JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Embryonic diapause is conserved across mammals.
PLoS ONE
Embryonic diapause (ED) is a temporary arrest of embryo development and is characterized by delayed implantation in the uterus. ED occurs in blastocysts of less than 2% of mammalian species, including the mouse (Mus musculus). If ED were an evolutionarily conserved phenomenon, then it should be inducible in blastocysts of normally non-diapausing mammals, such as domestic species. To prove this hypothesis, we examined whether blastocysts from domestic sheep (Ovis aries) could enter into diapause following their transfer into mouse uteri in which diapause conditions were induced. Sheep blastocysts entered into diapause, as demonstrated by growth arrest, viability maintenance and their ED-specific pattern of gene expression. Seven days after transfer, diapausing ovine blastocysts were able to resume growth in vitro and, after transfer to surrogate ewe recipients, to develop into normal lambs. The finding that non-diapausing ovine embryos can enter into diapause implies that this phenomenon is phylogenetically conserved and not secondarily acquired by embryos of diapausing species. Our study questions the current model of independent evolution of ED in different mammalian orders.
Authors: Anastacia M. Garcia, Mary L. Ladage, Pamela A. Padilla.
Published: 12-03-2012
ABSTRACT
Caenorhabdits elegans has been used extensively in the study of stress resistance, which is facilitated by the transparency of the adult and embryo stages as well as by the availability of genetic mutants and transgenic strains expressing a myriad of fusion proteins1-4. In addition, dynamic processes such as cell division can be viewed using fluorescently labeled reporter proteins. The study of mitosis can be facilitated through the use of time-lapse experiments in various systems including intact organisms; thus the early C. elegans embryo is well suited for this study. Presented here is a technique by which in vivo imaging of sub-cellular structures in response to anoxic (99.999% N2; <2 ppm O2) stress is possible using a simple gas flow through setup on a high-powered microscope. A microincubation chamber is used in conjunction with nitrogen gas flow through and a spinning disc confocal microscope to create a controlled environment in which animals can be imaged in vivo. Using GFP-tagged gamma tubulin and histone, the dynamics and arrest of cell division can be monitored before, during and after exposure to an oxygen-deprived environment. The results of this technique are high resolution, detailed videos and images of cellular structures within blastomeres of embryos exposed to oxygen deprivation.
21 Related JoVE Articles!
Play Button
Production of Haploid Zebrafish Embryos by In Vitro Fertilization
Authors: Paul T. Kroeger Jr., Shahram Jevin Poureetezadi, Robert McKee, Jonathan Jou, Rachel Miceli, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish has become a mainstream vertebrate model that is relevant for many disciplines of scientific study. Zebrafish are especially well suited for forward genetic analysis of developmental processes due to their external fertilization, embryonic size, rapid ontogeny, and optical clarity – a constellation of traits that enable the direct observation of events ranging from gastrulation to organogenesis with a basic stereomicroscope. Further, zebrafish embryos can survive for several days in the haploid state. The production of haploid embryos in vitro is a powerful tool for mutational analysis, as it enables the identification of recessive mutant alleles present in first generation (F1) female carriers following mutagenesis in the parental (P) generation. This approach eliminates the necessity to raise multiple generations (F2, F3, etc.) which involves breeding of mutant families, thus saving the researcher time along with reducing the needs for zebrafish colony space, labor, and the husbandry costs. Although zebrafish have been used to conduct forward screens for the past several decades, there has been a steady expansion of transgenic and genome editing tools. These tools now offer a plethora of ways to create nuanced assays for next generation screens that can be used to further dissect the gene regulatory networks that drive vertebrate ontogeny. Here, we describe how to prepare haploid zebrafish embryos. This protocol can be implemented for novel future haploid screens, such as in enhancer and suppressor screens, to address the mechanisms of development for a broad number of processes and tissues that form during early embryonic stages.
Developmental Biology, Issue 89, zebrafish, haploid, in vitro fertilization, forward genetic screen, saturation, recessive mutation, mutagenesis
51708
Play Button
RNAi Screening to Identify Postembryonic Phenotypes in C. elegans
Authors: Katherine K. Beifuss, Tina L. Gumienny.
Institutions: Texas A&M University System Health Science Center.
C. elegans has proven to be a valuable model system for the discovery and functional characterization of many genes and gene pathways1. More sophisticated tools and resources for studies in this system are facilitating continued discovery of genes with more subtle phenotypes or roles. Here we present a generalized protocol we adapted for identifying C. elegans genes with postembryonic phenotypes of interest using RNAi2. This procedure is easily modified to assay the phenotype of choice, whether by light or fluorescence optics on a dissecting or compound microscope. This screening protocol capitalizes on the physical assets of the organism and molecular tools the C. elegans research community has produced. As an example, we demonstrate the use of an integrated transgene that expresses a fluorescent product in an RNAi screen to identify genes required for the normal localization of this product in late stage larvae and adults. First, we used a commercially available genomic RNAi library with full-length cDNA inserts. This library facilitates the rapid identification of multiple candidates by RNAi reduction of the candidate gene product. Second, we generated an integrated transgene that expresses our fluorecently tagged protein of interest in an RNAi-sensitive background. Third, by exposing hatched animals to RNAi, this screen permits identification of gene products that have a vital embryonic role that would otherwise mask a post-embryonic role in regulating the protein of interest. Lastly, this screen uses a compound microscope equipped for single cell resolution.
Developmental Biology, Issue 60, RNAi, library screen, C. elegans, postembryonic development
3442
Play Button
Biochemical and High Throughput Microscopic Assessment of Fat Mass in Caenorhabditis Elegans
Authors: Elizabeth C. Pino, Christopher M. Webster, Christopher E. Carr, Alexander A. Soukas.
Institutions: Massachusetts General Hospital and Harvard Medical School, Massachusetts Institute of Technology.
The nematode C. elegans has emerged as an important model for the study of conserved genetic pathways regulating fat metabolism as it relates to human obesity and its associated pathologies. Several previous methodologies developed for the visualization of C. elegans triglyceride-rich fat stores have proven to be erroneous, highlighting cellular compartments other than lipid droplets. Other methods require specialized equipment, are time-consuming, or yield inconsistent results. We introduce a rapid, reproducible, fixative-based Nile red staining method for the accurate and rapid detection of neutral lipid droplets in C. elegans. A short fixation step in 40% isopropanol makes animals completely permeable to Nile red, which is then used to stain animals. Spectral properties of this lipophilic dye allow it to strongly and selectively fluoresce in the yellow-green spectrum only when in a lipid-rich environment, but not in more polar environments. Thus, lipid droplets can be visualized on a fluorescent microscope equipped with simple GFP imaging capability after only a brief Nile red staining step in isopropanol. The speed, affordability, and reproducibility of this protocol make it ideally suited for high throughput screens. We also demonstrate a paired method for the biochemical determination of triglycerides and phospholipids using gas chromatography mass-spectrometry. This more rigorous protocol should be used as confirmation of results obtained from the Nile red microscopic lipid determination. We anticipate that these techniques will become new standards in the field of C. elegans metabolic research.
Genetics, Issue 73, Biochemistry, Cellular Biology, Molecular Biology, Developmental Biology, Physiology, Anatomy, Caenorhabditis elegans, Obesity, Energy Metabolism, Lipid Metabolism, C. elegans, fluorescent lipid staining, lipids, Nile red, fat, high throughput screening, obesity, gas chromatography, mass spectrometry, GC/MS, animal model
50180
Play Button
Creating Defined Gaseous Environments to Study the Effects of Hypoxia on C. elegans
Authors: Emily M. Fawcett, Joseph W. Horsman, Dana L. Miller.
Institutions: University of Washington, University of Washington.
Oxygen is essential for all metazoans to survive, with one known exception1. Decreased O2 availability (hypoxia) can arise during states of disease, normal development or changes in environmental conditions2-5. Understanding the cellular signaling pathways that are involved in the response to hypoxia could provide new insight into treatment strategies for diverse human pathologies, from stroke to cancer. This goal has been impeded, at least in part, by technical difficulties associated with controlled hypoxic exposure in genetically amenable model organisms. The nematode Caenorhabditis elegans is ideally suited as a model organism for the study of hypoxic response, as it is easy to culture and genetically manipulate. Moreover, it is possible to study cellular responses to specific hypoxic O2 concentrations without confounding effects since C. elegans obtain O2 (and other gasses) by diffusion, as opposed to a facilitated respiratory system6. Factors known to be involved in the response to hypoxia are conserved in C. elegans. The actual response to hypoxia depends on the specific concentration of O2 that is available. In C. elegans, exposure to moderate hypoxia elicits a transcriptional response mediated largely by hif-1, the highly-conserved hypoxia-inducible transcription factor6-9. C .elegans embryos require hif-1 to survive in 5,000-20,000 ppm O27,10. Hypoxia is a general term for "less than normal O2". Normoxia (normal O2) can also be difficult to define. We generally consider room air, which is 210,000 ppm O2 to be normoxia. However, it has been shown that C. elegans has a behavioral preference for O2 concentrations from 5-12% (50,000-120,000 ppm O2)11. In larvae and adults, hif-1 acts to prevent hypoxia-induced diapause in 5,000 ppm O212. However, hif-1 does not play a role in the response to lower concentrations of O2 (anoxia, operational definition <10 ppm O2)13. In anoxia, C. elegans enters into a reversible state of suspended animation in which all microscopically observable activity ceases10. The fact that different physiological responses occur in different conditions highlights the importance of having experimental control over the hypoxic concentration of O2. Here, we present a method for the construction and implementation of environmental chambers that produce reliable and reproducible hypoxic conditions with defined concentrations of O2. The continual flow method ensures rapid equilibration of the chamber and increases the stability of the system. Additionally, the transparency and accessibility of the chambers allow for direct visualization of animals being exposed to hypoxia. We further demonstrate an effective method of harvesting C. elegans samples rapidly after exposure to hypoxia, which is necessary to observe many of the rapidly-reversed changes that occur in hypoxia10,14. This method provides a basic foundation that can be easily modified for individual laboratory needs, including different model systems and a variety of gasses.
Biochemistry, Issue 65, Molecular Biology, Cellular Biology, Genetics, Developmental Biology, C. elegans, hypoxia, hypoxia inducible factor-1 (hif-1), anoxia, oxygen
4088
Play Button
Flat Mount Preparation for Observation and Analysis of Zebrafish Embryo Specimens Stained by Whole Mount In situ Hybridization
Authors: Christina N. Cheng, Yue Li, Amanda N. Marra, Valerie Verdun, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish embryo is now commonly used for basic and biomedical research to investigate the genetic control of developmental processes and to model congenital abnormalities. During the first day of life, the zebrafish embryo progresses through many developmental stages including fertilization, cleavage, gastrulation, segmentation, and the organogenesis of structures such as the kidney, heart, and central nervous system. The anatomy of a young zebrafish embryo presents several challenges for the visualization and analysis of the tissues involved in many of these events because the embryo develops in association with a round yolk mass. Thus, for accurate analysis and imaging of experimental phenotypes in fixed embryonic specimens between the tailbud and 20 somite stage (10 and 19 hours post fertilization (hpf), respectively), such as those stained using whole mount in situ hybridization (WISH), it is often desirable to remove the embryo from the yolk ball and to position it flat on a glass slide. However, performing a flat mount procedure can be tedious. Therefore, successful and efficient flat mount preparation is greatly facilitated through the visual demonstration of the dissection technique, and also helped by using reagents that assist in optimal tissue handling. Here, we provide our WISH protocol for one or two-color detection of gene expression in the zebrafish embryo, and demonstrate how the flat mounting procedure can be performed on this example of a stained fixed specimen. This flat mounting protocol is broadly applicable to the study of many embryonic structures that emerge during early zebrafish development, and can be implemented in conjunction with other staining methods performed on fixed embryo samples.
Developmental Biology, Issue 89, animals, vertebrates, fishes, zebrafish, growth and development, morphogenesis, embryonic and fetal development, organogenesis, natural science disciplines, embryo, whole mount in situ hybridization, flat mount, deyolking, imaging
51604
Play Button
In Vivo Modeling of the Morbid Human Genome using Danio rerio
Authors: Adrienne R. Niederriter, Erica E. Davis, Christelle Golzio, Edwin C. Oh, I-Chun Tsai, Nicholas Katsanis.
Institutions: Duke University Medical Center, Duke University, Duke University Medical Center.
Here, we present methods for the development of assays to query potentially clinically significant nonsynonymous changes using in vivo complementation in zebrafish. Zebrafish (Danio rerio) are a useful animal system due to their experimental tractability; embryos are transparent to enable facile viewing, undergo rapid development ex vivo, and can be genetically manipulated.1 These aspects have allowed for significant advances in the analysis of embryogenesis, molecular processes, and morphogenetic signaling. Taken together, the advantages of this vertebrate model make zebrafish highly amenable to modeling the developmental defects in pediatric disease, and in some cases, adult-onset disorders. Because the zebrafish genome is highly conserved with that of humans (~70% orthologous), it is possible to recapitulate human disease states in zebrafish. This is accomplished either through the injection of mutant human mRNA to induce dominant negative or gain of function alleles, or utilization of morpholino (MO) antisense oligonucleotides to suppress genes to mimic loss of function variants. Through complementation of MO-induced phenotypes with capped human mRNA, our approach enables the interpretation of the deleterious effect of mutations on human protein sequence based on the ability of mutant mRNA to rescue a measurable, physiologically relevant phenotype. Modeling of the human disease alleles occurs through microinjection of zebrafish embryos with MO and/or human mRNA at the 1-4 cell stage, and phenotyping up to seven days post fertilization (dpf). This general strategy can be extended to a wide range of disease phenotypes, as demonstrated in the following protocol. We present our established models for morphogenetic signaling, craniofacial, cardiac, vascular integrity, renal function, and skeletal muscle disorder phenotypes, as well as others.
Molecular Biology, Issue 78, Genetics, Biomedical Engineering, Medicine, Developmental Biology, Biochemistry, Anatomy, Physiology, Bioengineering, Genomics, Medical, zebrafish, in vivo, morpholino, human disease modeling, transcription, PCR, mRNA, DNA, Danio rerio, animal model
50338
Play Button
Derivation of Mouse Trophoblast Stem Cells from Blastocysts
Authors: Shang-Yi Chiu, Eri O. Maruyama, Wei Hsu.
Institutions: University of Rochester.
Specification of the trophectoderm is one of the earliest differentiation events of mammalian development. The trophoblast lineage derived from the trophectoderm mediates implantation and generates the fetal part of the placenta. As a result, the development of this lineage is essential for embryo survival. Derivation of trophoblast stem (TS) cells from mouse blastocysts was first described by Tanaka et al. 1998. The ability of TS cells to preserve the trophoblast specific property and their expression of stage- and cell type-specific markers after proper stimulation provides a valuable model system to investigate trophoblast lineage development whereby recapitulating early placentation events. Furthermore, trophoblast cells are one of the few somatic cell types undergoing natural genome amplification. Although the molecular pathways underlying trophoblast polyploidization have begun to unravel, the physiological role and advantage of trophoblast genome amplification remains largely elusive. The development of diploid stem cells into polyploid trophoblast cells in culture makes this ex vivo system an excellent tool for elucidating the regulatory mechanism of genome replication and instability in health and disease. Here we describe a protocol based on previous reports with modification published in Chiu et al. 2008.
Cellular Biology, Issue 40, Trophoblast stem cell, trophectoderm, trophoblast giant cell, blastocyst, extraembryonic development
1964
Play Button
Analysis of Oxidative Stress in Zebrafish Embryos
Authors: Vera Mugoni, Annalisa Camporeale, Massimo M. Santoro.
Institutions: University of Torino, Vesalius Research Center, VIB.
High levels of reactive oxygen species (ROS) may cause a change of cellular redox state towards oxidative stress condition. This situation causes oxidation of molecules (lipid, DNA, protein) and leads to cell death. Oxidative stress also impacts the progression of several pathological conditions such as diabetes, retinopathies, neurodegeneration, and cancer. Thus, it is important to define tools to investigate oxidative stress conditions not only at the level of single cells but also in the context of whole organisms. Here, we consider the zebrafish embryo as a useful in vivo system to perform such studies and present a protocol to measure in vivo oxidative stress. Taking advantage of fluorescent ROS probes and zebrafish transgenic fluorescent lines, we develop two different methods to measure oxidative stress in vivo: i) a “whole embryo ROS-detection method” for qualitative measurement of oxidative stress and ii) a “single-cell ROS detection method” for quantitative measurements of oxidative stress. Herein, we demonstrate the efficacy of these procedures by increasing oxidative stress in tissues by oxidant agents and physiological or genetic methods. This protocol is amenable for forward genetic screens and it will help address cause-effect relationships of ROS in animal models of oxidative stress-related pathologies such as neurological disorders and cancer.
Developmental Biology, Issue 89, Danio rerio, zebrafish embryos, endothelial cells, redox state analysis, oxidative stress detection, in vivo ROS measurements, FACS (fluorescence activated cell sorter), molecular probes
51328
Play Button
Preparation of Primary Myogenic Precursor Cell/Myoblast Cultures from Basal Vertebrate Lineages
Authors: Jacob Michael Froehlich, Iban Seiliez, Jean-Charles Gabillard, Peggy R. Biga.
Institutions: University of Alabama at Birmingham, INRA UR1067, INRA UR1037.
Due to the inherent difficulty and time involved with studying the myogenic program in vivo, primary culture systems derived from the resident adult stem cells of skeletal muscle, the myogenic precursor cells (MPCs), have proven indispensible to our understanding of mammalian skeletal muscle development and growth. Particularly among the basal taxa of Vertebrata, however, data are limited describing the molecular mechanisms controlling the self-renewal, proliferation, and differentiation of MPCs. Of particular interest are potential mechanisms that underlie the ability of basal vertebrates to undergo considerable postlarval skeletal myofiber hyperplasia (i.e. teleost fish) and full regeneration following appendage loss (i.e. urodele amphibians). Additionally, the use of cultured myoblasts could aid in the understanding of regeneration and the recapitulation of the myogenic program and the differences between them. To this end, we describe in detail a robust and efficient protocol (and variations therein) for isolating and maintaining MPCs and their progeny, myoblasts and immature myotubes, in cell culture as a platform for understanding the evolution of the myogenic program, beginning with the more basal vertebrates. Capitalizing on the model organism status of the zebrafish (Danio rerio), we report on the application of this protocol to small fishes of the cyprinid clade Danioninae. In tandem, this protocol can be utilized to realize a broader comparative approach by isolating MPCs from the Mexican axolotl (Ambystomamexicanum) and even laboratory rodents. This protocol is now widely used in studying myogenesis in several fish species, including rainbow trout, salmon, and sea bream1-4.
Basic Protocol, Issue 86, myogenesis, zebrafish, myoblast, cell culture, giant danio, moustached danio, myotubes, proliferation, differentiation, Danioninae, axolotl
51354
Play Button
Generation of Mice Derived from Induced Pluripotent Stem Cells
Authors: Michael J. Boland, Jennifer L. Hazen, Kristopher L. Nazor, Alberto R. Rodriguez, Greg Martin, Sergey Kupriyanov, Kristin K. Baldwin.
Institutions: The Scripps Research Institute , The Scripps Research Institute .
The production of induced pluripotent stem cells (iPSCs) from somatic cells provides a means to create valuable tools for basic research and may also produce a source of patient-matched cells for regenerative therapies. iPSCs may be generated using multiple protocols and derived from multiple cell sources. Once generated, iPSCs are tested using a variety of assays including immunostaining for pluripotency markers, generation of three germ layers in embryoid bodies and teratomas, comparisons of gene expression with embryonic stem cells (ESCs) and production of chimeric mice with or without germline contribution2. Importantly, iPSC lines that pass these tests still vary in their capacity to produce different differentiated cell types2. This has made it difficult to establish which iPSC derivation protocols, donor cell sources or selection methods are most useful for different applications. The most stringent test of whether a stem cell line has sufficient developmental potential to generate all tissues required for survival of an organism (termed full pluripotency) is tetraploid embryo complementation (TEC)3-5. Technically, TEC involves electrofusion of two-cell embryos to generate tetraploid (4n) one-cell embryos that can be cultured in vitro to the blastocyst stage6. Diploid (2n) pluripotent stem cells (e.g. ESCs or iPSCs) are then injected into the blastocoel cavity of the tetraploid blastocyst and transferred to a recipient female for gestation (see Figure 1). The tetraploid component of the complemented embryo contributes almost exclusively to the extraembryonic tissues (placenta, yolk sac), whereas the diploid cells constitute the embryo proper, resulting in a fetus derived entirely from the injected stem cell line. Recently, we reported the derivation of iPSC lines that reproducibly generate adult mice via TEC1. These iPSC lines give rise to viable pups with efficiencies of 5-13%, which is comparable to ESCs3,4,7 and higher than that reported for most other iPSC lines8-12. These reports show that direct reprogramming can produce fully pluripotent iPSCs that match ESCs in their developmental potential and efficiency of generating pups in TEC tests. At present, it is not clear what distinguishes between fully pluripotent iPSCs and less potent lines13-15. Nor is it clear which reprogramming methods will produce these lines with the highest efficiency. Here we describe one method that produces fully pluripotent iPSCs and "all- iPSC" mice, which may be helpful for investigators wishing to compare the pluripotency of iPSC lines or establish the equivalence of different reprogramming methods.
Stem Cell Biology, Issue 69, Molecular Biology, Developmental Biology, Medicine, Cellular Biology, Induced pluripotent stem cells, iPSC, stem cells, reprogramming, developmental potential, tetraploid embryo complementation, mouse
4003
Play Button
A Manual Small Molecule Screen Approaching High-throughput Using Zebrafish Embryos
Authors: Shahram Jevin Poureetezadi, Eric K. Donahue, Rebecca A. Wingert.
Institutions: University of Notre Dame.
Zebrafish have become a widely used model organism to investigate the mechanisms that underlie developmental biology and to study human disease pathology due to their considerable degree of genetic conservation with humans. Chemical genetics entails testing the effect that small molecules have on a biological process and is becoming a popular translational research method to identify therapeutic compounds. Zebrafish are specifically appealing to use for chemical genetics because of their ability to produce large clutches of transparent embryos, which are externally fertilized. Furthermore, zebrafish embryos can be easily drug treated by the simple addition of a compound to the embryo media. Using whole-mount in situ hybridization (WISH), mRNA expression can be clearly visualized within zebrafish embryos. Together, using chemical genetics and WISH, the zebrafish becomes a potent whole organism context in which to determine the cellular and physiological effects of small molecules. Innovative advances have been made in technologies that utilize machine-based screening procedures, however for many labs such options are not accessible or remain cost-prohibitive. The protocol described here explains how to execute a manual high-throughput chemical genetic screen that requires basic resources and can be accomplished by a single individual or small team in an efficient period of time. Thus, this protocol provides a feasible strategy that can be implemented by research groups to perform chemical genetics in zebrafish, which can be useful for gaining fundamental insights into developmental processes, disease mechanisms, and to identify novel compounds and signaling pathways that have medically relevant applications.
Developmental Biology, Issue 93, zebrafish, chemical genetics, chemical screen, in vivo small molecule screen, drug discovery, whole mount in situ hybridization (WISH), high-throughput screening (HTS), high-content screening (HCS)
52063
Play Button
Cryopreservation of Preimplantation Embryos of Cattle, Sheep, and Goats
Authors: Curtis R. Youngs.
Institutions: Iowa State University.
Preimplantation embryos from cattle, sheep, and goats may be cryopreserved for short- or long-term storage. Preimplantation embryos consist predominantly of water, and the avoidance of intracellular ice crystal formation during the cryopreservation process is of paramount importance to maintain embryo viability. Embryos are placed into a hypertonic solution (1.4 – 1.5 M) of a cryoprotective agent (CPA) such as ethylene glycol (EG) or glycerol (GLYC) to create an osmotic gradient that facilitates cellular dehydration. After embryos reach osmotic equilibrium in the CPA solution, they are individually loaded in the hypertonic CPA solution into 0.25 ml plastic straws for freezing. Embryos are placed into a controlled rate freezer at a temperature of -6°C. Ice crystal formation is induced in the CPA solution surrounding the embryo, and crystallization causes an increase in the concentration of CPA outside of the embryo, causing further cellular dehydration. Embryos are cooled at a rate of 0.5°C/min, enabling further dehydration, to a temperature of -34°C before being plunged into liquid nitrogen (-196°C). Cryopreserved embryos must be thawed prior to transfer to a recipient (surrogate) female. Straws containing the embryos are removed from the liquid nitrogen dewar, held in room temperature air for 3 to 5 sec, and placed into a 37°C water bath for 25 to 30 sec. Embryos cryopreserved in GLYC are placed into a 1 M solution of sucrose for 10 min for removal of the CPA before transfer to a recipient (surrogate) female. Embryos cryopreserved in EG, however, may be directly transferred to the uterus of a recipient.
Developmental Biology, Issue 54, embryo, cryopreservation, cattle, sheep, goats
2764
Play Button
Utero-tubal Embryo Transfer and Vasectomy in the Mouse Model
Authors: Pablo Bermejo-Alvarez, Ki-Eun Park, Bhanu P. Telugu.
Institutions: United States Department of Agriculture, University of Maryland.
The transfer of preimplantation embryos to a surrogate female is a required step for the production of genetically modified mice or to study the effects of epigenetic alterations originated during preimplantation development on subsequent fetal development and adult health. The use of an effective and consistent embryo transfer technique is crucial to enhance the generation of genetically modified animals and to determine the effect of different treatments on implantation rates and survival to term. Embryos at the blastocyst stage are usually transferred by uterine transfer, performing a puncture in the uterine wall to introduce the embryo manipulation pipette. The orifice performed in the uterus does not close after the pipette has been withdrawn, and the embryos can outflow to the abdominal cavity due to the positive pressure of the uterus. The puncture can also produce a hemorrhage that impairs implantation, blocks the transfer pipette and may affect embryo development, especially when embryos without zona are transferred. Consequently, this technique often results in very variable and overall low embryo survival rates. Avoiding these negative effects, utero-tubal embryo transfer take advantage of the utero-tubal junction as a natural barrier that impedes embryo outflow and avoid the puncture of the uterine wall. Vasectomized males are required for obtaining pseudopregnant recipients. A technique to perform vasectomy is described as a complement to the utero-tubal embryo transfer.
Basic Protocols, Issue 84, blastocyst, chimera, lentivirus, uterine transfer, oviductal transfer, utero-tubal transfer
51214
Play Button
Transnuclear Mice with Pre-defined T Cell Receptor Specificities Against Toxoplasma gondii Obtained Via SCNT
Authors: Oktay Kirak, Eva-Maria Frickel, Gijsbert M. Grotenbreg, Heikyung Suh, Rudolf Jaenisch, Hidde L. Ploegh.
Institutions: Whitehead Institute for Biomedical Research, National University of Singapore, Massachusetts Institute of Technology.
Lymphocytes, such as T cells, undergo genetic V(D)J recombination, to generate a receptor with a certain specificity1. Mice transgenic for a rearranged antigen-specific T cell receptor (TCR) have been an indispensable tool to study T cell development and function. However, such TCRs are usually isolated from the relevant T cells after long-term culture often following repeated antigen stimulation, which unavoidably selects for T cells with high affinity. Random genomic integration of the TCR α- and β-chain and expression from non-endogenous promoters can lead to variations in expression level and kinetics. Epigenetic reprogramming via somatic cell nuclear transfer provides a tool to generate embryonic stem cells and mice from any cell of interest. Consequently, when SCNT is applied to T cells of known specificity, these genetic V(D)J rearrangements are transferred to the SCNT-embryonic stem cells (ESCs) and the mice derived from them, while epigenetic marks are reset. We have demonstrated that T cells with pre-defined specificities against Toxoplasma gondii can be used to generate mouse models that express the specific TCR from their endogenous loci, without experimentally introduced genetic modification. The relative ease and speed with which such transnuclear models can be obtained holds promise for the construction of other disease models.
Developmental Biology, Issue 43, SCNT, immunology, TCR, BCR, mouse model, transnuclear
2168
Play Button
An Experimental and Bioinformatics Protocol for RNA-seq Analyses of Photoperiodic Diapause in the Asian Tiger Mosquito, Aedes albopictus
Authors: Monica F. Poelchau, Xin Huang, Allison Goff, Julie Reynolds, Peter Armbruster.
Institutions: Georgetown University, The Ohio State University.
Photoperiodic diapause is an important adaptation that allows individuals to escape harsh seasonal environments via a series of physiological changes, most notably developmental arrest and reduced metabolism. Global gene expression profiling via RNA-Seq can provide important insights into the transcriptional mechanisms of photoperiodic diapause. The Asian tiger mosquito, Aedes albopictus, is an outstanding organism for studying the transcriptional bases of diapause due to its ease of rearing, easily induced diapause, and the genomic resources available. This manuscript presents a general experimental workflow for identifying diapause-induced transcriptional differences in A. albopictus. Rearing techniques, conditions necessary to induce diapause and non-diapause development, methods to estimate percent diapause in a population, and RNA extraction and integrity assessment for mosquitoes are documented. A workflow to process RNA-Seq data from Illumina sequencers culminates in a list of differentially expressed genes. The representative results demonstrate that this protocol can be used to effectively identify genes differentially regulated at the transcriptional level in A. albopictus due to photoperiodic differences. With modest adjustments, this workflow can be readily adapted to study the transcriptional bases of diapause or other important life history traits in other mosquitoes.
Genetics, Issue 93, Aedes albopictus Asian tiger mosquito, photoperiodic diapause, RNA-Seq de novo transcriptome assembly, mosquito husbandry
51961
Play Button
Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney
Authors: Kristen K. McCampbell, Kristin N. Springer, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
Cellular Biology, Issue 90, zebrafish; kidney; nephron; nephrology; renal; regeneration; proximal tubule; distal tubule; segment; mesonephros; physiology; acute kidney injury (AKI)
51644
Play Button
Mouse Dorsal Forebrain Explant Isolation
Authors: Spencer Currle, Aaron Kolski-Andreaco, Edwin S. Monuki.
Institutions: University of California, Irvine (UCI), University of California, Irvine (UCI), University of California, Irvine (UCI).
Developmental Biology, Issue 2, Developmental Neuroscience, Cerebral Cortex, Forebrain, Tissue Culture, Mouse
135
Play Button
Propagation of Human Embryonic Stem (ES) Cells
Authors: Laurence Daheron.
Institutions: MGH - Massachusetts General Hospital.
Cellular Biology, Issue 1, ES, embryonic stem cells, tissue culture
119
Play Button
Dissection of 6.5 dpc Mouse Embryos
Authors: Kelly Shea, Niels Geijsen.
Institutions: Harvard Medical School.
Analysis of gene expression patterns during early stages of mammalian embryonic development can provide important clues about gene function, cell-cell interaction and signaling mechanisms that guide embryonic patterning. However, dissection of the mouse embryo from the decidua shortly after implantation can be a challenging procedure, and detailed step-by-step documentation of this process is lacking. Here we demonstrate how post-implantation (6.5 dpc) embryos are isolated by first dissecting the uterus of a pregnant mouse (detection of the vaginal plug was designated day 0.5 poist coitum) and subsequently dissecting the embryo from maternal decidua. The dissection of Reichert's membrane is described as well as the removal of the ectoplacental cone.
Developmental Biology, Issue 2, mouse, embryo, implantation, dissection
160
Play Button
Derivation of Human Embryonic Stem Cells by Immunosurgery
Authors: Alice E. Chen, Douglas A. Melton.
Institutions: Harvard.
The ability of human embryonic stem cells to self-renew and differentiate into all cell types of the body suggests that they hold great promise for both medical applications and as a research tool for addressing fundamental questions in development and disease. Here, we provide a concise, step-by-step protocol for the derivation of human embryonic stem cells from embryos by immunosurgical isolation of the inner cell mass.
Developmental Biology, Issue 10, embryo, ES cells, human
574
Play Button
Teratoma Generation in the Testis Capsule
Authors: Suzanne E. Peterson, Ha T. Tran, Ibon Garitaonandia, Sangyoon Han, Kyle S. Nickey, Trevor Leonardo, Louise C. Laurent, Jeanne F. Loring.
Institutions: Scripps Research Institute, Scripps Research Institute , University of California.
Pluripotent stem cells (PSCs) have the unique characteristic that they can differentiate into cells from all three germ layers. This makes them a potentially valuable tool for the treatment of many different diseases. With the advent of induced pluripotent stem cells (iPSCs) and continuing research with human embryonic stem cells (hESCs) there is a need for assays that can demonstrate that a particular cell line is pluripotent. Germline transmission has been the gold standard for demonstrating the pluripotence of mouse embryonic stem cell (mESC) lines1,2,3. Using this assay, researchers can show that a mESC line can make all cell types in the embryo including germ cells4. With the generation of human ESC lines5,6, the appropriate assay to prove pluripotence of these cells was unclear since human ESCs cannot be tested for germline transmission. As a surrogate, the teratoma assay is currently used to demonstrate the pluripotency of human pluripotent stem cells (hPSCs)7,8,9. Though this assay has recently come under scrutiny and new technologies are being actively explored, the teratoma assay is the current gold standard7. In this assay, the cells in question are injected into an immune compromised mouse. If the cells are pluripotent, a teratoma will eventually develop and sections of the tumor will show tissues from all 3 germ layers10. In the teratoma assay, hPSCs can be injected into different areas of the mouse. The most common injection sites include the testis capsule, the kidney capsule, the liver; or into the leg either subcutaneously or intramuscularly11. Here we describe a robust protocol for the generation of teratomas from hPSCs using the testis capsule as the site for tumor growth.
Medicine, Issue 57, stem cells, pluripotent stem cells, hPSCs, teratoma assay, animal model, mouse testis capsule
3177
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.