JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Blueberry husks and probiotics attenuate colorectal inflammation and oncogenesis, and liver injuries in rats exposed to cycling DSS-treatment.
PLoS ONE
Long-term colonic inflammation promotes carcinogenesis and histological abnormalities of the liver, and colorectal tumours frequently arise in a background of dysplasia, a precursor of adenomas. Altered colonic microbiota with an increased proportion of bacteria with pro-inflammatory characteristics, have been implicated in neoplastic progression. The composition of the microbiota can be modified by dietary components such as probiotics, polyphenols and dietary fibres. In the present study, the influence of probiotics in combination with blueberry husks on colorectal carcinogenesis and subsequent liver damage was evaluated.Colorectal tumours were induced in rats by cyclic treatment with dextran sulphate sodium (DSS). Blueberry husks and a mixture of three probiotic strains (Bifidobacterium infantis DSM 15159, Lactobacillus gasseri, DSM 16737 and Lactobacillus plantarum DSM 15313) supplemented a basic diet fortified with oats. The condition of the rats was monitored using a disease activity index (DAI). A qualitative and quantitative histological judgement was performed on segments of distal colon and rectum and the caudate lobe of the liver. The formation of short-chain fatty acids, bacterial translocation, the inflammatory reaction and viable count of lactobacilli and Enterobaceriaceae were addressed.Blueberry husks with or without probiotics significantly decreased DAI, and significantly reduced the number of colonic ulcers and dysplastic lesions. With a decreased proportion of blueberry husk in the diet, the probiotic supplement was needed to achieve a significant decrease in numbers of dysplastic lesions. Probiotics decreased faecal viable count of Enterobacteriaceae and increased that of lactobacilli. Blueberry husks with or without probiotics lowered the proportion of butyric acid in distal colon, and decreased the haptoglobin levels. Probiotics mitigated hepatic injuries by decreasing parenchymal infiltration and the incidence of stasis and translocation. The results demonstrate a dietary option for use of blueberry husks and probiotics to delay colonic carcinogenesis and hepatic injuries in the rat model.
Authors: Vijay Morampudi, Ganive Bhinder, Xiujuan Wu, Chuanbin Dai, Ho Pan Sham, Bruce A. Vallance, Kevan Jacobson.
Published: 02-27-2014
ABSTRACT
Inflammatory Bowel Diseases (IBD), including Crohn's Disease and Ulcerative Colitis, have long been associated with a genetic basis, and more recently host immune responses to microbial and environmental agents. Dinitrobenzene sulfonic acid (DNBS)-induced colitis allows one to study the pathogenesis of IBD associated environmental triggers such as stress and diet, the effects of potential therapies, and the mechanisms underlying intestinal inflammation and mucosal injury. In this paper, we investigated the effects of dietary n-3 and n-6 fatty acids on the colonic mucosal inflammatory response to DNBS-induced colitis in rats. All rats were fed identical diets with the exception of different types of fatty acids [safflower oil (SO), canola oil (CO), or fish oil (FO)] for three weeks prior to exposure to intrarectal DNBS. Control rats given intrarectal ethanol continued gaining weight over the 5 day study, whereas, DNBS-treated rats fed lipid diets all lost weight with FO and CO fed rats demonstrating significant weight loss by 48 hr and rats fed SO by 72 hr. Weight gain resumed after 72 hr post DNBS, and by 5 days post DNBS, the FO group had a higher body weight than SO or CO groups. Colonic sections collected 5 days post DNBS-treatment showed focal ulceration, crypt destruction, goblet cell depletion, and mucosal infiltration of both acute and chronic inflammatory cells that differed in severity among diet groups. The SO fed group showed the most severe damage followed by the CO, and FO fed groups that showed the mildest degree of tissue injury. Similarly, colonic myeloperoxidase (MPO) activity, a marker of neutrophil activity was significantly higher in SO followed by CO fed rats, with FO fed rats having significantly lower MPO activity. These results demonstrate the use of DNBS-induced colitis, as outlined in this protocol, to determine the impact of diet in the pathogenesis of IBD.
16 Related JoVE Articles!
Play Button
Murine Endoscopy for In Vivo Multimodal Imaging of Carcinogenesis and Assessment of Intestinal Wound Healing and Inflammation
Authors: Markus Brückner, Philipp Lenz, Tobias M. Nowacki, Friederike Pott, Dirk Foell, Dominik Bettenworth.
Institutions: University Hospital Münster, University Children's Hospital Münster.
Mouse models are widely used to study pathogenesis of human diseases and to evaluate diagnostic procedures as well as therapeutic interventions preclinically. However, valid assessment of pathological alterations often requires histological analysis, and when performed ex vivo, necessitates death of the animal. Therefore in conventional experimental settings, intra-individual follow-up examinations are rarely possible. Thus, development of murine endoscopy in live mice enables investigators for the first time to both directly visualize the gastrointestinal mucosa and also repeat the procedure to monitor for alterations. Numerous applications for in vivo murine endoscopy exist, including studying intestinal inflammation or wound healing, obtaining mucosal biopsies repeatedly, and to locally administer diagnostic or therapeutic agents using miniature injection catheters. Most recently, molecular imaging has extended diagnostic imaging modalities allowing specific detection of distinct target molecules using specific photoprobes. In conclusion, murine endoscopy has emerged as a novel cutting-edge technology for diagnostic experimental in vivo imaging and may significantly impact on preclinical research in various fields.
Medicine, Issue 90, gastroenterology, in vivo imaging, murine endoscopy, diagnostic imaging, carcinogenesis, intestinal wound healing, experimental colitis
51875
Play Button
Modeling Colitis-Associated Cancer with Azoxymethane (AOM) and Dextran Sulfate Sodium (DSS)
Authors: Ameet I. Thaker, Anisa Shaker, M. Suprada Rao, Matthew A. Ciorba.
Institutions: Washington University School of Medicine.
Individuals with inflammatory bowel disease (IBD), such as Crohn's disease (CD) or ulcerative colitis (UC) are at increased risk of developing colorectal cancer (CRC) over healthy individuals. This risk is proportional to the duration and extent of disease, with a cumulative incidence as high as 30% in individuals with longstanding UC with widespread colonic involvement.1 Colonic dysplasia in IBD and colitis associated cancer (CAC) are believed to develop as a result of repeated cycles of epithelial cell injury and repair while these cells are bathed in a chronic inflammatory cytokine milieu.2 While spontaneous and colitis-associated cancers share the quality of being adenocarcinomas, the sequence of underlying molecular events is believed to be different.3 This distinction argues the need for specific animal models of CAC. Several mouse models currently exist for the study of CAC. Dextran sulfate sodium (DSS), an agent with direct toxic effects on the colonic epithelium, can be administered in drinking water to mice in multiple cycles to create a chronic inflammatory state. With sufficient duration, some of these mice will develop tumors.4 Tumor development is hastened in this model if administered in a pro-carcinogenic setting. These include mice with genetic mutations in tumorigenesis pathways (APC, p53, Msh2), as well as mice pre-treated with genotoxic agents (azoxymethane [AOM], 1,2-dimethylhydrazine [DMH]).5 The combination of DSS with AOM as a model for colitis associated cancer has gained popularity for its reproducibility, potency, low price, and ease of use. Though they have a shared mechanism, AOM has been found to be more potent and stable in solution than DMH. While tumor development in other models generally requires several months, mice injected with AOM and subsequently treated with DSS develop adequate tumors in as little as 7-10 weeks.6, 7 Finally, AOM and DSS can be administered to mice of any genetic background (knock out, transgenic, etc.) without cross-breeding to a specific tumorigenic strain. Here, we demonstrate a protocol for inflammation-driven colonic tumorigenesis in mice utilizing a single injection of AOM followed by three seven-day cycles of DSS over a 10 week period. This model induces tumors with histological and molecular changes closely resembling those occurring in human CAC and provides a highly valuable model for the study of oncogenesis and chemoprevention in this disease.8
Medicine, Issue 67, Cancer Biology, Immunology, Physiology, Colitis, Cancer, Dextran Sulfate Sodium, Azoxymethane, Inflammation, Animal model, Crohn's Disease
4100
Play Button
Investigating Intestinal Inflammation in DSS-induced Model of IBD
Authors: Janice J. Kim, Md. Sharif Shajib, Marcus M. Manocha, Waliul I. Khan.
Institutions: McMaster University .
Inflammatory bowel disease (IBD) encompasses a range of intestinal pathologies, the most common of which are ulcerative colitis (UC) and Crohn's Disease (CD). Both UC and CD, when present in the colon, generate a similar symptom profile which can include diarrhea, rectal bleeding, abdominal pain, and weight loss.1 Although the pathogenesis of IBD remains unknown, it is described as a multifactorial disease that involves both genetic and environmental components.2 There are numerous and variable animal models of colonic inflammation that resemble several features of IBD. Animal models of colitis range from those arising spontaneously in susceptible strains of certain species to those requiring administration of specific concentrations of colitis-inducing chemicals, such as dextran sulphate sodium (DSS). Chemical-induced models of gut inflammation are the most commonly used and best described models of IBD. Administration of DSS in drinking water produces acute or chronic colitis depending on the administration protocol.3 Animals given DSS exhibit weight loss and signs of loose stool or diarrhea, sometimes with evidence of rectal bleeding.4,5 Here, we describe the methods by which colitis development and the resulting inflammatory response can be characterized following administration of DSS. These methods include histological analysis of hematoxylin/eosin stained colon sections, measurement of pro-inflammatory cytokines, and determination of myeloperoxidase (MPO) activity, which can be used as a surrogate marker of inflammation.6 The extent of the inflammatory response in disease state can be assessed by the presence of clinical symptoms or by alteration in histology in mucosal tissue. Colonic histological damage is assessed by using a scoring system that considers loss of crypt architecture, inflammatory cell infiltration, muscle thickening, goblet cell depletion, and crypt abscess.7 Quantitatively, levels of pro-inflammatory cytokines with acute inflammatory properties, such as interleukin (IL)-1β, IL-6 and tumour necrosis factor (TNF)-α,can be determined using conventional ELISA methods. In addition, MPO activity can be measured using a colorimetric assay and used as an index of inflammation.8 In experimental colitis, disease severity is often correlated with an increase in MPO activity and higher levels of pro-inflammatory cytokines. Colitis severity and inflammation-associated damage can be assessed by examining stool consistency and bleeding, in addition to assessing the histopathological state of the intestine using hematoxylin/eosin stained colonic tissue sections. Colonic tissue fragments can be used to determine MPO activity and cytokine production. Taken together, these measures can be used to evaluate the intestinal inflammatory response in animal models of experimental colitis.
Medicine, Issue 60, inflammation, myeloperoxidase (MPO), acute colonic damage, granulocyte, colon, dextran sulfate sodium (DSS), neutrophil
3678
Play Button
Differentiating Functional Roles of Gene Expression from Immune and Non-immune Cells in Mouse Colitis by Bone Marrow Transplantation
Authors: Hon Wai Koon, Samantha Ho, Michelle Cheng, Ryan Ichikawa, Charalabos Pothoulakis.
Institutions: The University of California Los Angeles, Los Angeles.
To understand the role of a gene in the development of colitis, we compared the responses of wild-type mice and gene-of-interest deficient knockout mice to colitis. If the gene-of-interest is expressed in both bone marrow derived cells and non-bone marrow derived cells of the host; however, it is possible to differentiate the role of a gene of interest in bone marrow derived cells and non- bone marrow derived cells by bone marrow transplantation technique. To change the bone marrow derived cell genotype of mice, the original bone marrow of recipient mice were destroyed by irradiation and then replaced by new donor bone marrow of different genotype. When wild-type mice donor bone marrow was transplanted to knockout mice, we could generate knockout mice with wild-type gene expression in bone marrow derived cells. Alternatively, when knockout mice donor bone marrow was transplanted to wild-type recipient mice, wild-type mice without gene-of-interest expressing from bone marrow derived cells were produced. However, bone marrow transplantation may not be 100% complete. Therefore, we utilized cluster of differentiation (CD) molecules (CD45.1 and CD45.2) as markers of donor and recipient cells to track the proportion of donor bone marrow derived cells in recipient mice and success of bone marrow transplantation. Wild-type mice with CD45.1 genotype and knockout mice with CD45.2 genotype were used. After irradiation of recipient mice, the donor bone marrow cells of different genotypes were infused into the recipient mice. When the new bone marrow regenerated to take over its immunity, the mice were challenged by chemical agent (dextran sodium sulfate, DSS 5%) to induce colitis. Here we also showed the method to induce colitis in mice and evaluate the role of the gene of interest expressed from bone-marrow derived cells. If the gene-of-interest from the bone derived cells plays an important role in the development of the disease (such as colitis), the phenotype of the recipient mice with bone marrow transplantation can be significantly altered. At the end of colitis experiments, the bone marrow derived cells in blood and bone marrow were labeled with antibodies against CD45.1 and CD45.2 and their quantitative ratio of existence could be used to evaluate the success of bone marrow transplantation by flow cytometry. Successful bone marrow transplantation should show a vast majority of donor genotype (in term of CD molecule marker) over recipient genotype in both the bone marrow and blood of recipient mice.
Immunology, Issue 68, Genetics, Cellular Biology, Physiology, Bone marrow transplantation, colitis, mice, irradiation
4208
Play Button
Depletion and Reconstitution of Macrophages in Mice
Authors: Shelley B. Weisser, Nico van Rooijen, Laura M. Sly.
Institutions: University of British Columbia , Vrije Universiteit Amsterdam, University of British Columbia .
Macrophages are critical players in the innate immune response to infectious challenge or injury, initiating the innate immune response and directing the acquired immune response. Macrophage dysfunction can lead to an inability to mount an appropriate immune response and as such, has been implicated in many disease processes, including inflammatory bowel diseases. Macrophages display polarized phenotypes that are broadly divided into two categories. Classically activated macrophages, activated by stimulation with IFNγ or LPS, play an essential role in response to bacterial challenge whereas alternatively activated macrophages, activated by IL-4 or IL-13, participate in debris scavenging and tissue remodeling and have been implicated in the resolution phase of inflammation. During an inflammatory response in vivo, macrophages are found amid a complex mixture of infiltrating immune cells and may participate by exacerbating or resolving inflammation. To define the role of macrophages in situ in a whole animal model, it is necessary to examine the effect of depleting macrophages from the complex environment. To ask questions about the role of macrophage phenotype in situ, phenotypically defined polarized macrophages can be derived ex vivo, from bone marrow aspirates and added back to mice, with or without prior depletion of macrophages. In the protocol presented here clodronate-containing liposomes, versus PBS injected controls, were used to deplete colonic macrophages during dextran sodium sulfate (DSS)-induced colitis in mice. In addition, polarized macrophages were derived ex vivo and transferred to mice by intravenous injection. A caveat to this approach is that clodronate-containing liposomes deplete all professional phagocytes, including both dendritic cells and macrophages so to ensure the effect observed by depletion is macrophage-specific, reconstitution of phenotype by adoptive transfer of macrophages is necessary. Systemic macrophage depletion in mice can also be achieved by backcrossing mice onto a CD11b-DTR background, which is an excellent complementary approach. The advantage of clodronate-containing liposome-mediated depletion is that it does not require the time and expense involved in backcrossing mice and it can be used in mice regardless of the background of the mice (C57BL/6, BALB/c, or mixed background).
Immunology, Issue 66, Molecular Biology, macrophages, clodronate-containing liposomes, macrophage depletion, macrophage derivation, macrophage reconstitution
4105
Play Button
Gastrointestinal Motility Monitor (GIMM)
Authors: Jill M. Hoffman, Elice M. Brooks, Gary M. Mawe.
Institutions: The University of Vermont.
The Gastrointestinal Motility Monitor (GIMM; Catamount Research and Development; St. Albans, VT) is an in vitro system that monitors propulsive motility in isolated segments of guinea pig distal colon. The complete system consists of a computer, video camera, illuminated organ bath, peristaltic and heated water bath circulating pumps, and custom GIMM software to record and analyze data. Compared with traditional methods of monitoring colonic peristalsis, the GIMM system allows for continuous, quantitative evaluation of motility. The guinea pig distal colon is bathed in warmed, oxygenated Krebs solution, and fecal pellets inserted in the oral end are propelled along the segment of colon at a rate of about 2 mm/sec. Movies of the fecal pellet proceeding along the segment are captured, and the GIMM software can be used track the progress of the fecal pellet. Rates of propulsive motility can be obtained for the entire segment or for any particular region of interest. In addition to analysis of bolus-induced motility patterns, spatiotemporal maps can be constructed from captured video segments to assess spontaneous motor activity patterns. Applications of this system include pharmacological evaluation of the effects of receptor agonists and antagonists on propulsive motility, as well as assessment of changes that result from pathophysiological conditions, such as inflammation or stress. The guinea pig distal colon propulsive motility assay, using the GIMM system, is straightforward and simple to learn, and it provides a reliable and reproducible method of assessing propulsive motility.
Medicine, Issue 46, peristalsis, colon, in vitro, video tracking, video analysis, GIMM, guinea pig,
2435
Play Button
Murine Colitis Modeling using Dextran Sulfate Sodium (DSS)
Authors: Caitlyn G. Whittem, Amanda D. Williams, Christopher S. Williams.
Institutions: Vanderbilt University, Vanderbilt University.
Colitis can occur from viral or bacterial infections, ischemic insult, or autoimmune disorders; most notably Ulcerative Colitis and the colonic variant of Crohn’s Disease - Crohn’s Colitis. Acute colitis may present with abdominal pain and distention, malabsorption, diarrhea, hematochezia and mucus in the stool. We are beginning to understand the complex interactions between the environment, genetics, and epithelial barrier dysfunction in Inflammatory Bowel Disease and animal models of colitis have been essential in advancing our understanding of this disease. One popular model involves supplementing the drinking water of mice with low-molecular weight Dextran Sodium Sulfate (DSS), resulting in epithelial damage and a robust inflammatory response in the colon lasting several days 1.Variations of this approach can be used to model acute injury, acute injury followed by repair, and repeated cycles of DSS interspersed with recovery modeling chronic inflammatory diseases 2. After a single four-day treatment of 3% DSS in drinking water, mice show signs of acute colitis including weight loss, bloody stools, and diarrhea. Mice are euthanized at the conclusion of the treatment course and at necropsy dissected colons are processed and can be 'Swiss rolled" 3 to allow microscopic analysis of the entire colon or infused with formalin as "sausages" to allow macroscopic analysis. Tissue is then embedded in paraffin, sectioned, and stained for histologic review.
Medicine, Issue 35, Dextran sulfate sodium (DSS), murine acute colitis model, colon, Swiss roll, acute colonic damage
1652
Play Button
4D Multimodality Imaging of Citrobacter rodentium Infections in Mice
Authors: James William Collins, Jeffrey A Meganck, Chaincy Kuo, Kevin P Francis, Gad Frankel.
Institutions: Imperial College London, Caliper- A PerkinElmer Company.
This protocol outlines the steps required to longitudinally monitor a bioluminescent bacterial infection using composite 3D diffuse light imaging tomography with integrated μCT (DLIT-μCT) and the subsequent use of this data to generate a four dimensional (4D) movie of the infection cycle. To develop the 4D infection movies and to validate the DLIT-μCT imaging for bacterial infection studies using an IVIS Spectrum CT, we used infection with bioluminescent C. rodentium, which causes self-limiting colitis in mice. In this protocol, we outline the infection of mice with bioluminescent C. rodentium and non-invasive monitoring of colonization by daily DLIT-μCT imaging and bacterial enumeration from feces for 8 days. The use of the IVIS Spectrum CT facilitates seamless co-registration of optical and μCT scans using a single imaging platform. The low dose μCT modality enables the imaging of mice at multiple time points during infection, providing detailed anatomical localization of bioluminescent bacterial foci in 3D without causing artifacts from the cumulative radiation. Importantly, the 4D movies of infected mice provide a powerful analytical tool to monitor bacterial colonization dynamics in vivo.
Infection, Issue 78, Immunology, Cellular Biology, Molecular Biology, Microbiology, Genetics, Biophysics, Biomedical Engineering, Medicine, Anatomy, Physiology, Infectious Diseases, Bacterial Infections, Bioluminescence, DLIT-μCT, C. rodentium, 4D imaging, in vivo imaging, multi-modality imaging, CT, imaging, tomography, animal model
50450
Play Button
The Citrobacter rodentium Mouse Model: Studying Pathogen and Host Contributions to Infectious Colitis
Authors: Ganive Bhinder, Ho Pan Sham, Justin M. Chan, Vijay Morampudi, Kevan Jacobson, Bruce A. Vallance.
Institutions: BC Children's Hospital.
This protocol outlines the steps required to produce a robust model of infectious disease and colitis, as well as the methods used to characterize Citrobacter rodentium infection in mice. C. rodentium is a gram negative, murine specific bacterial pathogen that is closely related to the clinically important human pathogens enteropathogenic E. coli and enterohemorrhagic E. coli. Upon infection with C. rodentium, immunocompetent mice suffer from modest and transient weight loss and diarrhea. Histologically, intestinal crypt elongation, immune cell infiltration, and goblet cell depletion are observed. Clearance of infection is achieved after 3 to 4 weeks. Measurement of intestinal epithelial barrier integrity, bacterial load, and histological damage at different time points after infection, allow the characterization of mouse strains susceptible to infection. The virulence mechanisms by which bacterial pathogens colonize the intestinal tract of their hosts, as well as specific host responses that defend against such infections are poorly understood. Therefore the C. rodentium model of enteric bacterial infection serves as a valuable tool to aid in our understanding of these processes. Enteric bacteria have also been linked to Inflammatory Bowel Diseases (IBDs). It has been hypothesized that the maladaptive chronic inflammatory responses seen in IBD patients develop in genetically susceptible individuals following abnormal exposure of the intestinal mucosal immune system to enteric bacteria. Therefore, the study of models of infectious colitis offers significant potential for defining potentially pathogenic host responses to enteric bacteria. C. rodentium induced colitis is one such rare model that allows for the analysis of host responses to enteric bacteria, furthering our understanding of potential mechanisms of IBD pathogenesis; essential in the development of novel preventative and therapeutic treatments.
Infection, Issue 72, Immunology, Medicine, Infectious Diseases, Anatomy, Physiology, Biomedical Engineering, Microbiology, Gastrointestinal Tract, Gram-Negative Bacterial Infections, Colitis, Inflammatory Bowel Diseases, Infectious colitis, Inflammatory Bowel Disease, colitis, hyperplasia, immunostaining, epithelial barrier integrity, FITC-dextran, oral gavage, mouse, animal model
50222
Play Button
Herbivore-induced Blueberry Volatiles and Intra-plant Signaling
Authors: Cesar R. Rodriguez-Saona.
Institutions: Rutgers University .
Herbivore-induced plant volatiles (HIPVs) are commonly emitted from plants after herbivore attack1,2. These HIPVs are mainly regulated by the defensive plant hormone jasmonic acid (JA) and its volatile derivative methyl jasmonate (MeJA)3,4,5. Over the past 3 decades researchers have documented that HIPVs can repel or attract herbivores, attract the natural enemies of herbivores, and in some cases they can induce or prime plant defenses prior to herbivore attack. In a recent paper6, I reported that feeding by gypsy moth caterpillars, exogenous MeJA application, and mechanical damage induce the emissions of volatiles from blueberry plants, albeit differently. In addition, blueberry branches respond to HIPVs emitted from neighboring branches of the same plant by increasing the levels of JA and resistance to herbivores (i.e., direct plant defenses), and by priming volatile emissions (i.e., indirect plant defenses). Similar findings have been reported recently for sagebrush7, poplar8, and lima beans9.. Here, I describe a push-pull method for collecting blueberry volatiles induced by herbivore (gypsy moth) feeding, exogenous MeJA application, and mechanical damage. The volatile collection unit consists of a 4 L volatile collection chamber, a 2-piece guillotine, an air delivery system that purifies incoming air, and a vacuum system connected to a trap filled with Super-Q adsorbent to collect volatiles5,6,10. Volatiles collected in Super-Q traps are eluted with dichloromethane and then separated and quantified using Gas Chromatography (GC). This volatile collection method was used n my study6 to investigate the volatile response of undamaged branches to exposure to volatiles from herbivore-damaged branches within blueberry plants. These methods are described here. Briefly, undamaged blueberry branches are exposed to HIPVs from neighboring branches within the same plant. Using the same techniques described above, volatiles emitted from branches after exposure to HIPVs are collected and analyzed.
Plant Biology, Issue 58, herbivore-induced plant volatiles, HIPV, eavesdropping, plant defense, priming
3440
Play Button
Investigating the Effects of Probiotics on Pneumococcal Colonization Using an In Vitro Adherence Assay
Authors: Eileen M. Dunne, Zheng Q. Toh, Mary John, Jayne Manning, Catherine Satzke, Paul Licciardi.
Institutions: Murdoch Childrens Research Institute, Murdoch Childrens Research Institute, The University of Melbourne, The University of Melbourne.
Adherence of Streptococcus pneumoniae (the pneumococcus) to the epithelial lining of the nasopharynx can result in colonization and is considered a prerequisite for pneumococcal infections such as pneumonia and otitis media. In vitro adherence assays can be used to study the attachment of pneumococci to epithelial cell monolayers and to investigate potential interventions, such as the use of probiotics, to inhibit pneumococcal colonization. The protocol described here is used to investigate the effects of the probiotic Streptococcus salivarius on the adherence of pneumococci to the human epithelial cell line CCL-23 (sometimes referred to as HEp-2 cells). The assay involves three main steps: 1) preparation of epithelial and bacterial cells, 2) addition of bacteria to epithelial cell monolayers, and 3) detection of adherent pneumococci by viable counts (serial dilution and plating) or quantitative real-time PCR (qPCR). This technique is relatively straightforward and does not require specialized equipment other than a tissue culture setup. The assay can be used to test other probiotic species and/or potential inhibitors of pneumococcal colonization and can be easily modified to address other scientific questions regarding pneumococcal adherence and invasion.
Immunology, Issue 86, Gram-Positive Bacterial Infections, Pneumonia, Bacterial, Lung Diseases, Respiratory Tract Infections, Streptococcus pneumoniae, adherence, colonization, probiotics, Streptococcus salivarius, In Vitro assays
51069
Play Button
Flexible Colonoscopy in Mice to Evaluate the Severity of Colitis and Colorectal Tumors Using a Validated Endoscopic Scoring System
Authors: Tomohiro Kodani, Alex Rodriguez-Palacios, Daniele Corridoni, Loris Lopetuso, Luca Di Martino, Brian Marks, James Pizarro, Theresa Pizarro, Amitabh Chak, Fabio Cominelli.
Institutions: Case Western Reserve University School of Medicine, Cleveland, Case Western Reserve University School of Medicine, Cleveland, Case Western Reserve University School of Medicine, Cleveland.
The use of modern endoscopy for research purposes has greatly facilitated our understanding of gastrointestinal pathologies. In particular, experimental endoscopy has been highly useful for studies that require repeated assessments in a single laboratory animal, such as those evaluating mechanisms of chronic inflammatory bowel disease and the progression of colorectal cancer. However, the methods used across studies are highly variable. At least three endoscopic scoring systems have been published for murine colitis and published protocols for the assessment of colorectal tumors fail to address the presence of concomitant colonic inflammation. This study develops and validates a reproducible endoscopic scoring system that integrates evaluation of both inflammation and tumors simultaneously. This novel scoring system has three major components: 1) assessment of the extent and severity of colorectal inflammation (based on perianal findings, transparency of the wall, mucosal bleeding, and focal lesions), 2) quantitative recording of tumor lesions (grid map and bar graph), and 3) numerical sorting of clinical cases by their pathological and research relevance based on decimal units with assigned categories of observed lesions and endoscopic complications (decimal identifiers). The video and manuscript presented herein were prepared, following IACUC-approved protocols, to allow investigators to score their own experimental mice using a well-validated and highly reproducible endoscopic methodology, with the system option to differentiate distal from proximal endoscopic colitis (D-PECS).
Medicine, Issue 80, Crohn's disease, ulcerative colitis, colon cancer, Clostridium difficile, SAMP mice, DSS/AOM-colitis, decimal scoring identifier
50843
Play Button
Deficient Pms2, ERCC1, Ku86, CcOI in Field Defects During Progression to Colon Cancer
Authors: Huy Nguyen, Cristy Loustaunau, Alexander Facista, Lois Ramsey, Nadia Hassounah, Hilary Taylor, Robert Krouse, Claire M. Payne, V. Liana Tsikitis, Steve Goldschmid, Bhaskar Banerjee, Rafael F. Perini, Carol Bernstein.
Institutions: University of Arizona, Tucson, Tucson, AZ, University of Arizona, Tucson, Tucson, AZ, University of Arizona, Tucson.
In carcinogenesis, the "field defect" is recognized clinically because of the high propensity of survivors of certain cancers to develop other malignancies of the same tissue type, often in a nearby location. Such field defects have been indicated in colon cancer. The molecular abnormalities that are responsible for a field defect in the colon should be detectable at high frequency in the histologically normal tissue surrounding a colonic adenocarcinoma or surrounding an adenoma with advanced neoplasia (well on the way to a colon cancer), but at low frequency in the colonic mucosa from patients without colonic neoplasia. Using immunohistochemistry, entire crypts within 10 cm on each side of colonic adenocarcinomas or advanced colonic neoplasias were found to be frequently reduced or absent in expression for two DNA repair proteins, Pms2 and/or ERCC1. Pms2 is a dual role protein, active in DNA mismatch repair as well as needed in apoptosis of cells with excess DNA damage. ERCC1 is active in DNA nucleotide excision repair. The reduced or absent expression of both ERCC1 and Pms2 would create cells with both increased ability to survive (apoptosis resistance) and increased level of mutability. The reduced or absent expression of both ERCC1 and Pms2 is likely an early step in progression to colon cancer. DNA repair gene Ku86 (active in DNA non-homologous end joining) and Cytochrome c Oxidase Subunit I (involved in apoptosis) had each been reported to be decreased in expression in mucosal areas close to colon cancers. However, immunohistochemical evaluation of their levels of expression showed only low to modest frequencies of crypts to be deficient in their expression in a field defect surrounding colon cancer or surrounding advanced colonic neoplasia. We show, here, our method of evaluation of crypts for expression of ERCC1, Pms2, Ku86 and CcOI. We show that frequency of entire crypts deficient for Pms2 and ERCC1 is often as great as 70% to 95% in 20 cm long areas surrounding a colonic neoplasia, while frequency of crypts deficient in Ku86 has a median value of 2% and frequency of crypts deficient in CcOI has a median value of 16% in these areas. The entire colon is 150 cm long (about 5 feet) and has about 10 million crypts in its mucosal layer. The defect in Pms2 and ERCC1 surrounding a colon cancer thus may include 1 million crypts. It is from a defective crypt that colon cancer arises.
Cellular Biology, Issue 41, DNA Repair, Apoptosis, Field Defect, Colon Cancer, Pms2, ERCC1, Cytochrome c Oxidase Subunit I, Ku86, Immunohistochemistry, Cancer Resection
1931
Play Button
A Novel Method for the Culture and Polarized Stimulation of Human Intestinal Mucosa Explants
Authors: Katerina Tsilingiri, Angelica Sonzogni, Flavio Caprioli, Maria Rescigno.
Institutions: European Institute of Oncology, European Institute of Oncology, Ospedale Policlinico di Milano.
Few models currently exist to realistically simulate the complex human intestine's micro-environment, where a variety of interactions take place. Proper homeostasis directly depends on these interactions, as they shape an entire immunological response inducing tolerance against food antigens while at the same time mounting effective immune responses against pathogenic microbes accidentally ingested with food. Intestinal homeostasis is preserved also through various complex interactions between the microbiota (including food-associated beneficial bacterial strains) and the host, that regulate the attachment/degradation of mucus, the production of antimicrobial peptides by the epithelial barrier, and the "education" of epithelial cells' that controls the tolerogenic or immunogenic phenotype of unique, gut-resident lymphoid cells' populations. These interactions have been so far very difficult to reproduce with in vitro assays using either cultured cell lines or peripheral blood mononuclear cells. In addition, mouse models differ substantially in components of the intestinal mucosa (mucus layer organization, commensal bacteria community) with respect to the human gut. Thus, studies of a variety of treatments to be brought in the clinics for important stress-related or pathological conditions such as irritable bowel syndrome, inflammatory bowel disease or colorectal cancer have been difficult to carry out. To address these issues, we developed a novel system that enables us to stimulate explants of human intestinal mucosa that retain their in situ conditioning by the host microbiota and immune response, in a polarized fashion. Polarized apical stimulation is of great importance for the outcome of the elicited immune response. It has been repeatedly shown that the same stimuli can produce completely different responses when they bypass the apical face of the intestinal epithelium, stimulating epithelial cells basolaterally or coming into direct contact with lamina propria components, switching the phenotype from tolerogenic to immunogenic and causing unnecessary and excessive inflammation in the area. We achieved polarized stimulation by gluing a cave cylinder which delimited the area of stimulation on the apical face of the mucosa as will be described in the protocol. We used this model to examine, among others, differential effects of three different Lactobacilli strains. We show that this model system is very powerful to assess the immunomodulatory properties of probiotics in healthy and disease conditions.
Microbiology, Issue 75, Cellular Biology, Medicine, Molecular Biology, Biomedical Engineering, Anatomy, Physiology, Bacteria, Tissue Engineering, Tissue culture, intestinal mucosa, polarized stimulation, probiotics, explants, Lactobacilli, microbiota, cell culture
4368
Play Button
Systemic Injection of Neural Stem/Progenitor Cells in Mice with Chronic EAE
Authors: Matteo Donegà, Elena Giusto, Chiara Cossetti, Julia Schaeffer, Stefano Pluchino.
Institutions: University of Cambridge, UK, University of Cambridge, UK.
Neural stem/precursor cells (NPCs) are a promising stem cell source for transplantation approaches aiming at brain repair or restoration in regenerative neurology. This directive has arisen from the extensive evidence that brain repair is achieved after focal or systemic NPC transplantation in several preclinical models of neurological diseases. These experimental data have identified the cell delivery route as one of the main hurdles of restorative stem cell therapies for brain diseases that requires urgent assessment. Intraparenchymal stem cell grafting represents a logical approach to those pathologies characterized by isolated and accessible brain lesions such as spinal cord injuries and Parkinson's disease. Unfortunately, this principle is poorly applicable to conditions characterized by a multifocal, inflammatory and disseminated (both in time and space) nature, including multiple sclerosis (MS). As such, brain targeting by systemic NPC delivery has become a low invasive and therapeutically efficacious protocol to deliver cells to the brain and spinal cord of rodents and nonhuman primates affected by experimental chronic inflammatory damage of the central nervous system (CNS). This alternative method of cell delivery relies on the NPC pathotropism, specifically their innate capacity to (i) sense the environment via functional cell adhesion molecules and inflammatory cytokine and chemokine receptors; (ii) cross the leaking anatomical barriers after intravenous (i.v.) or intracerebroventricular (i.c.v.) injection; (iii) accumulate at the level of multiple perivascular site(s) of inflammatory brain and spinal cord damage; and (i.v.) exert remarkable tissue trophic and immune regulatory effects onto different host target cells in vivo. Here we describe the methods that we have developed for the i.v. and i.c.v. delivery of syngeneic NPCs in mice with experimental autoimmune encephalomyelitis (EAE), as model of chronic CNS inflammatory demyelination, and envisage the systemic stem cell delivery as a valuable technique for the selective targeting of the inflamed brain in regenerative neurology.
Immunology, Issue 86, Somatic neural stem/precursor cells, neurodegenerative disorders, regenerative medicine, multiple sclerosis, experimental autoimmune encephalomyelitis, systemic delivery, intravenous, intracerebroventricular
51154
Play Button
Right Hemihepatectomy by Suprahilar Intrahepatic Transection of the Right Hemipedicle using a Vascular Stapler
Authors: Ingmar Königsrainer, Silvio Nadalin, Alfred Königsrainer.
Institutions: Tübingen University Hospital.
Successful hepatic resection requires profound anatomical knowledge and delicate surgical technique. Hemihepatectomies are mostly performed after preparing the extrahepatic hilar structures within the hepatoduodenal ligament, even in benign tumours or liver metastasis.1-5. Regional extrahepatic lymphadenectomy is an oncological standard in hilar cholangiocarcinoma, intrahepatic cholangio-cellular carcinoma and hepatocellular carcinoma, whereas lymph node metastases in the hepatic hilus in patients with liver metastasis are rarely occult. Major disadvantages of these procedures are the complex preparation of the hilus with the risk of injuring contralateral structures and the possibility of bleeding from portal vein side-branches or impaired perfusion of bile ducts. We developed a technique of right hemihepatectomy or resection of the left lateral segments with intrahepatic transection of the pedicle that leaves the hepatoduodenal ligament completely untouched. 6 However, if intraoperative visualization or palpation of the ligament is suspicious for tumor infiltration or lymph node metastasis, the hilus should be explored and a lymphadenectomy performed.
Medicine, Issue 35, Liver resection, liver tumour, intrahepatic hilus stapling, right hemipedicle
1750
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.