JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Geldanamycin derivative ameliorates high fat diet-induced renal failure in diabetes.
PLoS ONE
Diabetic nephropathy is a serious complication of longstanding diabetes and its pathogenesis remains unclear. Oxidative stress may play a critical role in the pathogenesis and progression of diabetic nephropathy. Our previous studies have demonstrated that polyunsaturated fatty acids (PUFA) induce peroxynitrite generation in primary human kidney mesangial cells and heat shock protein 90?1 (hsp90?1) is indispensable for the PUFA action. Here we investigated the effects of high fat diet (HFD) on kidney function and structure of db/db mice, a widely used rodent model of type 2 diabetes. Our results indicated that HFD dramatically increased the 24 h-urine output and worsened albuminuria in db/db mice. Discontinuation of HFD reversed the exacerbated albuminuria but not the increased urine output. Prolonged HFD feeding resulted in early death of db/db mice, which was associated with oliguria and anuria. Treatment with the geldanamycin derivative, 17-(dimethylaminoehtylamino)-17-demethoxygeldanamycin (17-DMAG), an hsp90 inhibitor, preserved kidney function, and ameliorated glomerular and tubular damage by HFD. 17-DMAG also significantly extended survival of the animals and protected them from the high mortality associated with renal failure. The benefit effect of 17-DMAG on renal function and structure was associated with a decreased level of kidney nitrotyrosine and a diminished kidney mitochondrial Ca(2+) efflux in HFD-fed db/db mice. These results suggest that hsp90?1 is a potential target for the treatment of nephropathy and renal failure in diabetes.
Authors: Arianne van Koppen, Marianne C. Verhaar, Lennart G. Bongartz, Jaap A. Joles.
Published: 07-03-2013
ABSTRACT
Chronic kidney disease (CKD) is a global problem. Slowing CKD progression is a major health priority. Since CKD is characterized by complex derangements of homeostasis, integrative animal models are necessary to study development and progression of CKD. To study development of CKD and novel therapeutic interventions in CKD, we use the 5/6th nephrectomy ablation model, a well known experimental model of progressive renal disease, resembling several aspects of human CKD. The gross reduction in renal mass causes progressive glomerular and tubulo-interstitial injury, loss of remnant nephrons and development of systemic and glomerular hypertension. It is also associated with progressive intrarenal capillary loss, inflammation and glomerulosclerosis. Risk factors for CKD invariably impact on endothelial function. To mimic this, we combine removal of 5/6th of renal mass with nitric oxide (NO) depletion and a high salt diet. After arrival and acclimatization, animals receive a NO synthase inhibitor (NG-nitro-L-Arginine) (L-NNA) supplemented to drinking water (20 mg/L) for a period of 4 weeks, followed by right sided uninephrectomy. One week later, a subtotal nephrectomy (SNX) is performed on the left side. After SNX, animals are allowed to recover for two days followed by LNNA in drinking water (20 mg/L) for a further period of 4 weeks. A high salt diet (6%), supplemented in ground chow (see time line Figure 1), is continued throughout the experiment. Progression of renal failure is followed over time by measuring plasma urea, systolic blood pressure and proteinuria. By six weeks after SNX, renal failure has developed. Renal function is measured using 'gold standard' inulin and para-amino hippuric acid (PAH) clearance technology. This model of CKD is characterized by a reduction in glomerular filtration rate (GFR) and effective renal plasma flow (ERPF), hypertension (systolic blood pressure>150 mmHg), proteinuria (> 50 mg/24 hr) and mild uremia (>10 mM). Histological features include tubulo-interstitial damage reflected by inflammation, tubular atrophy and fibrosis and focal glomerulosclerosis leading to massive reduction of healthy glomeruli within the remnant population (<10%). Follow-up until 12 weeks after SNX shows further progression of CKD.
23 Related JoVE Articles!
Play Button
Use of a Hanging-weight System for Isolated Renal Artery Occlusion
Authors: Almut Grenz, Julee H. Hong, Alexander Badulak, Douglas Ridyard, Timothy Luebbert, Jae-Hwan Kim, Holger K. Eltzschig.
Institutions: University of Colorado, University of Colorado, Korea University College of Medicine.
In hospitalized patients, over 50% of cases of acute kidney injury (AKI) are caused by renal ischemia 1-3. A recent study of hospitalized patients revealed that only a mild increase in serum creatinine levels (0.3 to 0.4 mg/dl) is associated with a 70% greater risk of death than in persons without any increase 1. Along these lines, surgical procedures requiring cross-clamping of the aorta and renal vessels are associated with a renal failure rates of up to 30% 4. Similarly, AKI after cardiac surgery occurs in over 10% of patients under normal circumstances and is associated with dramatic increases in mortality. AKI are also common complications after liver transplantation. At least 8-17% of patients end up requiring renal replacement therapy 5. Moreover, delayed graft function due to tubule cell injury during kidney transplantation is frequently related to ischemia-associated AKI 6. Moreover, AKI occurs in approximately 20% of patients suffering from sepsis 6.The occurrence of AKI is associated with dramatic increases of morbidity and mortality 1. Therapeutic approaches are very limited and the majority of interventional trials in AKI have failed in humans. Therefore, additional therapeutic modalities to prevent renal injury from ischemia are urgently needed 3, 7-9. To elucidate mechanisms of renal injury due to ischemia and possible therapeutic strategies murine models are intensively required 7-13. Mouse models provide the possibility of utilizing different genetic models including gene-targeted mice and tissue specific gene-targeted mice (cre-flox system). However, murine renal ischemia is technically challenging and experimental details significantly influence results. We performed a systematic evaluation of a novel model for isolated renal artery occlusion in mice, which specifically avoids the use of clamping or suturing the renal pedicle 14. This model requires a nephrectomy of the right kidney since ischemia can be only performed in one kidney due to the experimental setting. In fact, by using a hanging-weight system, the renal artery is only instrumented once throughout the surgical procedure. In addition, no venous or urethral obstruction occurs with this technique. We could demonstrate time-dose-dependent and highly reproducible renal injury with ischemia by measuring serum creatinine. Moreover, when comparing this new model with conventional clamping of the whole pedicle, renal protection by ischemic preconditioning is more profound and more reliable. Therefore his new technique might be useful for other researchers who are working in the field of acute kidney injury.
Medicine, Issue 53, targeted gene deletion, murine model, acute renal failure, ischemia, reperfusion, video demonstration
2549
Play Button
MicroRNA In situ Hybridization for Formalin Fixed Kidney Tissues
Authors: Alison J. Kriegel, Mingyu Liang.
Institutions: Medical College of Wisconsin.
In this article we describe a method for colorimetric detection of miRNA in the kidney through in situ hybridization with digoxigenin tagged microRNA probes. This protocol, originally developed by Kloosterman and colleagues for broad use with Exiqon miRNA probes1, has been modified to overcome challenges inherent in miRNA analysis in kidney tissues. These include issues such as structure identification and hard to remove residual probe and antibody. Use of relatively thin, 5 mm thick, tissue sections allowed for clear visualization of kidney structures, while a strong probe signal was retained in cells. Additionally, probe concentration and incubation conditions were optimized to facilitate visualization of microRNA expression with low background and nonspecific signal. Here, the optimized protocol is described, covering the initial tissue collection and preparation through the mounting of slides at the end of the procedure. The basic components of this protocol can be altered for application to other tissues and cell culture models.
Basic Protocol, Issue 81, microRNA, in situ hybridization, kidney, renal tubules, microRNA probe
50785
Play Button
Normothermic Cardiac Arrest and Cardiopulmonary Resuscitation: A Mouse Model of Ischemia-Reperfusion Injury
Authors: Michael P. Hutchens, Richard J. Traystman, Tetsuhiro Fujiyoshi, Shin Nakayama, Paco S. Herson.
Institutions: Oregon Health & Sciences University, University of Colorado Denver.
Acute Kidney Injury (AKI) is a common, highly lethal, complication of critical illness which has a high mortality1-4 and which is most frequently caused by whole-body hypoperfusion.5,6 Successful reproduction of whole-body hypoperfusion in rodent models has been fraught with difficulty.7-9,9,10 Models which employ focal ischemia have repeatedly demonstrated results which do not translate to the clinical setting, and larger animal models which allow for whole body hypoperfusion lack access to the full toolset of genetic manipulation possible in the mouse.11,12 However, in recent years a mouse model of cardiac arrest and cardiopulmonary resuscitation has emerged which can be adapted to model AKI.13 This model reliably reproduces physiologic, functional, anatomic, and histologic outcomes seen in clinical AKI, is rapidly repeatable, and offers all of the significant advantages of a murine surgical model, including access to genetic manipulative techniques, low cost relative to large animals, and ease of use. Our group has developed extensive experience with use of this model to assess a number of organ-specific outcomes in AKI.14,15
Medicine, Issue 54, AKI, Acute Kidney Injury, Acute Renal Failure, Cardiac Arrest, Cardiopulmonary Resuscitation, Mouse Model, Chest Compressions, CA/CPR. stereology, perfusion-fixation
3116
Play Button
Fat Preference: A Novel Model of Eating Behavior in Rats
Authors: James M Kasper, Sarah B Johnson, Jonathan D. Hommel.
Institutions: University of Texas Medical Branch.
Obesity is a growing problem in the United States of America, with more than a third of the population classified as obese. One factor contributing to this multifactorial disorder is the consumption of a high fat diet, a behavior that has been shown to increase both caloric intake and body fat content. However, the elements regulating preference for high fat food over other foods remain understudied. To overcome this deficit, a model to quickly and easily test changes in the preference for dietary fat was developed. The Fat Preference model presents rats with a series of choices between foods with differing fat content. Like humans, rats have a natural bias toward consuming high fat food, making the rat model ideal for translational studies. Changes in preference can be ascribed to the effect of either genetic differences or pharmacological interventions. This model allows for the exploration of determinates of fat preference and screening pharmacotherapeutic agents that influence acquisition of obesity.
Behavior, Issue 88, obesity, fat, preference, choice, diet, macronutrient, animal model
51575
Play Button
Measuring Oral Fatty Acid Thresholds, Fat Perception, Fatty Food Liking, and Papillae Density in Humans
Authors: Rivkeh Y. Haryono, Madeline A. Sprajcer, Russell S. J. Keast.
Institutions: Deakin University.
Emerging evidence from a number of laboratories indicates that humans have the ability to identify fatty acids in the oral cavity, presumably via fatty acid receptors housed on taste cells. Previous research has shown that an individual's oral sensitivity to fatty acid, specifically oleic acid (C18:1) is associated with body mass index (BMI), dietary fat consumption, and the ability to identify fat in foods. We have developed a reliable and reproducible method to assess oral chemoreception of fatty acids, using a milk and C18:1 emulsion, together with an ascending forced choice triangle procedure. In parallel, a food matrix has been developed to assess an individual's ability to perceive fat, in addition to a simple method to assess fatty food liking. As an added measure tongue photography is used to assess papillae density, with higher density often being associated with increased taste sensitivity.
Neuroscience, Issue 88, taste, overweight and obesity, dietary fat, fatty acid, diet, fatty food liking, detection threshold
51236
Play Button
A Mouse Model for Pathogen-induced Chronic Inflammation at Local and Systemic Sites
Authors: George Papadopoulos, Carolyn D. Kramer, Connie S. Slocum, Ellen O. Weinberg, Ning Hua, Cynthia V. Gudino, James A. Hamilton, Caroline A. Genco.
Institutions: Boston University School of Medicine, Boston University School of Medicine.
Chronic inflammation is a major driver of pathological tissue damage and a unifying characteristic of many chronic diseases in humans including neoplastic, autoimmune, and chronic inflammatory diseases. Emerging evidence implicates pathogen-induced chronic inflammation in the development and progression of chronic diseases with a wide variety of clinical manifestations. Due to the complex and multifactorial etiology of chronic disease, designing experiments for proof of causality and the establishment of mechanistic links is nearly impossible in humans. An advantage of using animal models is that both genetic and environmental factors that may influence the course of a particular disease can be controlled. Thus, designing relevant animal models of infection represents a key step in identifying host and pathogen specific mechanisms that contribute to chronic inflammation. Here we describe a mouse model of pathogen-induced chronic inflammation at local and systemic sites following infection with the oral pathogen Porphyromonas gingivalis, a bacterium closely associated with human periodontal disease. Oral infection of specific-pathogen free mice induces a local inflammatory response resulting in destruction of tooth supporting alveolar bone, a hallmark of periodontal disease. In an established mouse model of atherosclerosis, infection with P. gingivalis accelerates inflammatory plaque deposition within the aortic sinus and innominate artery, accompanied by activation of the vascular endothelium, an increased immune cell infiltrate, and elevated expression of inflammatory mediators within lesions. We detail methodologies for the assessment of inflammation at local and systemic sites. The use of transgenic mice and defined bacterial mutants makes this model particularly suitable for identifying both host and microbial factors involved in the initiation, progression, and outcome of disease. Additionally, the model can be used to screen for novel therapeutic strategies, including vaccination and pharmacological intervention.
Immunology, Issue 90, Pathogen-Induced Chronic Inflammation; Porphyromonas gingivalis; Oral Bone Loss; Periodontal Disease; Atherosclerosis; Chronic Inflammation; Host-Pathogen Interaction; microCT; MRI
51556
Play Button
Isolation of Adipose Tissue Immune Cells
Authors: Jeb S. Orr, Arion J. Kennedy, Alyssa H. Hasty.
Institutions: Vanderbilt University School of Medicine.
The discovery of increased macrophage infiltration in the adipose tissue (AT) of obese rodents and humans has led to an intensification of interest in immune cell contribution to local and systemic insulin resistance. Isolation and quantification of different immune cell populations in lean and obese AT is now a commonly utilized technique in immunometabolism laboratories; yet extreme care must be taken both in stromal vascular cell isolation and in the flow cytometry analysis so that the data obtained is reliable and interpretable. In this video we demonstrate how to mince, digest, and isolate the immune cell-enriched stromal vascular fraction. Subsequently, we show how to antibody label macrophages and T lymphocytes and how to properly gate on them in flow cytometry experiments. Representative flow cytometry plots from low fat-fed lean and high fat-fed obese mice are provided. A critical element of this analysis is the use of antibodies that do not fluoresce in channels where AT macrophages are naturally autofluorescent, as well as the use of proper compensation controls.
Immunology, Issue 75, Cellular Biology, Molecular Biology, Biophysics, Physiology, Anatomy, Biomedical Engineering, Surgery, Metabolic Diseases, Diabetes Mellitus, diabetes, Endocrine System Diseases, adipose tissue, AT, stromal vascular fraction, macrophage, lymphocyte, T cells, adipocyte, inflammation, obesity, cell, isolation, FACS, flow cytometry, mice, animal model
50707
Play Button
The Use of Gas Chromatography to Analyze Compositional Changes of Fatty Acids in Rat Liver Tissue during Pregnancy
Authors: Helena L. Fisk, Annette L. West, Caroline E. Childs, Graham C. Burdge, Philip C. Calder.
Institutions: University of Southampton.
Gas chromatography (GC) is a highly sensitive method used to identify and quantify the fatty acid content of lipids from tissues, cells, and plasma/serum, yielding results with high accuracy and high reproducibility. In metabolic and nutrition studies GC allows assessment of changes in fatty acid concentrations following interventions or during changes in physiological state such as pregnancy. Solid phase extraction (SPE) using aminopropyl silica cartridges allows separation of the major lipid classes including triacylglycerols, different phospholipids, and cholesteryl esters (CE). GC combined with SPE was used to analyze the changes in fatty acid composition of the CE fraction in the livers of virgin and pregnant rats that had been fed various high and low fat diets. There are significant diet/pregnancy interaction effects upon the omega-3 and omega-6 fatty acid content of liver CE, indicating that pregnant females have a different response to dietary manipulation than is seen among virgin females.
Chemistry, Issue 85, gas chromatography, fatty acid, pregnancy, cholesteryl ester, solid phase extraction, polyunsaturated fatty acids
51445
Play Button
A High-throughput Method for Measurement of Glomerular Filtration Rate in Conscious Mice
Authors: Timo Rieg.
Institutions: University of California, San Diego , San Diego VA Healthcare System.
The measurement of glomerular filtration rate (GFR) is the gold standard in kidney function assessment. Currently, investigators determine GFR by measuring the level of the endogenous biomarker creatinine or exogenously applied radioactive labeled inulin (3H or 14C). Creatinine has the substantial drawback that proximal tubular secretion accounts for ~50% of total renal creatinine excretion and therefore creatinine is not a reliable GFR marker. Depending on the experiment performed, inulin clearance can be determined by an intravenous single bolus injection or continuous infusion (intravenous or osmotic minipump). Both approaches require the collection of plasma or plasma and urine, respectively. Other drawbacks of radioactive labeled inulin include usage of isotopes, time consuming surgical preparation of the animals, and the requirement of a terminal experiment. Here we describe a method which uses a single bolus injection of fluorescein isothiocyanate-(FITC) labeled inulin and the measurement of its fluorescence in 1-2 μl of diluted plasma. By applying a two-compartment model, with 8 blood collections per mouse, it is possible to measure GFR in up to 24 mice per day using a special work-flow protocol. This method only requires brief isoflurane anesthesia with all the blood samples being collected in a non-restrained and awake mouse. Another advantage is that it is possible to follow mice over a period of several months and treatments (i.e. doing paired experiments with dietary changes or drug applications). We hope that this technique of measuring GFR is useful to other investigators studying mouse kidney function and will replace less accurate methods of estimating kidney function, such as plasma creatinine and blood urea nitrogen.
Medicine, Issue 75, Anatomy, Physiology, Biomedical Engineering, Molecular Biology, Nephrology, Kidney Function Tests, Glomerular filtration rate, rats, mice, conscious, creatinine, inulin, Jaffe, hypertension, HPLC, animal model
50330
Play Button
Mouse Kidney Transplantation: Models of Allograft Rejection
Authors: George H. Tse, Emily E. Hesketh, Michael Clay, Gary Borthwick, Jeremy Hughes, Lorna P. Marson.
Institutions: The University of Edinburgh.
Rejection of the transplanted kidney in humans is still a major cause of morbidity and mortality. The mouse model of renal transplantation closely replicates both the technical and pathological processes that occur in human renal transplantation. Although mouse models of allogeneic rejection in organs other than the kidney exist, and are more technically feasible, there is evidence that different organs elicit disparate rejection modes and dynamics, for instance the time course of rejection in cardiac and renal allograft differs significantly in certain strain combinations. This model is an attractive tool for many reasons despite its technical challenges. As inbred mouse strain haplotypes are well characterized it is possible to choose donor and recipient combinations to model acute allograft rejection by transplanting across MHC class I and II loci. Conversely by transplanting between strains with similar haplotypes a chronic process can be elicited were the allograft kidney develops interstitial fibrosis and tubular atrophy. We have modified the surgical technique to reduce operating time and improve ease of surgery, however a learning curve still needs to be overcome in order to faithfully replicate the model. This study will provide key points in the surgical procedure and aid the process of establishing this technique.
Medicine, Issue 92, transplantation, mouse model, surgery, kidney, immunology, rejection
52163
Play Button
Isolation and Functional Characterization of Human Ventricular Cardiomyocytes from Fresh Surgical Samples
Authors: Raffaele Coppini, Cecila Ferrantini, Alessandro Aiazzi, Luca Mazzoni, Laura Sartiani, Alessandro Mugelli, Corrado Poggesi, Elisabetta Cerbai.
Institutions: University of Florence, University of Florence.
Cardiomyocytes from diseased hearts are subjected to complex remodeling processes involving changes in cell structure, excitation contraction coupling and membrane ion currents. Those changes are likely to be responsible for the increased arrhythmogenic risk and the contractile alterations leading to systolic and diastolic dysfunction in cardiac patients. However, most information on the alterations of myocyte function in cardiac diseases has come from animal models. Here we describe and validate a protocol to isolate viable myocytes from small surgical samples of ventricular myocardium from patients undergoing cardiac surgery operations. The protocol is described in detail. Electrophysiological and intracellular calcium measurements are reported to demonstrate the feasibility of a number of single cell measurements in human ventricular cardiomyocytes obtained with this method. The protocol reported here can be useful for future investigations of the cellular and molecular basis of functional alterations of the human heart in the presence of different cardiac diseases. Further, this method can be used to identify novel therapeutic targets at cellular level and to test the effectiveness of new compounds on human cardiomyocytes, with direct translational value.
Medicine, Issue 86, cardiology, cardiac cells, electrophysiology, excitation-contraction coupling, action potential, calcium, myocardium, hypertrophic cardiomyopathy, cardiac patients, cardiac disease
51116
Play Button
A Zebrafish Model of Diabetes Mellitus and Metabolic Memory
Authors: Robert V. Intine, Ansgar S. Olsen, Michael P. Sarras Jr..
Institutions: Rosalind Franklin University of Medicine and Science, Rosalind Franklin University of Medicine and Science.
Diabetes mellitus currently affects 346 million individuals and this is projected to increase to 400 million by 2030. Evidence from both the laboratory and large scale clinical trials has revealed that diabetic complications progress unimpeded via the phenomenon of metabolic memory even when glycemic control is pharmaceutically achieved. Gene expression can be stably altered through epigenetic changes which not only allow cells and organisms to quickly respond to changing environmental stimuli but also confer the ability of the cell to "memorize" these encounters once the stimulus is removed. As such, the roles that these mechanisms play in the metabolic memory phenomenon are currently being examined. We have recently reported the development of a zebrafish model of type I diabetes mellitus and characterized this model to show that diabetic zebrafish not only display the known secondary complications including the changes associated with diabetic retinopathy, diabetic nephropathy and impaired wound healing but also exhibit impaired caudal fin regeneration. This model is unique in that the zebrafish is capable to regenerate its damaged pancreas and restore a euglycemic state similar to what would be expected in post-transplant human patients. Moreover, multiple rounds of caudal fin amputation allow for the separation and study of pure epigenetic effects in an in vivo system without potential complicating factors from the previous diabetic state. Although euglycemia is achieved following pancreatic regeneration, the diabetic secondary complication of fin regeneration and skin wound healing persists indefinitely. In the case of impaired fin regeneration, this pathology is retained even after multiple rounds of fin regeneration in the daughter fin tissues. These observations point to an underlying epigenetic process existing in the metabolic memory state. Here we present the methods needed to successfully generate the diabetic and metabolic memory groups of fish and discuss the advantages of this model.
Medicine, Issue 72, Genetics, Genomics, Physiology, Anatomy, Biomedical Engineering, Metabolomics, Zebrafish, diabetes, metabolic memory, tissue regeneration, streptozocin, epigenetics, Danio rerio, animal model, diabetes mellitus, diabetes, drug discovery, hyperglycemia
50232
Play Button
Renal Ischaemia Reperfusion Injury: A Mouse Model of Injury and Regeneration
Authors: Emily E. Hesketh, Alicja Czopek, Michael Clay, Gary Borthwick, David Ferenbach, David Kluth, Jeremy Hughes.
Institutions: University of Edinburgh.
Renal ischaemia reperfusion injury (IRI) is a common cause of acute kidney injury (AKI) in patients and occlusion of renal blood flow is unavoidable during renal transplantation. Experimental models that accurately and reproducibly recapitulate renal IRI are crucial in dissecting the pathophysiology of AKI and the development of novel therapeutic agents. Presented here is a mouse model of renal IRI that results in reproducible AKI. This is achieved by a midline laparotomy approach for the surgery with one incision allowing both a right nephrectomy that provides control tissue and clamping of the left renal pedicle to induce ischaemia of the left kidney. By careful monitoring of the clamp position and body temperature during the period of ischaemia this model achieves reproducible functional and structural injury. Mice sacrificed 24 hr following surgery demonstrate loss of renal function with elevation of the serum or plasma creatinine level as well as structural kidney damage with acute tubular necrosis evident. Renal function improves and the acute tissue injury resolves during the course of 7 days following renal IRI such that this model may be used to study renal regeneration. This model of renal IRI has been utilized to study the molecular and cellular pathophysiology of AKI as well as analysis of the subsequent renal regeneration.
Medicine, Issue 88, Murine, Acute Kidney Injury, Ischaemia, Reperfusion, Nephrectomy, Regeneration, Laparotomy
51816
Play Button
Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney
Authors: Kristen K. McCampbell, Kristin N. Springer, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
Cellular Biology, Issue 90, zebrafish; kidney; nephron; nephrology; renal; regeneration; proximal tubule; distal tubule; segment; mesonephros; physiology; acute kidney injury (AKI)
51644
Play Button
Ischemia-reperfusion Model of Acute Kidney Injury and Post Injury Fibrosis in Mice
Authors: Nataliya I. Skrypnyk, Raymond C. Harris, Mark P. de Caestecker.
Institutions: Vanderbilt University Medical Center.
Ischemia-reperfusion induced acute kidney injury (IR-AKI) is widely used as a model of AKI in mice, but results are often quite variable with high, often unreported mortality rates that may confound analyses. Bilateral renal pedicle clamping is commonly used to induce IR-AKI, but differences between effective clamp pressures and/or renal responses to ischemia between kidneys often lead to more variable results. In addition, shorter clamp times are known to induce more variable tubular injury, and while mice undergoing bilateral injury with longer clamp times develop more consistent tubular injury, they often die within the first 3 days after injury due to severe renal insufficiency. To improve post-injury survival and obtain more consistent and predictable results, we have developed two models of unilateral ischemia-reperfusion injury followed by contralateral nephrectomy. Both surgeries are performed using a dorsal approach, reducing surgical stress resulting from ventral laparotomy, commonly used for mouse IR-AKI surgeries. For induction of moderate injury BALB/c mice undergo unilateral clamping of the renal pedicle for 26 min and also undergo simultaneous contralateral nephrectomy. Using this approach, 50-60% of mice develop moderate AKI 24 hr after injury but 90-100% of mice survive. To induce more severe AKI, BALB/c mice undergo renal pedicle clamping for 30 min followed by contralateral nephrectomy 8 days after injury. This allows functional assessment of renal recovery after injury with 90-100% survival. Early post-injury tubular damage as well as post injury fibrosis are highly consistent using this model.
Medicine, Issue 78, Immunology, Infection, Biomedical Engineering, Anatomy, Physiology, Kidney, Mice, Inbred Strains, Renal Insufficiency, Acute Kidney Injury, Ischemia-reperfusion, acute kidney injury, post injury fibrosis, mice, ischemia, reperfusion, fibrosis, animal model
50495
Play Button
Functional Interrogation of Adult Hypothalamic Neurogenesis with Focal Radiological Inhibition
Authors: Daniel A. Lee, Juan Salvatierra, Esteban Velarde, John Wong, Eric C. Ford, Seth Blackshaw.
Institutions: California Institute of Technology, Johns Hopkins University School of Medicine, Johns Hopkins University School of Medicine, University Of Washington Medical Center, Johns Hopkins University School of Medicine.
The functional characterization of adult-born neurons remains a significant challenge. Approaches to inhibit adult neurogenesis via invasive viral delivery or transgenic animals have potential confounds that make interpretation of results from these studies difficult. New radiological tools are emerging, however, that allow one to noninvasively investigate the function of select groups of adult-born neurons through accurate and precise anatomical targeting in small animals. Focal ionizing radiation inhibits the birth and differentiation of new neurons, and allows targeting of specific neural progenitor regions. In order to illuminate the potential functional role that adult hypothalamic neurogenesis plays in the regulation of physiological processes, we developed a noninvasive focal irradiation technique to selectively inhibit the birth of adult-born neurons in the hypothalamic median eminence. We describe a method for Computer tomography-guided focal irradiation (CFIR) delivery to enable precise and accurate anatomical targeting in small animals. CFIR uses three-dimensional volumetric image guidance for localization and targeting of the radiation dose, minimizes radiation exposure to nontargeted brain regions, and allows for conformal dose distribution with sharp beam boundaries. This protocol allows one to ask questions regarding the function of adult-born neurons, but also opens areas to questions in areas of radiobiology, tumor biology, and immunology. These radiological tools will facilitate the translation of discoveries at the bench to the bedside.
Neuroscience, Issue 81, Neural Stem Cells (NSCs), Body Weight, Radiotherapy, Image-Guided, Metabolism, Energy Metabolism, Neurogenesis, Cell Proliferation, Neurosciences, Irradiation, Radiological treatment, Computer-tomography (CT) imaging, Hypothalamus, Hypothalamic Proliferative Zone (HPZ), Median Eminence (ME), Small Animal Radiation Research Platform (SARRP)
50716
Play Button
A Method for Murine Islet Isolation and Subcapsular Kidney Transplantation
Authors: Erik J. Zmuda, Catherine A. Powell, Tsonwin Hai.
Institutions: The Ohio State University, The Ohio State University, The Ohio State University.
Since the early pioneering work of Ballinger and Reckard demonstrating that transplantation of islets of Langerhans into diabetic rodents could normalize their blood glucose levels, islet transplantation has been proposed to be a potential treatment for type 1 diabetes 1,2. More recently, advances in human islet transplantation have further strengthened this view 1,3. However, two major limitations prevent islet transplantation from being a widespread clinical reality: (a) the requirement for large numbers of islets per patient, which severely reduces the number of potential recipients, and (b) the need for heavy immunosuppression, which significantly affects the pediatric population of patients due to their vulnerability to long-term immunosuppression. Strategies that can overcome these limitations have the potential to enhance the therapeutic utility of islet transplantation. Islet transplantation under the mouse kidney capsule is a widely accepted model to investigate various strategies to improve islet transplantation. This experiment requires the isolation of high quality islets and implantation of islets to the diabetic recipients. Both procedures require surgical steps that can be better demonstrated by video than by text. Here, we document the detailed steps for these procedures by both video and written protocol. We also briefly discuss different transplantation models: syngeneic, allogeneic, syngeneic autoimmune, and allogeneic autoimmune.
Medicine, Issue 50, islet isolation, islet transplantation, diabetes, murine, pancreas
2096
Play Button
A Method for Mouse Pancreatic Islet Isolation and Intracellular cAMP Determination
Authors: Joshua C. Neuman, Nathan A. Truchan, Jamie W. Joseph, Michelle E. Kimple.
Institutions: University of Wisconsin-Madison, University of Wisconsin-Madison, University of Waterloo.
Uncontrolled glycemia is a hallmark of diabetes mellitus and promotes morbidities like neuropathy, nephropathy, and retinopathy. With the increasing prevalence of diabetes, both immune-mediated type 1 and obesity-linked type 2, studies aimed at delineating diabetes pathophysiology and therapeutic mechanisms are of critical importance. The β-cells of the pancreatic islets of Langerhans are responsible for appropriately secreting insulin in response to elevated blood glucose concentrations. In addition to glucose and other nutrients, the β-cells are also stimulated by specific hormones, termed incretins, which are secreted from the gut in response to a meal and act on β-cell receptors that increase the production of intracellular cyclic adenosine monophosphate (cAMP). Decreased β-cell function, mass, and incretin responsiveness are well-understood to contribute to the pathophysiology of type 2 diabetes, and are also being increasingly linked with type 1 diabetes. The present mouse islet isolation and cAMP determination protocol can be a tool to help delineate mechanisms promoting disease progression and therapeutic interventions, particularly those that are mediated by the incretin receptors or related receptors that act through modulation of intracellular cAMP production. While only cAMP measurements will be described, the described islet isolation protocol creates a clean preparation that also allows for many other downstream applications, including glucose stimulated insulin secretion, [3H]-thymidine incorporation, protein abundance, and mRNA expression.
Physiology, Issue 88, islet, isolation, insulin secretion, β-cell, diabetes, cAMP production, mouse
50374
Play Button
A Manual Small Molecule Screen Approaching High-throughput Using Zebrafish Embryos
Authors: Shahram Jevin Poureetezadi, Eric K. Donahue, Rebecca A. Wingert.
Institutions: University of Notre Dame.
Zebrafish have become a widely used model organism to investigate the mechanisms that underlie developmental biology and to study human disease pathology due to their considerable degree of genetic conservation with humans. Chemical genetics entails testing the effect that small molecules have on a biological process and is becoming a popular translational research method to identify therapeutic compounds. Zebrafish are specifically appealing to use for chemical genetics because of their ability to produce large clutches of transparent embryos, which are externally fertilized. Furthermore, zebrafish embryos can be easily drug treated by the simple addition of a compound to the embryo media. Using whole-mount in situ hybridization (WISH), mRNA expression can be clearly visualized within zebrafish embryos. Together, using chemical genetics and WISH, the zebrafish becomes a potent whole organism context in which to determine the cellular and physiological effects of small molecules. Innovative advances have been made in technologies that utilize machine-based screening procedures, however for many labs such options are not accessible or remain cost-prohibitive. The protocol described here explains how to execute a manual high-throughput chemical genetic screen that requires basic resources and can be accomplished by a single individual or small team in an efficient period of time. Thus, this protocol provides a feasible strategy that can be implemented by research groups to perform chemical genetics in zebrafish, which can be useful for gaining fundamental insights into developmental processes, disease mechanisms, and to identify novel compounds and signaling pathways that have medically relevant applications.
Developmental Biology, Issue 93, zebrafish, chemical genetics, chemical screen, in vivo small molecule screen, drug discovery, whole mount in situ hybridization (WISH), high-throughput screening (HTS), high-content screening (HCS)
52063
Play Button
Quantitative Analysis and Characterization of Atherosclerotic Lesions in the Murine Aortic Sinus
Authors: Daniel E. Venegas-Pino, Nicole Banko, Mohammed I. Khan, Yuanyuan Shi, Geoff H. Werstuck.
Institutions: McMaster University, McMaster University.
Atherosclerosis is a disease of the large arteries and a major underlying cause of myocardial infarction and stroke. Several different mouse models have been developed to facilitate the study of the molecular and cellular pathophysiology of this disease. In this manuscript we describe specific techniques for the quantification and characterization of atherosclerotic lesions in the murine aortic sinus and ascending aorta. The advantage of this procedure is that it provides an accurate measurement of the cross-sectional area and total volume of the lesion, which can be used to compare atherosclerotic progression across different treatment groups. This is possible through the use of the valve leaflets as an anatomical landmark, together with careful adjustment of the sectioning angle. We also describe basic staining methods that can be used to begin to characterize atherosclerotic progression. These can be further modified to investigate antigens of specific interest to the researcher. The described techniques are generally applicable to a wide variety of existing and newly created dietary and genetically-induced models of atherogenesis.
Medicine, Issue 82, atherosclerosis, atherosclerotic lesion, Mouse Model, aortic sinus, tissue preparation and sectioning, Immunohistochemistry
50933
Play Button
Silicon Microchips for Manipulating Cell-cell Interaction
Authors: Elliot E Hui, Sangeeta N Bhatia.
Institutions: MIT - Massachusetts Institute of Technology.
The role of the cellular microenvironment is recognized as crucial in determining cell fate and function in virtually all mammalian tissues from development to malignant transformation.  In particular, interaction with neighboring stroma has been implicated in a plethora of biological phenomena; however, conventional techniques limit the ability to interrogate the spatial and dynamic elements of such interactions. In Micromechanical Reconfigurable Culture (RC), we employ a micromachined silicon substrate with moving parts to dynamically control cell-cell interactions through mechanical repositioning. Previously, this method has been applied to investigate intercellular communication in co-cultures of hepatocytes and non-parenchymal cells, demonstrating time-dependent interactions and a limited range for soluble signaling 1. Here, we describe in detail the preparation and use of the RC system. We begin by demonstrating the handling of the device parts using tweezers, including actuating between the gap and contact configurations (cell populations separated by a narrow 80-µm gap, or in direct intimate contact). Next, we detail the process of preparing the substrates for culture, and the multi-step cell seeding process required for obtaining confluent cell monolayers. Using live microscopy, we then illustrate real-time manipulation of cells between the different possible experimental configurations. Finally, we demonstrate the steps required in order to regenerate the device surface for reuse: toluene and piranha cleaning, polystyrene coating, and oxygen plasma treatment.
Issue 7, tissue engineering, MEMS, microfabrication, microenvironment, Bioengineering
268
Play Button
Transplantation of Pancreatic Islets Into the Kidney Capsule of Diabetic Mice
Authors: Gregory L. Szot, Pavel Koudria, Jeffrey A. Bluestone.
Institutions: University of California, San Francisco - UCSF.
Our protocol was developed to cleanly and easily deliver islets or cells under the kidney capsule of diabetic or normal mice. We found that it was easier to concentrate the islets or cells into pellets in the final delivery tubing (PE50) used to transplant the cells under the kidney capsule. This technique provides both speed and ease while reducing any undue stress to the cells or to the mouse. Loading: Settled, hand picked, islets or pelleted cells are carefully aspirated off the bottom of a 1.5 mL microcentrifuge tube using a p200 pipetteman and a straight, thin-wall pipette tip. A length of PE50 tubing is attached to the pipette tip using a small silicone adapter tubing. Cells are allowed to settle, in the tip, and then are transferred to the PE50 tubing by slowly dialing the pipetteman. Once the cells are near the end of the PE50 tubing, a kink is made and the silicone adaptor tubing is placed over the kink. The PE50 tubing is transferred to a 15 mL conical containing a cut 5 mL pipet, and the PE50 tubing is taped over the side of the 5 mL pipet to prevent curling during centrifuging. Cells are allowed to reach 1,000 rpm and stopped. Transplantation: Recipient mice are anesthetized, shaved, and cleaned. A small incision is made on the left flank of the mouse and the kidney is exposed. The kidney, fat, and tissue are kept moist with normal saline swab. The distal end of the PE50 is attached to a Hamilton screw drive syringe, containing a pipette tip, using the silicone adaptor tubing. A small nick is made on the right flank side of the kidney, not too large nor too deep. The beveled end of the PE50 tubing, nearest the cells, is carefully placed under the capsule, the tubing is moved around gently to make space while swabbing normal saline; a dry capsule can tear easily. A small air bubble is delivered under the capsule by slowly dialing the syringe screw drive. Islets are then slowly delivered behind the air bubble. Once the islets have been delivered kidney homeostasis is maintained and the knick is cauterized with low heat. The kidney is placed back into the cavity and the peritoneum and skin are sutured and stapled. Mice are immediately treated with Flunixin and Buprenorphine s.q. and placed in a cage on a heating pad.
Immunology, Issue 9, Mouse, Pancreas, Kidney, Diabetes, Transplantation, Islets, Translational Research
404
Play Button
Murine Renal Transplantation Procedure
Authors: Jiao-Jing Wang, Sara Hockenheimer, Alice A. Bickerstaff, Gregg A. Hadley.
Institutions: The Ohio State University, The Ohio State University.
Renal orthotopic transplantation in mice is a technically challenging procedure. Although the first kidney transplants in mice were performed by Russell et al over 30 years ago (1) and refined by Zhang et al years later (2), few people in the world have mastered this procedure. In our laboratory we have successfully performed 1200 orthotopic kidney transplantations with > 90% survival rate. The key points for success include stringent control of reperfusion injury, bleeding and thrombosis, both during the procedure and post-transplantation, and use of 10-0 instead of 11-0 suture for anastomoses. Post-operative care and treatment of the recipient is extremely important to transplant success and evaluation. All renal graft recipients receive antibiotics in the form of an injection of penicillin immediately post-transplant and sulfatrim in the drinking water continually. Overall animal health is evaluated daily and whole blood creatinine analyses are performed routinely with a portable I-STAT machine to assess graft function.
immunology, Issue 29, mouse, kidney, renal, transplantation, procedure
1150
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.