JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Defects in the peripheral taste structure and function in the MRL/lpr mouse model of autoimmune disease.
While our understanding of the molecular and cellular aspects of taste reception and signaling continues to improve, the aberrations in these processes that lead to taste dysfunction remain largely unexplored. Abnormalities in taste can develop in a variety of diseases, including infections and autoimmune disorders. In this study, we used a mouse model of autoimmune disease to investigate the underlying mechanisms of taste disorders. MRL/MpJ-Fas(lpr)/J (MRL/lpr) mice develop a systemic autoimmunity with phenotypic similarities to human systemic lupus erythematosus and Sjögrens syndrome. Our results show that the taste tissues of MRL/lpr mice exhibit characteristics of inflammation, including infiltration of T lymphocytes and elevated levels of some inflammatory cytokines. Histological studies reveal that the taste buds of MRL/lpr mice are smaller than those of wild-type congenic control (MRL/+/+) mice. 5-Bromo-2-deoxyuridine (BrdU) pulse-chase experiments show that fewer BrdU-labeled cells enter the taste buds of MRL/lpr mice, suggesting an inhibition of taste cell renewal. Real-time RT-PCR analyses show that mRNA levels of several type II taste cell markers are lower in MRL/lpr mice. Immunohistochemical analyses confirm a significant reduction in the number of gustducin-positive taste receptor cells in the taste buds of MRL/lpr mice. Furthermore, MRL/lpr mice exhibit reduced gustatory nerve responses to the bitter compound quinine and the sweet compound saccharin and reduced behavioral responses to bitter, sweet, and umami taste substances compared with controls. In contrast, their responses to salty and sour compounds are comparable to those of control mice in both nerve recording and behavioral experiments. Together, our results suggest that type II taste receptor cells, which are essential for bitter, sweet, and umami taste reception and signaling, are selectively affected in MRL/lpr mice, a model for autoimmune disease with chronic inflammation.
Authors: Hakan Ozdener, Andrew I. Spielman, Nancy E. Rawson.
Published: 05-17-2012
Taste cells are highly specialized, with unique histological, molecular and physiological characteristics that permit detection of a wide range of simple stimuli and complex chemical molecules contained in foods. In human, individual fungiform papillae contain from zero to as many as 20 taste buds. There is no established protocol for culturing human taste cells, although the ability to maintain taste papillae cells in culture for multiple cell cycles would be of considerable utility for characterizing the molecular, regenerative, and functional properties of these unique sensory cells. Earlier studies of taste cells have been done using freshly isolated cells in primary culture, explant cultures from rodents, or semi-intact taste buds in tissue slices1,2,3,4. Although each of these preparations has advantages, the development of long-term cultures would have provided significant benefits, particularly for studies of taste cell proliferation and differentiation. Several groups, including ours, have been interested in the development and establishment of taste cell culture models. Most attempts to culture taste cells have reported limited viability, with cells typically not lasting beyond 3-5 d5,6,7,8. We recently reported on a successful method for the extended culture of rodent taste cells9. We here report for the first time the establishment of an in vitro culture system for isolated human fungiform taste papillae cells. Cells from human fungiform papillae obtained by biopsy were successfully maintained in culture for more than eight passages (12 months) without loss of viability. Cells displayed many molecular and physiological features characteristic of mature taste cells. Gustducin and phospholipase C β2, (PLC-β2) mRNA were detected in many cells by reverse transcriptase-polymerase chain reaction and confirmed by sequencing. Immunocytochemistry analysis demonstrated the presence of gustducin and PLC-β2 expression in cultured taste cells. Cultured human fungiform cells also exhibited increases in intracellular calcium in response to appropriate concentrations of several taste stimuli indicating that taste receptors and at least some of the signalling pathways were present. These results sufficient indicate that taste cells from adult humans can be generated and maintained for at least eight passages. Many of the cells retain physiological and biochemical characteristics of acutely isolated cells from the adult taste epithelium to support their use as a model taste system. This system will enable further studies of the processes involved in proliferation, differentiation and function of mammalian taste receptor cells in an in vitro preparation. Human fungiform taste papillae used for establishing human fungiform cell culture were donated for research following proper informed consent under research protocols that were reviewed and approved by the IRB committee. The protocol (#0934) was approved by Schulman Associates Institutional Review Board Inc., Cincinnati, OH. Written protocol below is based on published parameters reported by Ozdener et al. 201110.
19 Related JoVE Articles!
Play Button
Isolation of Double Negative αβ T Cells from the Kidney
Authors: Maria N. Martina, Samatha Bandapalle, Hamid Rabb, Abdel R. Hamad.
Institutions: Johns Hopkins University School of Medicine, Johns Hopkins University School of Medicine.
There is currently no standard protocol for the isolation of DN T cells from the non-lymphoid tissues despite their increasingly reported involvement in various immune responses. DN T cells are a unique immune cell type that has been implicated in regulating immune and autoimmune responses and tolerance to allotransplants1-6. DN T cells are, however, rare in peripheral blood and secondary lymphoid organs (spleen and lymph nodes), but are major residents of the normal kidney. Very little is known about their pathophysiologic function7 due to their paucity in the periphery. We recently described a comprehensive phenotypic and functional analysis of this population in the kidney8 in steady state and during ischemia reperfusion injury. Analysis of DN T cell function will be greatly enhanced by developing a protocol for their isolation from the kidney. Here, we describe a novel protocol that allows isolation of highly pure ab CD4+ CD8+ T cells and DN T cells from the murine kidney. Briefly, we digest kidney tissue using collagenase and isolate kidney mononuclear cells (KMNC) by density gradient. This is followed by two steps to enrich hematopoietic T cells from 3% to 70% from KMNC. The first step consists of a positive selection of hematopoietic cells using a CD45+ isolation kit. In the second step, DN T cells are negatively isolated by removal of non-desired cells using CD4, CD8, and MHC class II monoclonal antibodies and CD1d α-galcer tetramer. This strategy leads to a population of more than 90% pure DN T cells. Surface staining with the above mentioned antibodies followed by FACs analysis is used to confirm purity.
Immunology, Issue 87, Double Negative (DN) αβ, T cells, CD45+ T cell isolation, renal lymphocytes, non-lymphoid-tissues, T cells purification, Ischemia Reperfusion Injury, Acute Kidney Injury, Tissue Resident Lymphocytes, Lymphoproliferative Disorders, Erythematosus Lupus
Play Button
Measuring Oral Fatty Acid Thresholds, Fat Perception, Fatty Food Liking, and Papillae Density in Humans
Authors: Rivkeh Y. Haryono, Madeline A. Sprajcer, Russell S. J. Keast.
Institutions: Deakin University.
Emerging evidence from a number of laboratories indicates that humans have the ability to identify fatty acids in the oral cavity, presumably via fatty acid receptors housed on taste cells. Previous research has shown that an individual's oral sensitivity to fatty acid, specifically oleic acid (C18:1) is associated with body mass index (BMI), dietary fat consumption, and the ability to identify fat in foods. We have developed a reliable and reproducible method to assess oral chemoreception of fatty acids, using a milk and C18:1 emulsion, together with an ascending forced choice triangle procedure. In parallel, a food matrix has been developed to assess an individual's ability to perceive fat, in addition to a simple method to assess fatty food liking. As an added measure tongue photography is used to assess papillae density, with higher density often being associated with increased taste sensitivity.
Neuroscience, Issue 88, taste, overweight and obesity, dietary fat, fatty acid, diet, fatty food liking, detection threshold
Play Button
Electrophysiological Recording From Drosophila Labellar Taste Sensilla
Authors: Rebecca Delventhal, Aidan Kiely, John R. Carlson.
Institutions: Yale University.
The peripheral taste response of insects can be powerfully investigated with electrophysiological techniques. The method described here allows the researcher to measure gustatory responses directly and quantitatively, reflecting the sensory input that the insect nervous system receives from taste stimuli in its environment. This protocol outlines all key steps in performing this technique. The critical steps in assembling an electrophysiology rig, such as selection of necessary equipment and a suitable environment for recording, are delineated. We also describe how to prepare for recording by making appropriate reference and recording electrodes, and tastant solutions. We describe in detail the method used for preparing the insect by insertion of a glass reference electrode into the fly in order to immobilize the proboscis. We show traces of the electrical impulses fired by taste neurons in response to a sugar and a bitter compound. Aspects of the protocol are technically challenging and we include an extensive description of some common technical challenges that may be encountered, such as lack of signal or excessive noise in the system, and potential solutions. The technique has limitations, such as the inability to deliver temporally complex stimuli, observe background firing immediately prior to stimulus delivery, or use water-insoluble taste compounds conveniently. Despite these limitations, this technique (including minor variations referenced in the protocol) is a standard, broadly accepted procedure for recording Drosophila neuronal responses to taste compounds.
Neuroscience, Issue 84, Drosophila, insect, taste, neuron, electrophysiology, labellum, extracellular recording, labellar taste sensilla
Play Button
Simultaneous Recording of Calcium Signals from Identified Neurons and Feeding Behavior of Drosophila melanogaster
Authors: Motojiro Yoshihara.
Institutions: University of Massachusetts Medical School.
To study neuronal networks in terms of their function in behavior, we must analyze how neurons operate when each behavioral pattern is generated. Thus, simultaneous recordings of neuronal activity and behavior are essential to correlate brain activity to behavior. For such behavioral analyses, the fruit fly, Drosophila melanogaster, allows us to incorporate genetically encoded calcium indicators such as GCaMP1, to monitor neuronal activity, and to use sophisticated genetic manipulations for optogenetic or thermogenetic techniques to specifically activate identified neurons2-5. Use of a thermogenetic technique has led us to find critical neurons for feeding behavior (Flood et al., under revision). As a main part of feeding behavior, a Drosophila adult extends its proboscis for feeding6 (proboscis extension response; PER), responding to a sweet stimulus from sensory cells on its proboscis or tarsi. Combining the protocol for PER7 with a calcium imaging technique8 using GCaMP3.01, 9, I have established an experimental system, where we can monitor activity of neurons in the feeding center – the suboesophageal ganglion (SOG), simultaneously with behavioral observation of the proboscis. I have designed an apparatus ("Fly brain Live Imaging and Electrophysiology Stage": "FLIES") to accommodate a Drosophila adult, allowing its proboscis to freely move while its brain is exposed to the bath for Ca2+ imaging through a water immersion lens. The FLIES is also appropriate for many types of live experiments on fly brains such as electrophysiological recording or time lapse imaging of synaptic morphology. Because the results from live imaging can be directly correlated with the simultaneous PER behavior, this methodology can provide an excellent experimental system to study information processing of neuronal networks, and how this cellular activity is coupled to plastic processes and memory.
Neuroscience, Issue 62, feeding, proboscis extension, calcium imaging, Drosophila, fruit fly, GCaMP, suboesophageal ganglion (SOG), live imaging, FLIES
Play Button
Induction of Experimental Autoimmune Hypophysitis in SJL Mice
Authors: Melissa A. Landek-Salgado, Shey-Cherng Tzou, Hiroaki Kimura, Patrizio Caturegli.
Institutions: The Johns Hopkins University.
Autoimmune hypophysitis can be reproduced experimentally by the injection of pituitary proteins mixed with an adjuvant into susceptible mice1. Mouse models allow us to study how diseases unfold, often providing a good replica of the same processes occurring in humans. For some autoimmune diseases, like type 1A diabetes, there are models (the NOD mouse) that spontaneously develop a disease similar to the human counterpart. For many other autoimmune diseases, however, the model needs to be induced experimentally. A common approach in this regard is to inject the mouse with a dominant antigen derived from the organ being studied. For example, investigators interested in autoimmune thyroiditis inject mice with thyroglobulin2, and those interested in myasthenia gravis inject them with the acetylcholine receptor3. If the autoantigen for a particular autoimmune disease is not known, investigators inject a crude protein extract from the organ targeted by the autoimmune reaction. For autoimmune hypophysitis, the pathogenic autoantigen(s) remain to be identified4, and thus a crude pituitary protein preparation is used. In this video article we demonstrate how to induce experimental autoimmune hypophysitis in SJL mice.
Immunology, Issue 46, autoimmunity, hypophysitis, immunization, SJL mice, Freund's adjuvant
Play Button
Reconstitution of a Kv Channel into Lipid Membranes for Structural and Functional Studies
Authors: Sungsoo Lee, Hui Zheng, Liang Shi, Qiu-Xing Jiang.
Institutions: University of Texas Southwestern Medical Center at Dallas.
To study the lipid-protein interaction in a reductionistic fashion, it is necessary to incorporate the membrane proteins into membranes of well-defined lipid composition. We are studying the lipid-dependent gating effects in a prototype voltage-gated potassium (Kv) channel, and have worked out detailed procedures to reconstitute the channels into different membrane systems. Our reconstitution procedures take consideration of both detergent-induced fusion of vesicles and the fusion of protein/detergent micelles with the lipid/detergent mixed micelles as well as the importance of reaching an equilibrium distribution of lipids among the protein/detergent/lipid and the detergent/lipid mixed micelles. Our data suggested that the insertion of the channels in the lipid vesicles is relatively random in orientations, and the reconstitution efficiency is so high that no detectable protein aggregates were seen in fractionation experiments. We have utilized the reconstituted channels to determine the conformational states of the channels in different lipids, record electrical activities of a small number of channels incorporated in planar lipid bilayers, screen for conformation-specific ligands from a phage-displayed peptide library, and support the growth of 2D crystals of the channels in membranes. The reconstitution procedures described here may be adapted for studying other membrane proteins in lipid bilayers, especially for the investigation of the lipid effects on the eukaryotic voltage-gated ion channels.
Molecular Biology, Issue 77, Biochemistry, Genetics, Cellular Biology, Structural Biology, Biophysics, Membrane Lipids, Phospholipids, Carrier Proteins, Membrane Proteins, Micelles, Molecular Motor Proteins, life sciences, biochemistry, Amino Acids, Peptides, and Proteins, lipid-protein interaction, channel reconstitution, lipid-dependent gating, voltage-gated ion channel, conformation-specific ligands, lipids
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (, a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
Play Button
Simultaneous Quantification of T-Cell Receptor Excision Circles (TRECs) and K-Deleting Recombination Excision Circles (KRECs) by Real-time PCR
Authors: Alessandra Sottini, Federico Serana, Diego Bertoli, Marco Chiarini, Monica Valotti, Marion Vaglio Tessitore, Luisa Imberti.
Institutions: Spedali Civili di Brescia.
T-cell receptor excision circles (TRECs) and K-deleting recombination excision circles (KRECs) are circularized DNA elements formed during recombination process that creates T- and B-cell receptors. Because TRECs and KRECs are unable to replicate, they are diluted after each cell division, and therefore persist in the cell. Their quantity in peripheral blood can be considered as an estimation of thymic and bone marrow output. By combining well established and commonly used TREC assay with a modified version of KREC assay, we have developed a duplex quantitative real-time PCR that allows quantification of both newly-produced T and B lymphocytes in a single assay. The number of TRECs and KRECs are obtained using a standard curve prepared by serially diluting TREC and KREC signal joints cloned in a bacterial plasmid, together with a fragment of T-cell receptor alpha constant gene that serves as reference gene. Results are reported as number of TRECs and KRECs/106 cells or per ml of blood. The quantification of these DNA fragments have been proven useful for monitoring immune reconstitution following bone marrow transplantation in both children and adults, for improved characterization of immune deficiencies, or for better understanding of certain immunomodulating drug activity.
Immunology, Issue 94, B lymphocytes, primary immunodeficiency, real-time PCR, immune recovery, T-cell homeostasis, T lymphocytes, thymic output, bone marrow output
Play Button
Methods to Assess Subcellular Compartments of Muscle in C. elegans
Authors: Christopher J. Gaffney, Joseph J. Bass, Thomas F. Barratt, Nathaniel J. Szewczyk.
Institutions: University of Nottingham.
Muscle is a dynamic tissue that responds to changes in nutrition, exercise, and disease state. The loss of muscle mass and function with disease and age are significant public health burdens. We currently understand little about the genetic regulation of muscle health with disease or age. The nematode C. elegans is an established model for understanding the genomic regulation of biological processes of interest. This worm’s body wall muscles display a large degree of homology with the muscles of higher metazoan species. Since C. elegans is a transparent organism, the localization of GFP to mitochondria and sarcomeres allows visualization of these structures in vivo. Similarly, feeding animals cationic dyes, which accumulate based on the existence of a mitochondrial membrane potential, allows the assessment of mitochondrial function in vivo. These methods, as well as assessment of muscle protein homeostasis, are combined with assessment of whole animal muscle function, in the form of movement assays, to allow correlation of sub-cellular defects with functional measures of muscle performance. Thus, C. elegans provides a powerful platform with which to assess the impact of mutations, gene knockdown, and/or chemical compounds upon muscle structure and function. Lastly, as GFP, cationic dyes, and movement assays are assessed non-invasively, prospective studies of muscle structure and function can be conducted across the whole life course and this at present cannot be easily investigated in vivo in any other organism.
Developmental Biology, Issue 93, Physiology, C. elegans, muscle, mitochondria, sarcomeres, ageing
Play Button
Assaying Locomotor, Learning, and Memory Deficits in Drosophila Models of Neurodegeneration
Authors: Yousuf O. Ali, Wilfredo Escala, Kai Ruan, R. Grace Zhai.
Institutions: University of Miami, Miller School of Medicine.
Advances in genetic methods have enabled the study of genes involved in human neurodegenerative diseases using Drosophila as a model system1. Most of these diseases, including Alzheimer's, Parkinson's and Huntington's disease are characterized by age-dependent deterioration in learning and memory functions and movement coordination2. Here we use behavioral assays, including the negative geotaxis assay3 and the aversive phototaxic suppression assay (APS assay)4,5, to show that some of the behavior characteristics associated with human neurodegeneration can be recapitulated in flies. In the negative geotaxis assay, the natural tendency of flies to move against gravity when agitated is utilized to study genes or conditions that may hinder locomotor capacities. In the APS assay, the learning and memory functions are tested in positively-phototactic flies trained to associate light with aversive bitter taste and hence avoid this otherwise natural tendency to move toward light. Testing these trained flies 6 hours post-training is used to assess memory functions. Using these assays, the contribution of any genetic or environmental factors toward developing neurodegeneration can be easily studied in flies.
Neuroscience, Issue 49, Geotaxis, phototaxis, behavior, Tau
Play Button
Overcoming Unresponsiveness in Experimental Autoimmune Encephalomyelitis (EAE) Resistant Mouse Strains by Adoptive Transfer and Antigenic Challenge
Authors: Michael K. Shaw, Xiao-qing Zhao, Harley Y. Tse.
Institutions: St. John-Providence Health System, Wayne State University School of Medicine.
Experimental autoimmune encephalomyelitis (EAE) is an inflammatory disease of the central nervous system (CNS) and has been used as an animal model for study of the human demyelinating disease, multiple sclerosis (MS). EAE is characterized by pathologic infiltration of mononuclear cells into the CNS and by clinical manifestation of paralytic disease. Similar to MS, EAE is also under genetic control in that certain mouse strains are susceptible to disease induction while others are resistant. Typically, C57BL/6 (H-2b) mice immunized with myelin basic protein (MBP) fail to develop paralytic signs. This unresponsiveness is certainly not due to defects in antigen processing or antigen presentation of MBP, as an experimental protocol described here had been used to induce severe EAE in C57BL/6 mice as well as other reputed resistant mouse strains. In addition, encephalitogenic T cell clones from C57BL/6 and Balb/c mice reactive to MBP had been successfully isolated and propagated. The experimental protocol involves using a cellular adoptive transfer system in which MBP-primed (200 μg/mouse) C57BL/6 donor lymph node cells are isolated and cultured for five days with the antigen to expand the pool of MBP-specific T cells. At the end of the culture period, 50 million viable cells are transferred into naive syngeneic recipients through the tail vein. Recipient mice so treated normally do not develop EAE, thus reaffirming their resistant status, and they can remain normal indefinitely. Ten days post cell transfer, recipient mice are challenged with complete Freund adjuvant (CFA)-emulsified MBP in four sites in the flanks. Severe EAE starts to develop in these mice ten to fourteen days after challenge. Results showed that the induction of disease was antigenic specific as challenge with irrelevant antigens did not induce clinical signs of disease. Significantly, a titration of the antigen dose used to challenge the recipient mice showed that it could be as low as 5 μg/mouse. In addition, a kinetic study of the timing of antigenic challenge showed that challenge to induce disease was effective as early as 5 days post antigenic challenge and as long as over 445 days post antigenic challenge. These data strongly point toward the involvement of a "long-lived" T cell population in maintaining unresponsiveness. The involvement of regulatory T cells (Tregs) in this system is not defined.
Immunology, Issue 62, Autoimmune diseases, experimental autoimmune encephalomyelitis, immunization, myelin basic protein, adoptive transfer, paralysis
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
Play Button
A Procedure to Observe Context-induced Renewal of Pavlovian-conditioned Alcohol-seeking Behavior in Rats
Authors: Jean-Marie Maddux, Franca Lacroix, Nadia Chaudhri.
Institutions: Concordia University.
Environmental contexts in which drugs of abuse are consumed can trigger craving, a subjective Pavlovian-conditioned response that can facilitate drug-seeking behavior and prompt relapse in abstinent drug users. We have developed a procedure to study the behavioral and neural processes that mediate the impact of context on alcohol-seeking behavior in rats. Following acclimation to the taste and pharmacological effects of 15% ethanol in the home cage, male Long-Evans rats receive Pavlovian discrimination training (PDT) in conditioning chambers. In each daily (Mon-Fri) PDT session, 16 trials each of two different 10 sec auditory conditioned stimuli occur. During one stimulus, the CS+, 0.2 ml of 15% ethanol is delivered into a fluid port for oral consumption. The second stimulus, the CS-, is not paired with ethanol. Across sessions, entries into the fluid port during the CS+ increase, whereas entries during the CS- stabilize at a lower level, indicating that a predictive association between the CS+ and ethanol is acquired. During PDT each chamber is equipped with a specific configuration of visual, olfactory and tactile contextual stimuli. Following PDT, extinction training is conducted in the same chamber that is now equipped with a different configuration of contextual stimuli. The CS+ and CS- are presented as before, but ethanol is withheld, which causes a gradual decline in port entries during the CS+. At test, rats are placed back into the PDT context and presented with the CS+ and CS- as before, but without ethanol. This manipulation triggers a robust and selective increase in the number of port entries made during the alcohol predictive CS+, with no change in responding during the CS-. This effect, referred to as context-induced renewal, illustrates the powerful capacity of contexts associated with alcohol consumption to stimulate alcohol-seeking behavior in response to Pavlovian alcohol cues.
Behavior, Issue 91, Behavioral neuroscience, alcoholism, relapse, addiction, Pavlovian conditioning, ethanol, reinstatement, discrimination, conditioned approach
Play Button
A Novel Procedure for Evaluating the Reinforcing Properties of Tastants in Laboratory Rats: Operant Intraoral Self-administration
Authors: AnneMarie Levy, Cheryl L. Limebeer, Justin Ferdinand, Ucal Shillingford, Linda A. Parker, Francesco Leri.
Institutions: University of Guelph.
This paper describes a novel method for studying the bio-behavioral basis of addiction to food. This method combines the surgical component of taste reactivity with the behavioral aspects of operant self-administration of drugs. Under very brief general anaesthesia, rats are implanted with an intraoral (IO) cannula that allows delivery of test solutions directly in the oral cavity. Animals are then tested in operant self-administration chambers whereby they can press a lever to receive IO infusions of test solutions. IO self-administration has several advantages over experimental procedures that involve drinking a solution from a spout or operant responding for solid pellets or solutions delivered in a receptacle. Here, we show that IO self-administration can be employed to study self-administration of high fructose corn syrup (HFCS). Rats were first tested for self-administration on a progressive ratio (PR) schedule, which assesses the maximum amount of operant behavior that will be emitted for different concentrations of HFCS (i.e. 8%, 25%, and 50%). Following this test, rats self-administered these concentrations on a continuous schedule of reinforcement (i.e. one infusion for each lever press) for 10 consecutive days (1 session/day; each lasting 3 hr), and then they were retested on the PR schedule. On the continuous reinforcement schedule, rats took fewer infusions of higher concentrations, although the lowest concentration of HFCS (8%) maintained more variable self-administration. Furthermore, the PR tests revealed that 8% had lower reinforcing value than 25% and 50%. These results indicate that IO self-administration can be employed to study acquisition and maintenance of responding for sweet solutions. The sensitivity of the operant response to differences in concentration and schedule of reinforcement makes IO self-administration an ideal procedure to investigate the neurobiology of voluntary intake of sweets.
Behavior, Issue 84, Administration, Oral, Conditioning, Operant, Reinforcement (Psychology), Reinforcement Schedule, Taste, Neurosciences, Intraoral infusions, operant chambers, self-administration, high fructose corn syrup, progressive ratio, breakpoint, addiction
Play Button
A Mouse Model for Pathogen-induced Chronic Inflammation at Local and Systemic Sites
Authors: George Papadopoulos, Carolyn D. Kramer, Connie S. Slocum, Ellen O. Weinberg, Ning Hua, Cynthia V. Gudino, James A. Hamilton, Caroline A. Genco.
Institutions: Boston University School of Medicine, Boston University School of Medicine.
Chronic inflammation is a major driver of pathological tissue damage and a unifying characteristic of many chronic diseases in humans including neoplastic, autoimmune, and chronic inflammatory diseases. Emerging evidence implicates pathogen-induced chronic inflammation in the development and progression of chronic diseases with a wide variety of clinical manifestations. Due to the complex and multifactorial etiology of chronic disease, designing experiments for proof of causality and the establishment of mechanistic links is nearly impossible in humans. An advantage of using animal models is that both genetic and environmental factors that may influence the course of a particular disease can be controlled. Thus, designing relevant animal models of infection represents a key step in identifying host and pathogen specific mechanisms that contribute to chronic inflammation. Here we describe a mouse model of pathogen-induced chronic inflammation at local and systemic sites following infection with the oral pathogen Porphyromonas gingivalis, a bacterium closely associated with human periodontal disease. Oral infection of specific-pathogen free mice induces a local inflammatory response resulting in destruction of tooth supporting alveolar bone, a hallmark of periodontal disease. In an established mouse model of atherosclerosis, infection with P. gingivalis accelerates inflammatory plaque deposition within the aortic sinus and innominate artery, accompanied by activation of the vascular endothelium, an increased immune cell infiltrate, and elevated expression of inflammatory mediators within lesions. We detail methodologies for the assessment of inflammation at local and systemic sites. The use of transgenic mice and defined bacterial mutants makes this model particularly suitable for identifying both host and microbial factors involved in the initiation, progression, and outcome of disease. Additionally, the model can be used to screen for novel therapeutic strategies, including vaccination and pharmacological intervention.
Immunology, Issue 90, Pathogen-Induced Chronic Inflammation; Porphyromonas gingivalis; Oral Bone Loss; Periodontal Disease; Atherosclerosis; Chronic Inflammation; Host-Pathogen Interaction; microCT; MRI
Play Button
Systemic Injection of Neural Stem/Progenitor Cells in Mice with Chronic EAE
Authors: Matteo Donegà, Elena Giusto, Chiara Cossetti, Julia Schaeffer, Stefano Pluchino.
Institutions: University of Cambridge, UK, University of Cambridge, UK.
Neural stem/precursor cells (NPCs) are a promising stem cell source for transplantation approaches aiming at brain repair or restoration in regenerative neurology. This directive has arisen from the extensive evidence that brain repair is achieved after focal or systemic NPC transplantation in several preclinical models of neurological diseases. These experimental data have identified the cell delivery route as one of the main hurdles of restorative stem cell therapies for brain diseases that requires urgent assessment. Intraparenchymal stem cell grafting represents a logical approach to those pathologies characterized by isolated and accessible brain lesions such as spinal cord injuries and Parkinson's disease. Unfortunately, this principle is poorly applicable to conditions characterized by a multifocal, inflammatory and disseminated (both in time and space) nature, including multiple sclerosis (MS). As such, brain targeting by systemic NPC delivery has become a low invasive and therapeutically efficacious protocol to deliver cells to the brain and spinal cord of rodents and nonhuman primates affected by experimental chronic inflammatory damage of the central nervous system (CNS). This alternative method of cell delivery relies on the NPC pathotropism, specifically their innate capacity to (i) sense the environment via functional cell adhesion molecules and inflammatory cytokine and chemokine receptors; (ii) cross the leaking anatomical barriers after intravenous (i.v.) or intracerebroventricular (i.c.v.) injection; (iii) accumulate at the level of multiple perivascular site(s) of inflammatory brain and spinal cord damage; and (i.v.) exert remarkable tissue trophic and immune regulatory effects onto different host target cells in vivo. Here we describe the methods that we have developed for the i.v. and i.c.v. delivery of syngeneic NPCs in mice with experimental autoimmune encephalomyelitis (EAE), as model of chronic CNS inflammatory demyelination, and envisage the systemic stem cell delivery as a valuable technique for the selective targeting of the inflamed brain in regenerative neurology.
Immunology, Issue 86, Somatic neural stem/precursor cells, neurodegenerative disorders, regenerative medicine, multiple sclerosis, experimental autoimmune encephalomyelitis, systemic delivery, intravenous, intracerebroventricular
Play Button
Technique to Collect Fungiform (Taste) Papillae from Human Tongue
Authors: Andrew I. Spielman, M. Yanina Pepino, Roy Feldman, Joseph G. Brand.
Institutions: College of Dentistry, New York University, School of Medicine, Washington University in St. Louis, Veterans Affairs Medical Center, University of Pennsylvania-School of Medicine, Monell Chemical Senses Center, Monell Chemical Senses Center.
The sense of taste is critical for human life. It informs the body about the quality of food that will be potentially ingested and stimulates metabolic processes that prepare the alimentary canal for digestion. Steady progress is being made towards understanding the early biochemical and molecular events underlying taste transduction (for a review, Breslin and Spector, 20081). However, progress to date has largely resulted from animal models. Yet, since marked differences in receptor specificity and receptor density vary among species, human taste transduction will only be understood by using human taste tissue. Here we describe a biopsy technique to collect human fungiform papillae, visible as rounded pink anterior structures, about 0.5 mm in diameter that contain taste buds. These biopsied papillae are used for several purposes including the isolation of viable taste bud cells, in situ hybridization, immunohistochemistry and, through techniques of molecular biology, the identification of taste-specific novel proteins.
JoVE Medicine, Issue 42, tongue, human, taste cells, fungiform papillae, biopsy
Play Button
Testing Drosophila Olfaction with a Y-maze Assay
Authors: Mégane M. Simonnet, Martine Berthelot-Grosjean, Yael Grosjean.
Institutions: UMR-6265 CNRS, UMR-1324 INRA, Université de Bourgogne.
Detecting signals from the environment is essential for animals to ensure their survival. To this aim, they use environmental cues such as vision, mechanoreception, hearing, and chemoperception through taste, via direct contact or through olfaction, which represents the response to a volatile molecule acting at longer range. Volatile chemical molecules are very important signals for most animals in the detection of danger, a source of food, or to communicate between individuals. Drosophila melanogaster is one of the most common biological models for scientists to explore the cellular and molecular basis of olfaction. In order to highlight olfactory abilities of this small insect, we describe a modified choice protocol based on the Y-maze test classically used with mice. Data obtained with Y-mazes give valuable information to better understand how animals deal with their perpetually changing environment. We introduce a step-by-step protocol to study the impact of odorants on fly exploratory response using this Y-maze assay.
Neuroscience, Issue 88, environmental effects (biological, animal and plant), genetics (animal and plant), life sciences, animal biology, behavioral sciences, Y-maze, olfaction, adult, choice, behavior, Drosophila melanogaster
Play Button
Proboscis Extension Response (PER) Assay in Drosophila
Authors: Takashi Shiraiwa, John R. Carlson.
Institutions: Yale University.
Proboscis extension response (PER) is a taste behavior assay that has been used in flies as well as in honeybees. On the surface of the fly's mouth (labellum), there are hair-like structures called sensilla which houses taste neurons. When an attractive substance makes contact to the labellum, the fly extends its proboscis to consume the material. Proboscis Extension Response (PER) assay measures this taste behavior response, and it is a useful method to learn about food preferences in a single fly. Solutions of various sugars, such as sucrose, glucose and fructose, are very attractive to the fly. The effect of aversive substances can also be tested as reduction of PER when mixed in a sweet solution.Despite the simplicity of the basic procedure, there are many things that can prevent it from working. One of the factors that requires attention is the fly's responsive state. The required starvation time to bring the fly to the proper responsive state varies drastically from 36 to 72 hours. We established a series of controls to evaluate the fly's state and which allows screening out of non-responsive or hyper-responsive individual animals. Another important factor is the impact level and the position of the contact to the labellum, which would be difficult to describe by words. This video presentation demonstrates all these together with several other improvements that would increase the reproducibility of this method.
Neuroscience, Issue 3, Drosophila, behavior, taste, proboscis, extension
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.