor and adjuvant therapy. A likely explanation of this phenomenon is that tumor cells have seeded metastatic sites, are resistant to conventional therapies, and remain dormant for long periods of time 1-4. The existence of dormant cancer cells at secondary sites has been described previously as quiescent solitary cells that neither proliferate nor undergo apoptosis 5-7. Moreover, these solitary cells has been shown to disseminate from the primary tumor at an early stage of disease progression 8-10 and reside growth-arrested in the patients' bone marrow, blood and lymph nodes 1,4,11. Therefore, understanding mechanisms that regulate dormancy or the switch to a proliferative state is critical for discovering novel targets and interventions to prevent disease recurrence. However, unraveling the mechanisms regulating the switch from tumor dormancy to metastatic growth has been hampered by the lack of available model systems. in vivo and ex vivo model systems to study metastatic progression of tumor cells have been described previously 1,12-14. However these model systems have not provided in real time and in a high throughput manner mechanistic insights into what triggers the emergence of solitary dormant tumor cells to proliferate as metastatic disease. We have recently developed a 3D in vitro system to model the in vivo growth characteristics of cells that exhibit either dormant (D2.OR, MCF7, K7M2-AS.46) or proliferative (D2A1, MDA-MB-231, K7M2) metastatic behavior in vivo . We demonstrated that tumor cells that exhibit dormancy in vivo at a metastatic site remain quiescent when cultured in a 3-dimension (3D) basement membrane extract (BME), whereas cells highly metastatic in vivo readily proliferate in 3D culture after variable, but relatively short periods of quiescence. Importantly by utilizing the 3D in vitro model system we demonstrated for the first time that the ECM composition plays an important role in regulating whether dormant tumor cells will switch to a proliferative state and have confirmed this in in vivo studies15-17. Hence, the model system described in this report provides an in vitro method to model tumor dormancy and study the transition to proliferative growth induced by the microenvironment.
Medicine, Issue 54, Tumor dormancy, cancer recurrence, metastasis, reconstituted basement membrane extract (BME), 3D culture, breast cancer
2914
Play Button
Bronchial Thermoplasty: A Novel Therapeutic Approach to Severe Asthma
Authors: David R. Duhamel, Jeff B. Hales.
Institutions: Virginia Hospital Center, Virginia Hospital Center.
Bronchial thermoplasty is a non-drug procedure for severe persistent asthma that delivers thermal energy to the airway wall in a precisely controlled manner to reduce excessive airway smooth muscle. Reducing airway smooth muscle decreases the ability of the airways to constrict, thereby reducing the frequency of asthma attacks. Bronchial thermoplasty is delivered by the Alair System and is performed in three outpatient procedure visits, each scheduled approximately three weeks apart. The first procedure treats the airways of the right lower lobe, the second treats the airways of the left lower lobe and the third and final procedure treats the airways in both upper lobes. After all three procedures are performed the bronchial thermoplasty treatment is complete. Bronchial thermoplasty is performed during bronchoscopy with the patient under moderate sedation. All accessible airways distal to the mainstem bronchi between 3 and 10 mm in diameter, with the exception of the right middle lobe, are treated under bronchoscopic visualization. Contiguous and non-overlapping activations of the device are used, moving from distal to proximal along the length of the airway, and systematically from airway to airway as described previously. Although conceptually straightforward, the actual execution of bronchial thermoplasty is quite intricate and procedural duration for the treatment of a single lobe is often substantially longer than encountered during routine bronchoscopy. As such, bronchial thermoplasty should be considered a complex interventional bronchoscopy and is intended for the experienced bronchoscopist. Optimal patient management is critical in any such complex and longer duration bronchoscopic procedure. This article discusses the importance of careful patient selection, patient preparation, patient management, procedure duration, postoperative care and follow-up to ensure that bronchial thermoplasty is performed safely. Bronchial thermoplasty is expected to complement asthma maintenance medications by providing long-lasting asthma control and improving asthma-related quality of life of patients with severe asthma. In addition, bronchial thermoplasty has been demonstrated to reduce severe exacerbations (asthma attacks) emergency rooms visits for respiratory symptoms, and time lost from work, school and other daily activities due to asthma.
Medicine, Issue 45, bronchial thermoplasty, severe asthma, airway smooth muscle, bronchoscopy, radiofrequency energy, patient management, moderate sedation
2428
Play Button
Generation of Subcutaneous and Intrahepatic Human Hepatocellular Carcinoma Xenografts in Immunodeficient Mice
Authors: Sharif U. Ahmed, Murtuza Zair, Kui Chen, Matthew Iu, Feng He, Oyedele Adeyi, Sean P. Cleary, Anand Ghanekar.
Institutions: University Health Network, University Health Network, University Health Network.
In vivo experimental models of hepatocellular carcinoma (HCC) that recapitulate the human disease provide a valuable platform for research into disease pathophysiology and for the preclinical evaluation of novel therapies. We present a variety of methods to generate subcutaneous or orthotopic human HCC xenografts in immunodeficient mice that could be utilized in a variety of research applications. With a focus on the use of primary tumor tissue from patients undergoing surgical resection as a starting point, we describe the preparation of cell suspensions or tumor fragments for xenografting. We describe specific techniques to xenograft these tissues i) subcutaneously; or ii) intrahepatically, either by direct implantation of tumor cells or fragments into the liver, or indirectly by injection of cells into the mouse spleen. We also describe the use of partial resection of the native mouse liver at the time of xenografting as a strategy to induce a state of active liver regeneration in the recipient mouse that may facilitate the intrahepatic engraftment of primary human tumor cells. The expected results of these techniques are illustrated. The protocols described have been validated using primary human HCC samples and xenografts, which typically perform less robustly than the well-established human HCC cell lines that are widely used and frequently cited in the literature. In comparison with cell lines, we discuss factors which may contribute to the relatively low chance of primary HCC engraftment in xenotransplantation models and comment on technical issues that may influence the kinetics of xenograft growth. We also suggest methods that should be applied to ensure that xenografts obtained accurately resemble parent HCC tissues.
Medicine, Issue 79, Liver Neoplasms, Hepatectomy, animal models, hepatocellular carcinoma, xenograft, cancer, liver, subcutaneous, intrahepatic, orthotopic, mouse, human, immunodeficient
50544
Play Button
Assessment of Vascular Function in Patients With Chronic Kidney Disease
Authors: Kristen L. Jablonski, Emily Decker, Loni Perrenoud, Jessica Kendrick, Michel Chonchol, Douglas R. Seals, Diana Jalal.
Institutions: University of Colorado, Denver, University of Colorado, Boulder.
Patients with chronic kidney disease (CKD) have significantly increased risk of cardiovascular disease (CVD) compared to the general population, and this is only partially explained by traditional CVD risk factors. Vascular dysfunction is an important non-traditional risk factor, characterized by vascular endothelial dysfunction (most commonly assessed as impaired endothelium-dependent dilation [EDD]) and stiffening of the large elastic arteries. While various techniques exist to assess EDD and large elastic artery stiffness, the most commonly used are brachial artery flow-mediated dilation (FMDBA) and aortic pulse-wave velocity (aPWV), respectively. Both of these noninvasive measures of vascular dysfunction are independent predictors of future cardiovascular events in patients with and without kidney disease. Patients with CKD demonstrate both impaired FMDBA, and increased aPWV. While the exact mechanisms by which vascular dysfunction develops in CKD are incompletely understood, increased oxidative stress and a subsequent reduction in nitric oxide (NO) bioavailability are important contributors. Cellular changes in oxidative stress can be assessed by collecting vascular endothelial cells from the antecubital vein and measuring protein expression of markers of oxidative stress using immunofluorescence. We provide here a discussion of these methods to measure FMDBA, aPWV, and vascular endothelial cell protein expression.
Medicine, Issue 88, chronic kidney disease, endothelial cells, flow-mediated dilation, immunofluorescence, oxidative stress, pulse-wave velocity
51478
Play Button
Tumor Treating Field Therapy in Combination with Bevacizumab for the Treatment of Recurrent Glioblastoma
Authors: Ayman I. Omar.
Institutions: Southern Illinois University School of Medicine.
A novel device that employs TTF therapy has recently been developed and is currently in use for the treatment of recurrent glioblastoma (rGBM). It was FDA approved in April 2011 for the treatment of patients 22 years or older with rGBM. The device delivers alternating electric fields and is programmed to ensure maximal tumor cell kill1. Glioblastoma is the most common type of glioma and has an estimated incidence of approximately 10,000 new cases per year in the United States alone2. This tumor is particularly resistant to treatment and is uniformly fatal especially in the recurrent setting3-5. Prior to the approval of the TTF System, the only FDA approved treatment for rGBM was bevacizumab6. Bevacizumab is a humanized monoclonal antibody targeted against the vascular endothelial growth factor (VEGF) protein that drives tumor angiogenesis7. By blocking the VEGF pathway, bevacizumab can result in a significant radiographic response (pseudoresponse), improve progression free survival and reduce corticosteroid requirements in rGBM patients8,9. Bevacizumab however failed to prolong overall survival in a recent phase III trial26. A pivotal phase III trial (EF-11) demonstrated comparable overall survival between physicians’ choice chemotherapy and TTF Therapy but better quality of life were observed in the TTF arm10. There is currently an unmet need to develop novel approaches designed to prolong overall survival and/or improve quality of life in this unfortunate patient population. One appealing approach would be to combine the two currently approved treatment modalities namely bevacizumab and TTF Therapy. These two treatments are currently approved as monotherapy11,12, but their combination has never been evaluated in a clinical trial. We have developed an approach for combining those two treatment modalities and treated 2 rGBM patients. Here we describe a detailed methodology outlining this novel treatment protocol and present representative data from one of the treated patients.
Medicine, Issue 92, Tumor Treating Fields, TTF System, TTF Therapy, Recurrent Glioblastoma, Bevacizumab, Brain Tumor
51638
Play Button
Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney
Authors: Kristen K. McCampbell, Kristin N. Springer, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
Cellular Biology, Issue 90, zebrafish; kidney; nephron; nephrology; renal; regeneration; proximal tubule; distal tubule; segment; mesonephros; physiology; acute kidney injury (AKI)
51644
Play Button
Adaptation of Semiautomated Circulating Tumor Cell (CTC) Assays for Clinical and Preclinical Research Applications
Authors: Lori E. Lowes, Benjamin D. Hedley, Michael Keeney, Alison L. Allan.
Institutions: London Health Sciences Centre, Western University, London Health Sciences Centre, Lawson Health Research Institute, Western University.
The majority of cancer-related deaths occur subsequent to the development of metastatic disease. This highly lethal disease stage is associated with the presence of circulating tumor cells (CTCs). These rare cells have been demonstrated to be of clinical significance in metastatic breast, prostate, and colorectal cancers. The current gold standard in clinical CTC detection and enumeration is the FDA-cleared CellSearch system (CSS). This manuscript outlines the standard protocol utilized by this platform as well as two additional adapted protocols that describe the detailed process of user-defined marker optimization for protein characterization of patient CTCs and a comparable protocol for CTC capture in very low volumes of blood, using standard CSS reagents, for studying in vivo preclinical mouse models of metastasis. In addition, differences in CTC quality between healthy donor blood spiked with cells from tissue culture versus patient blood samples are highlighted. Finally, several commonly discrepant items that can lead to CTC misclassification errors are outlined. Taken together, these protocols will provide a useful resource for users of this platform interested in preclinical and clinical research pertaining to metastasis and CTCs.
Medicine, Issue 84, Metastasis, circulating tumor cells (CTCs), CellSearch system, user defined marker characterization, in vivo, preclinical mouse model, clinical research
51248
Play Button
A Mouse Tumor Model of Surgical Stress to Explore the Mechanisms of Postoperative Immunosuppression and Evaluate Novel Perioperative Immunotherapies
Authors: Lee-Hwa Tai, Christiano Tanese de Souza, Shalini Sahi, Jiqing Zhang, Almohanad A Alkayyal, Abhirami Anu Ananth, Rebecca A.C. Auer.
Institutions: Ottawa Hospital Research Institute, University of Ottawa, University of Ottawa, The Second Hospital of Shandong University, University of Tabuk, Ottawa General Hospital.
Surgical resection is an essential treatment for most cancer patients, but surgery induces dysfunction in the immune system and this has been linked to the development of metastatic disease in animal models and in cancer patients. Preclinical work from our group and others has demonstrated a profound suppression of innate immune function, specifically NK cells in the postoperative period and this plays a major role in the enhanced development of metastases following surgery. Relatively few animal studies and clinical trials have focused on characterizing and reversing the detrimental effects of cancer surgery. Using a rigorous animal model of spontaneously metastasizing tumors and surgical stress, the enhancement of cancer surgery on the development of lung metastases was demonstrated. In this model, 4T1 breast cancer cells are implanted in the mouse mammary fat pad. At day 14 post tumor implantation, a complete resection of the primary mammary tumor is performed in all animals. A subset of animals receives additional surgical stress in the form of an abdominal nephrectomy. At day 28, lung tumor nodules are quantified. When immunotherapy was given immediately preoperatively, a profound activation of immune cells which prevented the development of metastases following surgery was detected. While the 4T1 breast tumor surgery model allows for the simulation of the effects of abdominal surgical stress on tumor metastases, its applicability to other tumor types needs to be tested. The current challenge is to identify safe and promising immunotherapies in preclinical mouse models and to translate them into viable perioperative therapies to be given to cancer surgery patients to prevent the recurrence of metastatic disease.
Medicine, Issue 85, mouse, tumor model, surgical stress, immunosuppression, perioperative immunotherapy, metastases
51253
Play Button
Renal Capsule Xenografting and Subcutaneous Pellet Implantation for the Evaluation of Prostate Carcinogenesis and Benign Prostatic Hyperplasia
Authors: Tristan M. Nicholson, Kristen S. Uchtmann, Conrad D. Valdez, Ashleigh B. Theberge, Tihomir Miralem, William A. Ricke.
Institutions: University of Wisconsin-Madison, University of Rochester School of Medicine & Dentistry, University of Wisconsin-Madison.
New therapies for two common prostate diseases, prostate cancer (PrCa) and benign prostatic hyperplasia (BPH), depend critically on experiments evaluating their hormonal regulation. Sex steroid hormones (notably androgens and estrogens) are important in PrCa and BPH; we probe their respective roles in inducing prostate growth and carcinogenesis in mice with experiments using compressed hormone pellets. Hormone and/or drug pellets are easily manufactured with a pellet press, and surgically implanted into the subcutaneous tissue of the male mouse host. We also describe a protocol for the evaluation of hormonal carcinogenesis by combining subcutaneous hormone pellet implantation with xenografting of prostate cell recombinants under the renal capsule of immunocompromised mice. Moreover, subcutaneous hormone pellet implantation, in combination with renal capsule xenografting of BPH tissue, is useful to better understand hormonal regulation of benign prostate growth, and to test new therapies targeting sex steroid hormone pathways.
Medicine, Issue 78, Cancer Biology, Prostatic Hyperplasia, Prostatic Neoplasms, Neoplastic Processes, Estradiol, Testosterone, Transplantation, Heterologous, Growth, Xenotransplantation, Heterologous Transplantation, Hormones, Prostate, Testosterone, 17beta-Estradiol, Benign prostatic hyperplasia, Prostate Cancer, animal model
50574
Play Button
Ex Vivo Treatment Response of Primary Tumors and/or Associated Metastases for Preclinical and Clinical Development of Therapeutics
Authors: Adriana D. Corben, Mohammad M. Uddin, Brooke Crawford, Mohammad Farooq, Shanu Modi, John Gerecitano, Gabriela Chiosis, Mary L. Alpaugh.
Institutions: Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center.
The molecular analysis of established cancer cell lines has been the mainstay of cancer research for the past several decades. Cell culture provides both direct and rapid analysis of therapeutic sensitivity and resistance. However, recent evidence suggests that therapeutic response is not exclusive to the inherent molecular composition of cancer cells but rather is greatly influenced by the tumor cell microenvironment, a feature that cannot be recapitulated by traditional culturing methods. Even implementation of tumor xenografts, though providing a wealth of information on drug delivery/efficacy, cannot capture the tumor cell/microenvironment crosstalk (i.e., soluble factors) that occurs within human tumors and greatly impacts tumor response. To this extent, we have developed an ex vivo (fresh tissue sectioning) technique which allows for the direct assessment of treatment response for preclinical and clinical therapeutics development. This technique maintains tissue integrity and cellular architecture within the tumor cell/microenvironment context throughout treatment response providing a more precise means to assess drug efficacy.
Cancer Biology, Issue 92, Ex vivo sectioning, Treatment response, Sensitivity/Resistance, Drug development, Patient tumors, Preclinical and Clinical
52157
Play Button
Right Hemihepatectomy by Suprahilar Intrahepatic Transection of the Right Hemipedicle using a Vascular Stapler
Authors: Ingmar Königsrainer, Silvio Nadalin, Alfred Königsrainer.
Institutions: Tübingen University Hospital.
Successful hepatic resection requires profound anatomical knowledge and delicate surgical technique. Hemihepatectomies are mostly performed after preparing the extrahepatic hilar structures within the hepatoduodenal ligament, even in benign tumours or liver metastasis.1-5. Regional extrahepatic lymphadenectomy is an oncological standard in hilar cholangiocarcinoma, intrahepatic cholangio-cellular carcinoma and hepatocellular carcinoma, whereas lymph node metastases in the hepatic hilus in patients with liver metastasis are rarely occult. Major disadvantages of these procedures are the complex preparation of the hilus with the risk of injuring contralateral structures and the possibility of bleeding from portal vein side-branches or impaired perfusion of bile ducts. We developed a technique of right hemihepatectomy or resection of the left lateral segments with intrahepatic transection of the pedicle that leaves the hepatoduodenal ligament completely untouched. 6 However, if intraoperative visualization or palpation of the ligament is suspicious for tumor infiltration or lymph node metastasis, the hilus should be explored and a lymphadenectomy performed.
Medicine, Issue 35, Liver resection, liver tumour, intrahepatic hilus stapling, right hemipedicle
1750
Play Button
Using Visual and Narrative Methods to Achieve Fair Process in Clinical Care
Authors: Laura S. Lorenz, Jon A. Chilingerian.
Institutions: Brandeis University, Brandeis University.
The Institute of Medicine has targeted patient-centeredness as an important area of quality improvement. A major dimension of patient-centeredness is respect for patient's values, preferences, and expressed needs. Yet specific approaches to gaining this understanding and translating it to quality care in the clinical setting are lacking. From a patient perspective quality is not a simple concept but is best understood in terms of five dimensions: technical outcomes; decision-making efficiency; amenities and convenience; information and emotional support; and overall patient satisfaction. Failure to consider quality from this five-pronged perspective results in a focus on medical outcomes, without considering the processes central to quality from the patient's perspective and vital to achieving good outcomes. In this paper, we argue for applying the concept of fair process in clinical settings. Fair process involves using a collaborative approach to exploring diagnostic issues and treatments with patients, explaining the rationale for decisions, setting expectations about roles and responsibilities, and implementing a core plan and ongoing evaluation. Fair process opens the door to bringing patient expertise into the clinical setting and the work of developing health care goals and strategies. This paper provides a step by step illustration of an innovative visual approach, called photovoice or photo-elicitation, to achieve fair process in clinical work with acquired brain injury survivors and others living with chronic health conditions. Applying this visual tool and methodology in the clinical setting will enhance patient-provider communication; engage patients as partners in identifying challenges, strengths, goals, and strategies; and support evaluation of progress over time. Asking patients to bring visuals of their lives into the clinical interaction can help to illuminate gaps in clinical knowledge, forge better therapeutic relationships with patients living with chronic conditions such as brain injury, and identify patient-centered goals and possibilities for healing. The process illustrated here can be used by clinicians, (primary care physicians, rehabilitation therapists, neurologists, neuropsychologists, psychologists, and others) working with people living with chronic conditions such as acquired brain injury, mental illness, physical disabilities, HIV/AIDS, substance abuse, or post-traumatic stress, and by leaders of support groups for the types of patients described above and their family members or caregivers.
Medicine, Issue 48, person-centered care, participatory visual methods, photovoice, photo-elicitation, narrative medicine, acquired brain injury, disability, rehabilitation, palliative care
2342
Play Button
Experimental Metastasis and CTL Adoptive Transfer Immunotherapy Mouse Model
Authors: Mary Zimmerman, Xiaolin Hu, Kebin Liu.
Institutions: Medical College of Georgia.
Experimental metastasis mouse model is a simple and yet physiologically relevant metastasis model. The tumor cells are injected intravenously (i.v) into mouse tail veins and colonize in the lungs, thereby, resembling the last steps of tumor cell spontaneous metastasis: survival in the circulation, extravasation and colonization in the distal organs. From a therapeutic point of view, the experimental metastasis model is the simplest and ideal model since the target of therapies is often the end point of metastasis: established metastatic tumor in the distal organ. In this model, tumor cells are injected i.v into mouse tail veins and allowed to colonize and grow in the lungs. Tumor-specific CTLs are then injected i.v into the metastases-bearing mouse. The number and size of the lung metastases can be controlled by the number of tumor cells to be injected and the time of tumor growth. Therefore, various stages of metastasis, from minimal metastasis to extensive metastasis, can be modeled. Lung metastases are analyzed by inflation with ink, thus allowing easier visual observation and quantification.
Immunology, Issue 45, Metastasis, CTL adoptive transfer, Lung, Tumor Immunology
2077
Play Button
Murine Bioluminescent Hepatic Tumour Model
Authors: Simon Rajendran, Slawomir Salwa, Xuefeng Gao, Sabin Tabirca, Deirdre O'Hanlon, Gerald C. O'Sullivan, Mark Tangney.
Institutions: University College Cork, University College Cork, South Infirmary Victoria University Hospital.
This video describes the establishment of liver metastases in a mouse model that can be subsequently analysed by bioluminescent imaging. Tumour cells are administered specifically to the liver to induce a localised liver tumour, via mobilisation of the spleen and splitting into two, leaving intact the vascular pedicle for each half of the spleen. Lewis lung carcinoma cells that constitutively express the firefly luciferase gene (luc1) are inoculated into one hemi-spleen which is then resected 10 minutes later. The other hemi-spleen is left intact and returned to the abdomen. Liver tumour growth can be monitored by bioluminescence imaging using the IVIS whole body imaging system. Quantitative imaging of tumour growth using IVIS provides precise quantitation of viable tumour cells. Tumour cell death and necrosis due to drug treatment is indicated early by a reduction in the bioluminescent signal. This mouse model allows for investigating the mechanisms underlying metastatic tumour-cell survival and growth and can be used for the evaluation of therapeutics of liver metastasis.
JoVE Medicine, Issue 41, Cancer, Therapy, Liver, Orthotopic, Metastasis
1977
Play Button
Single Port Donor Nephrectomy
Authors: David B Leeser, James Wysock, S Elena Gimenez, Sandip Kapur, Joseph Del Pizzo.
Institutions: Weill Cornell Medical College of Cornell University, Weill Cornell Medical College of Cornell University.
In 2007, Rane presented the first single port nephrectomy for a small non-functioning kidney at the World Congress of Endourology. Since that time, the use of single port surgery for nephrectomy has expanded to include donor nephrectomy. Over the next two years the technique was adopted for many others types of nephrectomies to include donor nephrectomy. We present our technique for single port donor nephrectomy using the Gelpoint device. We have successfully performed this surgery in over 100 patients and add this experience to our experience of over 1000 laparoscopic nephrectomies. With the proper equipment and technique, single port donor nephrectomy can be performed safely and effectively in the majority of live donors. We have found that our operative times and most importantly our transplant outcomes have not changed significantly with the adoption of the single port donor nephrectomy. We believe that single port donor nephrectomy represents a step forward in the care of living donors.
Medicine, Issue 49, Single Port, Laparoscopic, Donor Nephrectomy, Transplant
2368
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.