JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Expression of odorant receptor family, type 2 OR in the aquatic olfactory cavity of amphibian frog Xenopus tropicalis.
PLoS ONE
Recent genome wide in silico analyses discovered a new family (type 2 or family H) of odorant receptors (ORs) in teleost fish and frogs. However, since there is no evidence of the expression of these novel OR genes in olfactory sensory neurons (OSN), it remains unknown if type 2 ORs (OR2) function as odorant receptors. In this study, we examined expression of OR2 genes in the frog Xenopus tropicalis. The overall gene expression pattern is highly complex and differs depending on the gene and developmental stage. RT-PCR analysis in larvae showed that all of the OR2? genes we identified were expressed in the peripheral olfactory system and some were detected in the brain and skin. Whole mount in situ hybridization of the larval olfactory cavity confirmed that at least two OR2? genes so far tested are expressed in the OSN. Because tadpoles are aquatic animals, OR2? genes are probably involved in aquatic olfaction. In adults, OR2? genes are expressed in the nose, brain, and testes to different degrees depending on the genes. OR2? expression in the olfactory system is restricted to the medium cavity, which participates in the detection of water-soluble odorants, suggesting that OR2?s function as receptors for water-soluble odorants. Moreover, the fact that several OR2?s are significantly expressed in non-olfactory organs suggests unknown roles in a range of biological processes other than putative odorant receptor functions.
ABSTRACT
Odorants create unique and overlapping patterns of olfactory receptor activation, allowing a family of approximately 1,000 murine and 400 human receptors to recognize thousands of odorants. Odorant ligands have been published for fewer than 6% of human receptors1-11. This lack of data is due in part to difficulties functionally expressing these receptors in heterologous systems. Here, we describe a method for expressing the majority of the olfactory receptor family in Hana3A cells, followed by high-throughput assessment of olfactory receptor activation using a luciferase reporter assay. This assay can be used to (1) screen panels of odorants against panels of olfactory receptors; (2) confirm odorant/receptor interaction via dose response curves; and (3) compare receptor activation levels among receptor variants. In our sample data, 328 olfactory receptors were screened against 26 odorants. Odorant/receptor pairs with varying response scores were selected and tested in dose response. These data indicate that a screen is an effective method to enrich for odorant/receptor pairs that will pass a dose response experiment, i.e. receptors that have a bona fide response to an odorant. Therefore, this high-throughput luciferase assay is an effective method to characterize olfactory receptors—an essential step toward a model of odor coding in the mammalian olfactory system.
23 Related JoVE Articles!
Play Button
The Olfactory System as a Model to Study Axonal Growth Patterns and Morphology In Vivo
Authors: Thomas Hassenklöver, Ivan Manzini.
Institutions: University of Göttingen.
The olfactory system has the unusual capacity to generate new neurons throughout the lifetime of an organism. Olfactory stem cells in the basal portion of the olfactory epithelium continuously give rise to new sensory neurons that extend their axons into the olfactory bulb, where they face the challenge to integrate into existing circuitry. Because of this particular feature, the olfactory system represents a unique opportunity to monitor axonal wiring and guidance, and to investigate synapse formation. Here we describe a procedure for in vivo labeling of sensory neurons and subsequent visualization of axons in the olfactory system of larvae of the amphibian Xenopus laevis. To stain sensory neurons in the olfactory organ we adopt the electroporation technique. In vivo electroporation is an established technique for delivering fluorophore-coupled dextrans or other macromolecules into living cells. Stained sensory neurons and their axonal processes can then be monitored in the living animal either using confocal laser-scanning or multiphoton microscopy. By reducing the number of labeled cells to few or single cells per animal, single axons can be tracked into the olfactory bulb and their morphological changes can be monitored over weeks by conducting series of in vivo time lapse imaging experiments. While the described protocol exemplifies the labeling and monitoring of olfactory sensory neurons, it can also be adopted to other cell types within the olfactory and other systems.
Neuroscience, Issue 92, Xenopus laevis, Anura, electroporation, single cell electroporation, sensory neurons, olfactory system, axon growth, glomerulus, olfactory bulb, olfactory map formation
52143
Play Button
Assaying Surface Expression of Chemosensory Receptors in Heterologous Cells
Authors: Sandeepa Dey, Senmiao Zhan, Hiroaki Matsunami.
Institutions: Duke University, Duke University.
The vivid world of odors is recognized by the sense of olfaction. Olfaction in mice is mediated by a repertoire of about 1200 G Protein Coupled Receptors (GPCRs) 1 that are postulated to bind volatile odorant molecules and converting the extracellular signal into an intracellular signal by coupling with G protein Gαolf. Binding of the odorants to the receptors is thought to follow a combinatorial rule, that is, one odorant may bind several receptors and one receptor may bind several odorants to varying degrees 2. Biochemical, signaling and ligand binding studies have been conveniently carried out for most GPCRs using heterologous cells. However use of heterologous cells for study of odorant receptors, was precluded for a long time since on transfection they failed to export to the surface. Saito et al have demonstrated single membrane pass Receptor Transporting Protein (RTP) family chaperones show enhanced expression in the olfactory sensory neurons and act as chaperones to traffic odorant receptors to the surface in heterologous cells, when co transfected together 3. To carry out biochemical assays for receptors using heterologous cells, one must first determine if the receptor shows robust surface expression in the cell line. This can be assayed by overexpressing the receptors with the chaperone RTP1S followed by live cell staining to fluorescently label the extracellular domain or a tag in the extracellular domain exclusively. Here we demonstrate a protocol to carry out live cell staining that can be used to detect odorant receptors on the surface of HEK293T cells conveniently. In addition, it may also be used to assay for surface expression of other chemosensory receptors or GPCRs.
Neuroscience, Issue 48, heterologous, receptors, cell, surface, staining
2405
Play Button
Analyzing Responses of Mouse Olfactory Sensory Neurons Using the Air-phase Electroolfactogram Recording
Authors: Katherine D. Cygnar, Aaron B. Stephan, Haiqing Zhao.
Institutions: Johns Hopkins University.
Animals depend on olfaction for many critical behaviors, such as finding food sources, avoiding predators, and identifying conspecifics for mating and other social interactions. The electroolfactogram (EOG) recording is an informative, easy to conduct, and reliable method to assay olfactory function at the level of the olfactory epithelium. Since the 1956 description of the EOG by Ottoson in frogs1, the EOG recording has been applied in many vertebrates including salamanders, rabbits, rats, mice, and humans (reviewed by Scott and Scott-Johnson, 2002, ref. 2). The recent advances in genetic modification in mice have rekindled interest in recording the EOG for physiological characterization of olfactory function in knock-out and knock-in mice. EOG recordings have been successfully applied to demonstrate the central role of olfactory signal transduction components3-8, and more recently to characterize the contribution of certain regulatory mechanisms to OSN responses9-12. Odorant detection occurs at the surface of the olfactory epithelium on the cilia of OSNs, where a signal transduction cascade leads to opening of ion channels, generating a current that flows into the cilia and depolarizes the membrane13. The EOG is the negative potential recorded extracellularly at the surface of the olfactory epithelium upon odorant stimulation, resulting from a summation of the potential changes caused by individual responsive OSNs in the recording field2. Comparison of the amplitude and kinetics of the EOG thus provide valuable information about how genetic modification and other experimental manipulations influence the molecular signaling underlying the OSN response to odor. Here we describe an air-phase EOG recording on a preparation of mouse olfactory turbinates. Briefly, after sacrificing the mouse, the olfactory turbinates are exposed by bisecting the head along the midline and removing the septum. The turbinate preparation is then placed in the recording setup, and a recording electrode is placed at the surface of the olfactory epithelium on one of the medial turbinates. A reference electrode is electrically connected to the tissue through a buffer solution. A continuous stream of humidified air is blown over the surface of the epithelium to keep it moist. The vapor of odorant solutions is puffed into the stream of humidified air to stimulate the epithelium. Responses are recorded and digitized for further analysis.
JoVE Neuroscience, Issue 37, olfaction, electrophysiology, field potential, generator potential, EOG
1850
Play Button
Production of Xenopus tropicalis Egg Extracts to Identify Microtubule-associated RNAs
Authors: Judith A. Sharp, Mike D. Blower.
Institutions: Massachusetts General Hospital, Harvard Medical School.
Many organisms localize mRNAs to specific subcellular destinations to spatially and temporally control gene expression. Recent studies have demonstrated that the majority of the transcriptome is localized to a nonrandom position in cells and embryos. One approach to identify localized mRNAs is to biochemically purify a cellular structure of interest and to identify all associated transcripts. Using recently developed high-throughput sequencing technologies it is now straightforward to identify all RNAs associated with a subcellular structure. To facilitate transcript identification it is necessary to work with an organism with a fully sequenced genome. One attractive system for the biochemical purification of subcellular structures are egg extracts produced from the frog Xenopus laevis. However, X. laevis currently does not have a fully sequenced genome, which hampers transcript identification. In this article we describe a method to produce egg extracts from a related frog, X. tropicalis, that has a fully sequenced genome. We provide details for microtubule polymerization, purification and transcript isolation. While this article describes a specific method for identification of microtubule-associated transcripts, we believe that it will be easily applied to other subcellular structures and will provide a powerful method for identification of localized RNAs.
Molecular Biology, Issue 76, Genetics, Developmental Biology, Biochemistry, Bioengineering, Cellular Biology, RNA, Messenger, Stored, RNA Processing, Post-Transcriptional, Xenopus, microtubules, egg extract, purification, RNA localization, mRNA, Xenopus tropicalis, eggs, animal model
50434
Play Button
Comparative in vivo Study of gp96 Adjuvanticity in the Frog Xenopus laevis
Authors: Hristina Nedelkovska, Tanya Cruz-Luna, Pamela McPherson, Jacques Robert.
Institutions: University of Rochester.
We have developed in the amphibian Xenopus laevis a unique non-mammalian model to study the ability of certain heat shock proteins (hsps) such as gp96 to facilitate cross-presentation of chaperoned antigens and elicit innate and adaptive T cell responses. Xenopus skin graft rejection provides an excellent platform to study the ability of gp96 to elicit classical MHC class Ia (class Ia) restricted T cell responses. Additionally, the Xenopus model system also provides an attractive alternative to mice for exploring the ability of gp96 to generate responses against tumors that have down-regulated their class Ia molecules thereby escaping immune surveillance. Recently, we have developed an adoptive cell transfer assay in Xenopus clones using peritoneal leukocytes as antigen presenting cells (APCs), and shown that gp96 can prime CD8 T cell responses in vivo against minor histocompatibility skin antigens as well as against the Xenopus thymic tumor 15/0 that does not express class Ia molecules. We describe here the methodology involved to perform these assays including the elicitation, pulsing and adoptive transfer of peritoneal leukocytes, as well as the skin graft and tumor transplantation assays. Additionally we are also describing the harvesting and separation of peripheral blood leukocytes used for flow cytometry and proliferation assays which allow for further characterization of the effector populations involved in skin rejection and anti-tumor responses.
Immunology, Issue 43, Immunological, properties, Xenopus, gp96
2026
Play Button
Reconstitution Of β-catenin Degradation In Xenopus Egg Extract
Authors: Tony W. Chen, Matthew R. Broadus, Stacey S. Huppert, Ethan Lee.
Institutions: Vanderbilt University Medical Center, Cincinnati Children's Hospital Medical Center, Vanderbilt University School of Medicine.
Xenopus laevis egg extract is a well-characterized, robust system for studying the biochemistry of diverse cellular processes. Xenopus egg extract has been used to study protein turnover in many cellular contexts, including the cell cycle and signal transduction pathways1-3. Herein, a method is described for isolating Xenopus egg extract that has been optimized to promote the degradation of the critical Wnt pathway component, β-catenin. Two different methods are described to assess β-catenin protein degradation in Xenopus egg extract. One method is visually informative ([35S]-radiolabeled proteins), while the other is more readily scaled for high-throughput assays (firefly luciferase-tagged fusion proteins). The techniques described can be used to, but are not limited to, assess β-catenin protein turnover and identify molecular components contributing to its turnover. Additionally, the ability to purify large volumes of homogenous Xenopus egg extract combined with the quantitative and facile readout of luciferase-tagged proteins allows this system to be easily adapted for high-throughput screening for modulators of β-catenin degradation.
Molecular Biology, Issue 88, Xenopus laevis, Xenopus egg extracts, protein degradation, radiolabel, luciferase, autoradiography, high-throughput screening
51425
Play Button
Odorant-induced Responses Recorded from Olfactory Receptor Neurons using the Suction Pipette Technique
Authors: Samsudeen Ponissery Saidu, Michele Dibattista, Hugh R. Matthews, Johannes Reisert.
Institutions: Monell Chemical Senses Center, University of Cambridge .
Animals sample the odorous environment around them through the chemosensory systems located in the nasal cavity. Chemosensory signals affect complex behaviors such as food choice, predator, conspecific and mate recognition and other socially relevant cues. Olfactory receptor neurons (ORNs) are located in the dorsal part of the nasal cavity embedded in the olfactory epithelium. These bipolar neurons send an axon to the olfactory bulb (see Fig. 1, Reisert & Zhao1, originally published in the Journal of General Physiology) and extend a single dendrite to the epithelial border from where cilia radiate into the mucus that covers the olfactory epithelium. The cilia contain the signal transduction machinery that ultimately leads to excitatory current influx through the ciliary transduction channels, a cyclic nucleotide-gated (CNG) channel and a Ca2+-activated Cl- channel (Fig. 1). The ensuing depolarization triggers action potential generation at the cell body2-4. In this video we describe the use of the "suction pipette technique" to record odorant-induced responses from ORNs. This method was originally developed to record from rod photoreceptors5 and a variant of this method can be found at jove.com modified to record from mouse cone photoreceptors6. The suction pipette technique was later adapted to also record from ORNs7,8. Briefly, following dissociation of the olfactory epithelium and cell isolation, the entire cell body of an ORN is sucked into the tip of a recording pipette. The dendrite and the cilia remain exposed to the bath solution and thus accessible to solution changes to enable e.g. odorant or pharmacological blocker application. In this configuration, no access to the intracellular environment is gained (no whole-cell voltage clamp) and the intracellular voltage remains free to vary. This allows the simultaneous recording of the slow receptor current that originates at the cilia and fast action potentials fired by the cell body9. The difference in kinetics between these two signals allows them to be separated using different filter settings. This technique can be used on any wild type or knockout mouse or to record selectively from ORNs that also express GFP to label specific subsets of ORNs, e.g. expressing a given odorant receptor or ion channel.
Neuroscience, Issue 62, Olfactory receptor neurons, ORN, suction pipette technique, receptor current, action potentials, signal transduction, electrophysiology, chemoreceptors
3862
Play Button
Measuring Cation Transport by Na,K- and H,K-ATPase in Xenopus Oocytes by Atomic Absorption Spectrophotometry: An Alternative to Radioisotope Assays
Authors: Katharina L. Dürr, Neslihan N. Tavraz, Susan Spiller, Thomas Friedrich.
Institutions: Technical University of Berlin, Oregon Health & Science University.
Whereas cation transport by the electrogenic membrane transporter Na+,K+-ATPase can be measured by electrophysiology, the electroneutrally operating gastric H+,K+-ATPase is more difficult to investigate. Many transport assays utilize radioisotopes to achieve a sufficient signal-to-noise ratio, however, the necessary security measures impose severe restrictions regarding human exposure or assay design. Furthermore, ion transport across cell membranes is critically influenced by the membrane potential, which is not straightforwardly controlled in cell culture or in proteoliposome preparations. Here, we make use of the outstanding sensitivity of atomic absorption spectrophotometry (AAS) towards trace amounts of chemical elements to measure Rb+ or Li+ transport by Na+,K+- or gastric H+,K+-ATPase in single cells. Using Xenopus oocytes as expression system, we determine the amount of Rb+ (Li+) transported into the cells by measuring samples of single-oocyte homogenates in an AAS device equipped with a transversely heated graphite atomizer (THGA) furnace, which is loaded from an autosampler. Since the background of unspecific Rb+ uptake into control oocytes or during application of ATPase-specific inhibitors is very small, it is possible to implement complex kinetic assay schemes involving a large number of experimental conditions simultaneously, or to compare the transport capacity and kinetics of site-specifically mutated transporters with high precision. Furthermore, since cation uptake is determined on single cells, the flux experiments can be carried out in combination with two-electrode voltage-clamping (TEVC) to achieve accurate control of the membrane potential and current. This allowed e.g. to quantitatively determine the 3Na+/2K+ transport stoichiometry of the Na+,K+-ATPase and enabled for the first time to investigate the voltage dependence of cation transport by the electroneutrally operating gastric H+,K+-ATPase. In principle, the assay is not limited to K+-transporting membrane proteins, but it may work equally well to address the activity of heavy or transition metal transporters, or uptake of chemical elements by endocytotic processes.
Biochemistry, Issue 72, Chemistry, Biophysics, Bioengineering, Physiology, Molecular Biology, electrochemical processes, physical chemistry, spectrophotometry (application), spectroscopic chemical analysis (application), life sciences, temperature effects (biological, animal and plant), Life Sciences (General), Na+,K+-ATPase, H+,K+-ATPase, Cation Uptake, P-type ATPases, Atomic Absorption Spectrophotometry (AAS), Two-Electrode Voltage-Clamp, Xenopus Oocytes, Rb+ Flux, Transversely Heated Graphite Atomizer (THGA) Furnace, electrophysiology, animal model
50201
Play Button
Study of the DNA Damage Checkpoint using Xenopus Egg Extracts
Authors: Jeremy Willis, Darla DeStephanis, Yogin Patel, Vrushab Gowda, Shan Yan.
Institutions: University of North Carolina at Charlotte.
On a daily basis, cells are subjected to a variety of endogenous and environmental insults. To combat these insults, cells have evolved DNA damage checkpoint signaling as a surveillance mechanism to sense DNA damage and direct cellular responses to DNA damage. There are several groups of proteins called sensors, transducers and effectors involved in DNA damage checkpoint signaling (Figure 1). In this complex signaling pathway, ATR (ATM and Rad3-related) is one of the major kinases that can respond to DNA damage and replication stress. Activated ATR can phosphorylate its downstream substrates such as Chk1 (Checkpoint kinase 1). Consequently, phosphorylated and activated Chk1 leads to many downstream effects in the DNA damage checkpoint including cell cycle arrest, transcription activation, DNA damage repair, and apoptosis or senescence (Figure 1). When DNA is damaged, failing to activate the DNA damage checkpoint results in unrepaired damage and, subsequently, genomic instability. The study of the DNA damage checkpoint will elucidate how cells maintain genomic integrity and provide a better understanding of how human diseases, such as cancer, develop. Xenopus laevis egg extracts are emerging as a powerful cell-free extract model system in DNA damage checkpoint research. Low-speed extract (LSE) was initially described by the Masui group1. The addition of demembranated sperm chromatin to LSE results in nuclei formation where DNA is replicated in a semiconservative fashion once per cell cycle. The ATR/Chk1-mediated checkpoint signaling pathway is triggered by DNA damage or replication stress 2. Two methods are currently used to induce the DNA damage checkpoint: DNA damaging approaches and DNA damage-mimicking structures 3. DNA damage can be induced by ultraviolet (UV) irradiation, γ-irradiation, methyl methanesulfonate (MMS), mitomycin C (MMC), 4-nitroquinoline-1-oxide (4-NQO), or aphidicolin3, 4. MMS is an alkylating agent that inhibits DNA replication and activates the ATR/Chk1-mediated DNA damage checkpoint 4-7. UV irradiation also triggers the ATR/Chk1-dependent DNA damage checkpoint 8. The DNA damage-mimicking structure AT70 is an annealed complex of two oligonucleotides poly-(dA)70 and poly-(dT)70. The AT70 system was developed in Bill Dunphy's laboratory and is widely used to induce ATR/Chk1 checkpoint signaling 9-12. Here, we describe protocols (1) to prepare cell-free egg extracts (LSE), (2) to treat Xenopus sperm chromatin with two different DNA damaging approaches (MMS and UV), (3) to prepare the DNA damage-mimicking structure AT70, and (4) to trigger the ATR/Chk1-mediated DNA damage checkpoint in LSE with damaged sperm chromatin or a DNA damage-mimicking structure.
Genetics, Issue 69, Molecular Biology, Cellular Biology, Developmental Biology, DNA damage checkpoint, Xenopus egg extracts, Xenopus laevis, Chk1 phosphorylation, ATR, AT70, MMS, UV, immunoblotting
4449
Play Button
Preparation of Primary Myogenic Precursor Cell/Myoblast Cultures from Basal Vertebrate Lineages
Authors: Jacob Michael Froehlich, Iban Seiliez, Jean-Charles Gabillard, Peggy R. Biga.
Institutions: University of Alabama at Birmingham, INRA UR1067, INRA UR1037.
Due to the inherent difficulty and time involved with studying the myogenic program in vivo, primary culture systems derived from the resident adult stem cells of skeletal muscle, the myogenic precursor cells (MPCs), have proven indispensible to our understanding of mammalian skeletal muscle development and growth. Particularly among the basal taxa of Vertebrata, however, data are limited describing the molecular mechanisms controlling the self-renewal, proliferation, and differentiation of MPCs. Of particular interest are potential mechanisms that underlie the ability of basal vertebrates to undergo considerable postlarval skeletal myofiber hyperplasia (i.e. teleost fish) and full regeneration following appendage loss (i.e. urodele amphibians). Additionally, the use of cultured myoblasts could aid in the understanding of regeneration and the recapitulation of the myogenic program and the differences between them. To this end, we describe in detail a robust and efficient protocol (and variations therein) for isolating and maintaining MPCs and their progeny, myoblasts and immature myotubes, in cell culture as a platform for understanding the evolution of the myogenic program, beginning with the more basal vertebrates. Capitalizing on the model organism status of the zebrafish (Danio rerio), we report on the application of this protocol to small fishes of the cyprinid clade Danioninae. In tandem, this protocol can be utilized to realize a broader comparative approach by isolating MPCs from the Mexican axolotl (Ambystomamexicanum) and even laboratory rodents. This protocol is now widely used in studying myogenesis in several fish species, including rainbow trout, salmon, and sea bream1-4.
Basic Protocol, Issue 86, myogenesis, zebrafish, myoblast, cell culture, giant danio, moustached danio, myotubes, proliferation, differentiation, Danioninae, axolotl
51354
Play Button
Lentivirus-mediated Genetic Manipulation and Visualization of Olfactory Sensory Neurons in vivo
Authors: Benjamin Sadrian, Huaiyang Chen, Qizhi Gong.
Institutions: University of California, Davis.
Development of a precise olfactory circuit relies on accurate projection of olfactory sensory neuron (OSN) axons to their synaptic targets in the olfactory bulb (OB). The molecular mechanisms of OSN axon growth and targeting are not well understood. Manipulating gene expression and subsequent visualizing of single OSN axons and their terminal arbor morphology have thus far been challenging. To study gene function at the single cell level within a specified time frame, we developed a lentiviral based technique to manipulate gene expression in OSNs in vivo. Lentiviral particles are delivered to OSNs by microinjection into the olfactory epithelium (OE). Expression cassettes are then permanently integrated into the genome of transduced OSNs. Green fluorescent protein expression identifies infected OSNs and outlines their entire morphology, including the axon terminal arbor. Due to the short turnaround time between microinjection and reporter detection, gene function studies can be focused within a very narrow period of development. With this method, we have detected GFP expression within as few as three days and as long as three months following injection. We have achieved both over-expression and shRNA mediated knock-down by lentiviral microinjection. This method provides detailed morphologies of OSN cell bodies and axons at the single cell level in vivo, and thus allows characterization of candidate gene function during olfactory development.
Neuroscience, Issue 51, lentivirus, olfactory, sensory, neurons, genetics
2951
Play Button
A Proboscis Extension Response Protocol for Investigating Behavioral Plasticity in Insects: Application to Basic, Biomedical, and Agricultural Research
Authors: Brian H. Smith, Christina M. Burden.
Institutions: Arizona State University.
Insects modify their responses to stimuli through experience of associating those stimuli with events important for survival (e.g., food, mates, threats). There are several behavioral mechanisms through which an insect learns salient associations and relates them to these events. It is important to understand this behavioral plasticity for programs aimed toward assisting insects that are beneficial for agriculture. This understanding can also be used for discovering solutions to biomedical and agricultural problems created by insects that act as disease vectors and pests. The Proboscis Extension Response (PER) conditioning protocol was developed for honey bees (Apis mellifera) over 50 years ago to study how they perceive and learn about floral odors, which signal the nectar and pollen resources a colony needs for survival. The PER procedure provides a robust and easy-to-employ framework for studying several different ecologically relevant mechanisms of behavioral plasticity. It is easily adaptable for use with several other insect species and other behavioral reflexes. These protocols can be readily employed in conjunction with various means for monitoring neural activity in the CNS via electrophysiology or bioimaging, or for manipulating targeted neuromodulatory pathways. It is a robust assay for rapidly detecting sub-lethal effects on behavior caused by environmental stressors, toxins or pesticides. We show how the PER protocol is straightforward to implement using two procedures. One is suitable as a laboratory exercise for students or for quick assays of the effect of an experimental treatment. The other provides more thorough control of variables, which is important for studies of behavioral conditioning. We show how several measures for the behavioral response ranging from binary yes/no to more continuous variable like latency and duration of proboscis extension can be used to test hypotheses. And, we discuss some pitfalls that researchers commonly encounter when they use the procedure for the first time.
Neuroscience, Issue 91, PER, conditioning, honey bee, olfaction, olfactory processing, learning, memory, toxin assay
51057
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
51278
Play Button
Demonstration of Proteolytic Activation of the Epithelial Sodium Channel (ENaC) by Combining Current Measurements with Detection of Cleavage Fragments
Authors: Matteus Krappitz, Christoph Korbmacher, Silke Haerteis.
Institutions: Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU).
The described methods can be used to investigate the effect of proteases on ion channels, receptors, and other plasma membrane proteins heterologously expressed in Xenopus laevis oocytes. In combination with site-directed mutagenesis, this approach provides a powerful tool to identify functionally relevant cleavage sites. Proteolytic activation is a characteristic feature of the amiloride-sensitive epithelial sodium channel (ENaC). The final activating step involves cleavage of the channel’s γ-subunit in a critical region potentially targeted by several proteases including chymotrypsin and plasmin. To determine the stimulatory effect of these serine proteases on ENaC, the amiloride-sensitive whole-cell current (ΔIami) was measured twice in the same oocyte before and after exposure to the protease using the two-electrode voltage-clamp technique. In parallel to the electrophysiological experiments, a biotinylation approach was used to monitor the appearance of γENaC cleavage fragments at the cell surface. Using the methods described, it was demonstrated that the time course of proteolytic activation of ENaC-mediated whole-cell currents correlates with the appearance of a γENaC cleavage product at the cell surface. These results suggest a causal link between channel cleavage and channel activation. Moreover, they confirm the concept that a cleavage event in γENaC is required as a final step in proteolytic channel activation. The methods described here may well be applicable to address similar questions for other types of ion channels or membrane proteins.
Biochemistry, Issue 89, two-electrode voltage-clamp, electrophysiology, biotinylation, Xenopus laevis oocytes, epithelial sodium channel, ENaC, proteases, proteolytic channel activation, ion channel, cleavage sites, cleavage fragments
51582
Play Button
Single Sensillum Recordings in the Insects Drosophila melanogaster and Anopheles gambiae
Authors: Maurizio Pellegrino, Takao Nakagawa, Leslie B. Vosshall.
Institutions: Rockefeller University.
The sense of smell is essential for insects to find foods, mates, predators, and oviposition sites3. Insect olfactory sensory neurons (OSNs) are enclosed in sensory hairs called sensilla, which cover the surface of olfactory organs. The surface of each sensillum is covered with tiny pores, through which odorants pass and dissolve in a fluid called sensillum lymph, which bathes the sensory dendrites of the OSNs housed in a given sensillum. The OSN dendrites express odorant receptor (OR) proteins, which in insects function as odor-gated ion channels4, 5. The interaction of odorants with ORs either increases or decreases the basal firing rate of the OSN. This neuronal activity in the form of action potentials embodies the first representation of the quality, intensity, and temporal characteristics of the odorant6, 7. Given the easy access to these sensory hairs, it is possible to perform extracellular recordings from single OSNs by introducing a recording electrode into the sensillum lymph, while the reference electrode is placed in the lymph of the eye or body of the insect. In Drosophila, sensilla house between one and four OSNs, but each OSN typically displays a characteristic spike amplitude. Spike sorting techniques make it possible to assign spiking responses to individual OSNs. This single sensillum recording (SSR) technique monitors the difference in potential between the sensillum lymph and the reference electrode as electrical spikes that are generated by the receptor activity on OSNs1, 2, 8. Changes in the number of spikes in response to the odorant represent the cellular basis of odor coding in insects. Here, we describe the preparation method currently used in our lab to perform SSR on Drosophila melanogaster and Anopheles gambiae, and show representative traces induced by the odorants in a sensillum-specific manner.
JoVE Neuroscience, Issue 36, electrophysiology, sensory neuron, insect, olfaction, extracellular recording
1725
Play Button
Two Types of Assays for Detecting Frog Sperm Chemoattraction
Authors: Lindsey A. Burnett, Nathan Tholl, Douglas E. Chandler.
Institutions: University of Illinois, Urbana-Champaign, Arizona State University .
Sperm chemoattraction in invertebrates can be sufficiently robust that one can place a pipette containing the attractive peptide into a sperm suspension and microscopically visualize sperm accumulation around the pipette1. Sperm chemoattraction in vertebrates such as frogs, rodents and humans is more difficult to detect and requires quantitative assays. Such assays are of two major types - assays that quantitate sperm movement to a source of chemoattractant, so-called sperm accumulation assays, and assays that actually track the swimming trajectories of individual sperm. Sperm accumulation assays are relatively rapid allowing tens or hundreds of assays to be done in a single day, thereby allowing dose response curves and time courses to be carried out relatively rapidly. These types of assays have been used extensively to characterize many well established chemoattraction systems - for example, neutrophil chemotaxis to bacterial peptides and sperm chemotaxis to follicular fluid. Sperm tracking assays can be more labor intensive but offer additional data on how chemoattractancts actually alter the swimming paths that sperm take. This type of assay is needed to demonstrate the orientation of sperm movement relative to the chemoattrractant gradient axis and to visualize characteristic turns or changes in orientation that bring the sperm closer to the egg. Here we describe methods used for each of these two types of assays. The sperm accumulation assay utilized is called a "two-chamber" assay. Amphibian sperm are placed in a tissue culture plate insert with a polycarbonate filter floor having 12 μm diameter pores. Inserts with sperm are placed into tissue culture plate wells containing buffer and a chemoatttractant carefully pipetted into the bottom well where the floor meets the wall (see Fig. 1). After incubation, the top insert containing the sperm reservoir is carefully removed, and sperm in the bottom chamber that have passed through the membrane are removed, pelleted and then counted by hemocytometer or flow cytometer. The sperm tracking assay utilizes a Zigmond chamber originally developed for observing neutrophil chemotaxis and modified for observation of sperm by Giojalas and coworkers2,3. The chamber consists of a thick glass slide into which two vertical troughs have been machined. These are separated by a 1 mm wide observation platform. After application of a cover glass, sperm are loaded into one trough, the chemoattractant agent into the other and movement of individual sperm visualized by video microscopy. Video footage is then analyzed using software to identify two-dimensional cell movements in the x-y plane as a function of time (xyt data sets) that form the trajectory of each sperm.
Developmental Biology, Issue 58, Sperm chemotaxis, fertilization, sperm accumulation assay, sperm tracking assay, sperm motility, Xenopus laevis, egg jelly
3407
Play Button
Inducing Plasticity of Astrocytic Receptors by Manipulation of Neuronal Firing Rates
Authors: Alison X. Xie, Kelli Lauderdale, Thomas Murphy, Timothy L. Myers, Todd A. Fiacco.
Institutions: University of California Riverside, University of California Riverside, University of California Riverside.
Close to two decades of research has established that astrocytes in situ and in vivo express numerous G protein-coupled receptors (GPCRs) that can be stimulated by neuronally-released transmitter. However, the ability of astrocytic receptors to exhibit plasticity in response to changes in neuronal activity has received little attention. Here we describe a model system that can be used to globally scale up or down astrocytic group I metabotropic glutamate receptors (mGluRs) in acute brain slices. Included are methods on how to prepare parasagittal hippocampal slices, construct chambers suitable for long-term slice incubation, bidirectionally manipulate neuronal action potential frequency, load astrocytes and astrocyte processes with fluorescent Ca2+ indicator, and measure changes in astrocytic Gq GPCR activity by recording spontaneous and evoked astrocyte Ca2+ events using confocal microscopy. In essence, a “calcium roadmap” is provided for how to measure plasticity of astrocytic Gq GPCRs. Applications of the technique for study of astrocytes are discussed. Having an understanding of how astrocytic receptor signaling is affected by changes in neuronal activity has important implications for both normal synaptic function as well as processes underlying neurological disorders and neurodegenerative disease.
Neuroscience, Issue 85, astrocyte, plasticity, mGluRs, neuronal Firing, electrophysiology, Gq GPCRs, Bolus-loading, calcium, microdomains, acute slices, Hippocampus, mouse
51458
Play Button
Protocols for Implementing an Escherichia coli Based TX-TL Cell-Free Expression System for Synthetic Biology
Authors: Zachary Z. Sun, Clarmyra A. Hayes, Jonghyeon Shin, Filippo Caschera, Richard M. Murray, Vincent Noireaux.
Institutions: California Institute of Technology, California Institute of Technology, Massachusetts Institute of Technology, University of Minnesota.
Ideal cell-free expression systems can theoretically emulate an in vivo cellular environment in a controlled in vitro platform.1 This is useful for expressing proteins and genetic circuits in a controlled manner as well as for providing a prototyping environment for synthetic biology.2,3 To achieve the latter goal, cell-free expression systems that preserve endogenous Escherichia coli transcription-translation mechanisms are able to more accurately reflect in vivo cellular dynamics than those based on T7 RNA polymerase transcription. We describe the preparation and execution of an efficient endogenous E. coli based transcription-translation (TX-TL) cell-free expression system that can produce equivalent amounts of protein as T7-based systems at a 98% cost reduction to similar commercial systems.4,5 The preparation of buffers and crude cell extract are described, as well as the execution of a three tube TX-TL reaction. The entire protocol takes five days to prepare and yields enough material for up to 3000 single reactions in one preparation. Once prepared, each reaction takes under 8 hr from setup to data collection and analysis. Mechanisms of regulation and transcription exogenous to E. coli, such as lac/tet repressors and T7 RNA polymerase, can be supplemented.6 Endogenous properties, such as mRNA and DNA degradation rates, can also be adjusted.7 The TX-TL cell-free expression system has been demonstrated for large-scale circuit assembly, exploring biological phenomena, and expression of proteins under both T7- and endogenous promoters.6,8 Accompanying mathematical models are available.9,10 The resulting system has unique applications in synthetic biology as a prototyping environment, or "TX-TL biomolecular breadboard."
Cellular Biology, Issue 79, Bioengineering, Synthetic Biology, Chemistry Techniques, Synthetic, Molecular Biology, control theory, TX-TL, cell-free expression, in vitro, transcription-translation, cell-free protein synthesis, synthetic biology, systems biology, Escherichia coli cell extract, biological circuits, biomolecular breadboard
50762
Play Button
Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney
Authors: Kristen K. McCampbell, Kristin N. Springer, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
Cellular Biology, Issue 90, zebrafish; kidney; nephron; nephrology; renal; regeneration; proximal tubule; distal tubule; segment; mesonephros; physiology; acute kidney injury (AKI)
51644
Play Button
Whole Mount Immunolabeling of Olfactory Receptor Neurons in the Drosophila Antenna
Authors: M. Rezaul Karim, Keita Endo, Adrian W Moore, Hiroaki Taniguchi.
Institutions: Doshisha University, RIKEN Brain Science Institute, RIKEN Brain Science Institute.
Odorant molecules bind to their target receptors in a precise and coordinated manner. Each receptor recognizes a specific signal and relays this information to the brain. As such, determining how olfactory information is transferred to the brain, modifying both perception and behavior, merits investigation. Interestingly, there is emerging evidence that cellular transduction and transcriptional factors are involved in the diversification of olfactory receptor neuron. Here we provide a robust whole mount immunological labeling method to assay in vivo olfactory receptor neuron organization. Using this method, we identified all olfactory receptor neurons with anti-ELAV antibody, a known pan-neural marker and Or49a-mCD8::GFP, an olfactory receptor neuron specifically expressed in Nba neuron using anti-GFP antibody.
Neuroscience, Issue 87, Developmental biology, Drosophila, Whole mount immunolabeling, olfactory receptor neurons, antennae, sensory organ
51245
Play Button
High-resolution Measurement of Odor-Driven Behavior in Drosophila Larvae
Authors: Matthieu Louis, Silvia Piccinotti, Leslie B. Vosshall.
Institutions: Rockefeller University.
Olfactory responses in Drosophila larvae have been traditionally studied in Petri dishes comprising a single peripheral odor source. In this behavioral paradigm, the experimenter usually assumes that the rapid diffusion of odorant molecules from the source leads to the creation of a stable gradient in the dish. To establish a quantitative correlation between sensory inputs and behavioral responses, it is necessary to achieve a more thorough characterization of the odorant stimulus conditions. In this video article, we describe a new method allowing the construction of odorant gradients with stable and controllable geometries. We briefly illustrate how these gradients can be used to screen for olfactory defects (full and partial anosmia) and to study more subtle features of chemotaxis behavior.
Neuroscience, issue 11, odor, olfactory, Drosophila, behavior
638
Play Button
An Effective Manual Deboning Method To Prepare Intact Mouse Nasal Tissue With Preserved Anatomical Organization
Authors: David Dunston, Sarah Ashby, Kurt Krosnowski, Tatsuya Ogura, Weihong Lin.
Institutions: University of Maryland Baltimore County.
The mammalian nose is a multi-functional organ with intricate internal structures. The nasal cavity is lined with various epithelia such as olfactory, respiratory, and squamous epithelia which differ markedly in anatomical locations, morphology, and functions. In adult mice, the nose is covered with various skull bones, limiting experimental access to internal structures, especially those in the posterior such as the main olfactory epithelium (MOE). Here we describe an effective method for obtaining almost the entire and intact nasal tissues with preserved anatomical organization. Using surgical tools under a dissecting microscope, we sequentially remove the skull bones surrounding the nasal tissue. This procedure can be performed on both paraformaldehyde-fixed and freshly dissected, skinned mouse heads. The entire deboning procedure takes about 20-30 min, which is significantly shorter than the experimental time required for conventional chemical-based decalcification. In addition, we present an easy method to remove air bubbles trapped between turbinates, which is critical for obtaining intact thin horizontal or coronal or sagittal sections from the nasal tissue preparation. Nasal tissue prepared using our method can be used for whole mount observation of the entire epithelia, as well as morphological, immunocytochemical, RNA in situ hybridization, and physiological studies, especially in studies where region-specific examination and comparison are of interest.
Anatomy, Issue 78, Physiology, Surgery, Tissue Engineering, Nose, Olfactory Mucosa, Olfactory Receptor Neurons, Vomeronasal Organ, skull bone removal, nasal cavity, olfactory epithelium, olfactory turbinate, respiratory epithelium, vomeronasal organ, histochemistry, mouse, animal model
50538
Play Button
Testing Drosophila Olfaction with a Y-maze Assay
Authors: Mégane M. Simonnet, Martine Berthelot-Grosjean, Yael Grosjean.
Institutions: UMR-6265 CNRS, UMR-1324 INRA, Université de Bourgogne.
Detecting signals from the environment is essential for animals to ensure their survival. To this aim, they use environmental cues such as vision, mechanoreception, hearing, and chemoperception through taste, via direct contact or through olfaction, which represents the response to a volatile molecule acting at longer range. Volatile chemical molecules are very important signals for most animals in the detection of danger, a source of food, or to communicate between individuals. Drosophila melanogaster is one of the most common biological models for scientists to explore the cellular and molecular basis of olfaction. In order to highlight olfactory abilities of this small insect, we describe a modified choice protocol based on the Y-maze test classically used with mice. Data obtained with Y-mazes give valuable information to better understand how animals deal with their perpetually changing environment. We introduce a step-by-step protocol to study the impact of odorants on fly exploratory response using this Y-maze assay.
Neuroscience, Issue 88, environmental effects (biological, animal and plant), genetics (animal and plant), life sciences, animal biology, behavioral sciences, Y-maze, olfaction, adult, choice, behavior, Drosophila melanogaster
51241
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.