JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Antibody repertoires in humanized NOD-scid-IL2R?(null) mice and human B cells reveals human-like diversification and tolerance checkpoints in the mouse.
Immunodeficient mice reconstituted with human hematopoietic stem cells enable the in vivo study of human hematopoiesis. In particular, NOD-scid-IL2R?(null) engrafted mice have been shown to have reasonable levels of T and B cell repopulation and can mount T-cell dependent responses; however, antigen-specific B-cell responses in this model are generally poor. We explored whether developmental defects in the immunoglobulin gene repertoire might be partly responsible for the low level of antibody responses in this model. Roche 454 sequencing was used to obtain over 685,000 reads from cDNA encoding immunoglobulin heavy (IGH) and light (IGK and IGL) genes isolated from immature, naïve, or total splenic B cells in engrafted NOD-scid-IL2R?(null) mice, and compared with over 940,000 reads from peripheral B cells of two healthy volunteers. We find that while naïve B-cell repertoires in humanized mice are chiefly indistinguishable from those in human blood B cells, and display highly correlated patterns of immunoglobulin gene segment use, the complementarity-determining region H3 (CDR-H3) repertoires are nevertheless extremely diverse and are specific for each individual. Despite this diversity, preferential D(H)-J(H) pairings repeatedly occur within the CDR-H3 interval that are strikingly similar across all repertoires examined, implying a genetic constraint imposed on repertoire generation. Moreover, CDR-H3 length, charged amino-acid content, and hydropathy are indistinguishable between humans and humanized mice, with no evidence of global autoimmune signatures. Importantly, however, a statistically greater usage of the inherently autoreactive IGHV4-34 and IGKV4-1 genes was observed in the newly formed immature B cells relative to naïve B or total splenic B cells in the humanized mice, a finding consistent with the deletion of autoreactive B cells in humans. Overall, our results provide evidence that key features of the primary repertoire are shaped by genetic factors intrinsic to human B cells and are principally unaltered by differences between mouse and human stromal microenvironments.
Authors: Burhan P Jama, Gerald P Morris.
Published: 11-21-2014
The study of human T lymphocyte biology often involves examination of responses to activating ligands. T cells recognize and respond to processed peptide antigens presented by MHC (human ortholog HLA) molecules through the T cell receptor (TCR) in a highly sensitive and specific manner. While the primary function of T cells is to mediate protective immune responses to foreign antigens presented by self-MHC, T cells respond robustly to antigenic differences in allogeneic tissues. T cell responses to alloantigens can be described as either direct or indirect alloreactivity. In alloreactivity, the T cell responds through highly specific recognition of both the presented peptide and the MHC molecule. The robust oligoclonal response of T cells to allogeneic stimulation reflects the large number of potentially stimulatory alloantigens present in allogeneic tissues. While the breadth of alloreactive T cell responses is an important factor in initiating and mediating the pathology associated with biologically-relevant alloreactive responses such as graft versus host disease and allograft rejection, it can preclude analysis of T cell responses to allogeneic ligands. To this end, this protocol describes a method for generating alloreactive T cells from naive human peripheral blood leukocytes (PBL) that respond to known peptide-MHC (pMHC) alloantigens. The protocol applies pMHC multimer labeling, magnetic bead enrichment and flow cytometry to single cell in vitro culture methods for the generation of alloantigen-specific T cell clones. This enables studies of the biochemistry and function of T cells responding to allogeneic stimulation.
25 Related JoVE Articles!
Play Button
Methods to Assess Beta Cell Death Mediated by Cytotoxic T Lymphocytes
Authors: Jing Chen, Scott Grieshaber, Clayton E. Mathews.
Institutions: University of Florida.
Type 1 diabetes (T1D) is a T cell mediated autoimmune disease. During the pathogenesis, patients become progressively more insulinopenic as insulin production is lost, presumably this results from the destruction of pancreatic beta cells by T cells. Understanding the mechanisms of beta cell death during the development of T1D will provide insights to generate an effective cure for this disease. Cell-mediated lymphocytotoxicity (CML) assays have historically used the radionuclide Chromium 51 (51Cr) to label target cells. These targets are then exposed to effector cells and the release of 51Cr from target cells is read as an indication of lymphocyte-mediated cell death. Inhibitors of cell death result in decreased release of 51Cr. As effector cells, we used an activated autoreactive clonal population of CD8+ Cytotoxic T lymphocytes (CTL) isolated from a mouse stock transgenic for both the alpha and beta chains of the AI4 T cell receptor (TCR). Activated AI4 T cells were co-cultured with 51Cr labeled target NIT cells for 16 hours, release of 51Cr was recorded to calculate specific lysis Mitochondria participate in many important physiological events, such as energy production, regulation of signaling transduction, and apoptosis. The study of beta cell mitochondrial functional changes during the development of T1D is a novel area of research. Using the mitochondrial membrane potential dye Tetramethyl Rhodamine Methyl Ester (TMRM) and confocal microscopic live cell imaging, we monitored mitochondrial membrane potential over time in the beta cell line NIT-1. For imaging studies, effector AI4 T cells were labeled with the fluorescent nuclear staining dye Picogreen. NIT-1 cells and T cells were co-cultured in chambered coverglass and mounted on the microscope stage equipped with a live cell chamber, controlled at 37°C, with 5% CO2, and humidified. During these experiments images were taken of each cluster every 3 minutes for 400 minutes. Over a course of 400 minutes, we observed the dissipation of mitochondrial membrane potential in NIT-1 cell clusters where AI4 T cells were attached. In the simultaneous control experiment where NIT-1 cells were co-cultured with MHC mis-matched human lymphocyte Jurkat cells, mitochondrial membrane potential remained intact. This technique can be used to observe real-time changes in mitochondrial membrane potential in cells under attack of cytotoxic lymphocytes, cytokines, or other cytotoxic reagents.
Immunology, Issue 52, cell, Type 1 Diabetes, Autoimmunity, Cytotoxic T Lymphocyte
Play Button
Trichuris muris Infection: A Model of Type 2 Immunity and Inflammation in the Gut
Authors: Frann Antignano, Sarah C. Mullaly, Kyle Burrows, Colby Zaph.
Institutions: University of British Columbia, University of British Columbia.
Trichuris muris is a natural pathogen of mice and is biologically and antigenically similar to species of Trichuris that infect humans and livestock1. Infective eggs are given by oral gavage, hatch in the distal small intestine, invade the intestinal epithelial cells (IECs) that line the crypts of the cecum and proximal colon and upon maturation the worms release eggs into the environment1. This model is a powerful tool to examine factors that control CD4+ T helper (Th) cell activation as well as changes in the intestinal epithelium. The immune response that occurs in resistant inbred strains, such as C57BL/6 and BALB/c, is characterized by Th2 polarized cytokines (IL-4, IL-5 and IL-13) and expulsion of worms while Th1-associated cytokines (IL-12, IL-18, IFN-γ) promote chronic infections in genetically susceptible AKR/J mice2-6. Th2 cytokines promote physiological changes in the intestinal microenvironment including rapid turnover of IECs, goblet cell differentiation, recruitment and changes in epithelial permeability and smooth muscle contraction, all of which have been implicated in worm expulsion7-15. Here we detail a protocol for propagating Trichuris muris eggs which can be used in subsequent experiments. We also provide a sample experimental harvest with suggestions for post-infection analysis. Overall, this protocol will provide researchers with the basic tools to perform a Trichuris muris mouse infection model which can be used to address questions pertaining to Th proclivity in the gastrointestinal tract as well as immune effector functions of IECs.
Infection, Issue 51, Trichuris muris, mouse, Th2, intestine, inflammation
Play Button
Induction of Experimental Autoimmune Hypophysitis in SJL Mice
Authors: Melissa A. Landek-Salgado, Shey-Cherng Tzou, Hiroaki Kimura, Patrizio Caturegli.
Institutions: The Johns Hopkins University.
Autoimmune hypophysitis can be reproduced experimentally by the injection of pituitary proteins mixed with an adjuvant into susceptible mice1. Mouse models allow us to study how diseases unfold, often providing a good replica of the same processes occurring in humans. For some autoimmune diseases, like type 1A diabetes, there are models (the NOD mouse) that spontaneously develop a disease similar to the human counterpart. For many other autoimmune diseases, however, the model needs to be induced experimentally. A common approach in this regard is to inject the mouse with a dominant antigen derived from the organ being studied. For example, investigators interested in autoimmune thyroiditis inject mice with thyroglobulin2, and those interested in myasthenia gravis inject them with the acetylcholine receptor3. If the autoantigen for a particular autoimmune disease is not known, investigators inject a crude protein extract from the organ targeted by the autoimmune reaction. For autoimmune hypophysitis, the pathogenic autoantigen(s) remain to be identified4, and thus a crude pituitary protein preparation is used. In this video article we demonstrate how to induce experimental autoimmune hypophysitis in SJL mice.
Immunology, Issue 46, autoimmunity, hypophysitis, immunization, SJL mice, Freund's adjuvant
Play Button
Trans-vivo Delayed Type Hypersensitivity Assay for Antigen Specific Regulation
Authors: Ewa Jankowska-Gan, Subramanya Hegde, William J. Burlingham.
Institutions: University of Wisconsin-Madison, School of Medicine and Public Health.
Delayed-type hypersensitivity response (DTH) is a rapid in vivo manifestation of T cell-dependent immune response to a foreign antigen (Ag) that the host immune system has experienced in the recent past. DTH reactions are often divided into a sensitization phase, referring to the initial antigen experience, and a challenge phase, which usually follows several days after sensitization. The lack of a delayed-type hypersensitivity response to a recall Ag demonstrated by skin testing is often regarded as an evidence of anergy. The traditional DTH assay has been effectively used in diagnosing many microbial infections. Despite sharing similar immune features such as lymphocyte infiltration, edema, and tissue necrosis, the direct DTH is not a feasible diagnostic technique in transplant patients because of the possibility of direct injection resulting in sensitization to donor antigens and graft loss. To avoid this problem, the human-to-mouse "trans-vivo" DTH assay was developed 1,2. This test is essentially a transfer DTH assay, in which human peripheral blood mononuclear cells (PBMCs) and specific antigens were injected subcutaneously into the pinnae or footpad of a naïve mouse and DTH-like swelling is measured after 18-24 hr 3. The antigen presentation by human antigen presenting cells such as macrophages or DCs to T cells in highly vascular mouse tissue triggers the inflammatory cascade and attracts mouse immune cells resulting in swelling responses. The response is antigen-specific and requires prior antigen sensitization. A positive donor-reactive DTH response in the Tv-DTH assay reflects that the transplant patient has developed a pro-inflammatory immune disposition toward graft alloantigens. The most important feature of this assay is that it can also be used to detect regulatory T cells, which cause bystander suppression. Bystander suppression of a DTH recall response in the presence of donor antigen is characteristic of transplant recipients with accepted allografts 2,4-14. The monitoring of transplant recipients for alloreactivity and regulation by Tv-DTH may identify a subset of patients who could benefit from reduction of immunosuppression without elevated risk of rejection or deteriorating renal function. A promising area is the application of the Tv-DTH assay in monitoring of autoimmunity15,16 and also in tumor immunology 17.
Immunology, Issue 75, Medicine, Molecular Biology, Cellular Biology, Biomedical Engineering, Anatomy, Physiology, Cancer Biology, Surgery, Trans-vivo delayed type hypersensitivity, Tv-DTH, Donor antigen, Antigen-specific regulation, peripheral blood mononuclear cells, PBMC, T regulatory cells, severe combined immunodeficient mice, SCID, T cells, lymphocytes, inflammation, injection, mouse, animal model
Play Button
Femoral Bone Marrow Aspiration in Live Mice
Authors: Young Rock Chung, Eunhee Kim, Omar Abdel-Wahab.
Institutions: Memorial Sloan-Kettering Cancer Center.
Serial sampling of the cellular composition of bone marrow (BM) is a routine procedure critical to clinical hematology. This protocol describes a detailed step-by-step technical procedure for an analogous procedure in live mice which allows for serial characterization of cells present in the BM. This procedure facilitates studies aimed to detect the presence of exogenously administered cells within the BM of mice as would be done in xenograft studies for instance. Moreover, this procedure allows for the retrieval and characterization of cells enriched in the BM such as hematopoietic stem and progenitor cells (HSPCs) without sacrifice of mice. Given that the cellular composition of peripheral blood is not necessarily reflective of proportions and types of stem and progenitor cells present in the marrow, procedures which provide access to this compartment without requiring termination of the mice are very helpful. The use of femoral bone marrow aspiration is illustrated here for cytological analysis of marrow cells, flow cytometric characterization of the hematopoietic stem/progenitor compartment, and culture of sorted HSPCs obtained by femoral BM aspiration compared with conventional marrow harvest.
Medicine, Issue 89, Bone marrow, Leukemia, Hematopoiesis, Aspiration, Mouse Model, Hematopoietic Stem Cell
Play Button
Transplantation of Induced Pluripotent Stem Cell-derived Mesoangioblast-like Myogenic Progenitors in Mouse Models of Muscle Regeneration
Authors: Mattia F. M. Gerli, Sara M. Maffioletti, Queensta Millet, Francesco Saverio Tedesco.
Institutions: University College London, San Raffaele Hospital.
Patient-derived iPSCs could be an invaluable source of cells for future autologous cell therapy protocols. iPSC-derived myogenic stem/progenitor cells similar to pericyte-derived mesoangioblasts (iPSC-derived mesoangioblast-like stem/progenitor cells: IDEMs) can be established from iPSCs generated from patients affected by different forms of muscular dystrophy. Patient-specific IDEMs can be genetically corrected with different strategies (e.g. lentiviral vectors, human artificial chromosomes) and enhanced in their myogenic differentiation potential upon overexpression of the myogenesis regulator MyoD. This myogenic potential is then assessed in vitro with specific differentiation assays and analyzed by immunofluorescence. The regenerative potential of IDEMs is further evaluated in vivo, upon intramuscular and intra-arterial transplantation in two representative mouse models displaying acute and chronic muscle regeneration. The contribution of IDEMs to the host skeletal muscle is then confirmed by different functional tests in transplanted mice. In particular, the amelioration of the motor capacity of the animals is studied with treadmill tests. Cell engraftment and differentiation are then assessed by a number of histological and immunofluorescence assays on transplanted muscles. Overall, this paper describes the assays and tools currently utilized to evaluate the differentiation capacity of IDEMs, focusing on the transplantation methods and subsequent outcome measures to analyze the efficacy of cell transplantation.
Bioengineering, Issue 83, Skeletal Muscle, Muscle Cells, Muscle Fibers, Skeletal, Pericytes, Stem Cells, Induced Pluripotent Stem Cells (iPSCs), Muscular Dystrophies, Cell Differentiation, animal models, muscle stem/progenitor cells, mesoangioblasts, muscle regeneration, iPSC-derived mesoangioblasts (IDEMs)
Play Button
Generation of Subcutaneous and Intrahepatic Human Hepatocellular Carcinoma Xenografts in Immunodeficient Mice
Authors: Sharif U. Ahmed, Murtuza Zair, Kui Chen, Matthew Iu, Feng He, Oyedele Adeyi, Sean P. Cleary, Anand Ghanekar.
Institutions: University Health Network, University Health Network, University Health Network.
In vivo experimental models of hepatocellular carcinoma (HCC) that recapitulate the human disease provide a valuable platform for research into disease pathophysiology and for the preclinical evaluation of novel therapies. We present a variety of methods to generate subcutaneous or orthotopic human HCC xenografts in immunodeficient mice that could be utilized in a variety of research applications. With a focus on the use of primary tumor tissue from patients undergoing surgical resection as a starting point, we describe the preparation of cell suspensions or tumor fragments for xenografting. We describe specific techniques to xenograft these tissues i) subcutaneously; or ii) intrahepatically, either by direct implantation of tumor cells or fragments into the liver, or indirectly by injection of cells into the mouse spleen. We also describe the use of partial resection of the native mouse liver at the time of xenografting as a strategy to induce a state of active liver regeneration in the recipient mouse that may facilitate the intrahepatic engraftment of primary human tumor cells. The expected results of these techniques are illustrated. The protocols described have been validated using primary human HCC samples and xenografts, which typically perform less robustly than the well-established human HCC cell lines that are widely used and frequently cited in the literature. In comparison with cell lines, we discuss factors which may contribute to the relatively low chance of primary HCC engraftment in xenotransplantation models and comment on technical issues that may influence the kinetics of xenograft growth. We also suggest methods that should be applied to ensure that xenografts obtained accurately resemble parent HCC tissues.
Medicine, Issue 79, Liver Neoplasms, Hepatectomy, animal models, hepatocellular carcinoma, xenograft, cancer, liver, subcutaneous, intrahepatic, orthotopic, mouse, human, immunodeficient
Play Button
Isolation, Culture, and Transplantation of Muscle Satellite Cells
Authors: Norio Motohashi, Yoko Asakura, Atsushi Asakura.
Institutions: University of Minnesota Medical School.
Muscle satellite cells are a stem cell population required for postnatal skeletal muscle development and regeneration, accounting for 2-5% of sublaminal nuclei in muscle fibers. In adult muscle, satellite cells are normally mitotically quiescent. Following injury, however, satellite cells initiate cellular proliferation to produce myoblasts, their progenies, to mediate the regeneration of muscle. Transplantation of satellite cell-derived myoblasts has been widely studied as a possible therapy for several regenerative diseases including muscular dystrophy, heart failure, and urological dysfunction. Myoblast transplantation into dystrophic skeletal muscle, infarcted heart, and dysfunctioning urinary ducts has shown that engrafted myoblasts can differentiate into muscle fibers in the host tissues and display partial functional improvement in these diseases. Therefore, the development of efficient purification methods of quiescent satellite cells from skeletal muscle, as well as the establishment of satellite cell-derived myoblast cultures and transplantation methods for myoblasts, are essential for understanding the molecular mechanisms behind satellite cell self-renewal, activation, and differentiation. Additionally, the development of cell-based therapies for muscular dystrophy and other regenerative diseases are also dependent upon these factors. However, current prospective purification methods of quiescent satellite cells require the use of expensive fluorescence-activated cell sorting (FACS) machines. Here, we present a new method for the rapid, economical, and reliable purification of quiescent satellite cells from adult mouse skeletal muscle by enzymatic dissociation followed by magnetic-activated cell sorting (MACS). Following isolation of pure quiescent satellite cells, these cells can be cultured to obtain large numbers of myoblasts after several passages. These freshly isolated quiescent satellite cells or ex vivo expanded myoblasts can be transplanted into cardiotoxin (CTX)-induced regenerating mouse skeletal muscle to examine the contribution of donor-derived cells to regenerating muscle fibers, as well as to satellite cell compartments for the examination of self-renewal activities.
Cellular Biology, Issue 86, skeletal muscle, muscle stem cell, satellite cell, regeneration, myoblast transplantation, muscular dystrophy, self-renewal, differentiation, myogenesis
Play Button
Humanized Mouse Model to Study Bacterial Infections Targeting the Microvasculature
Authors: Keira Melican, Flore Aubey, Guillaume Duménil.
Institutions: Paris Cardiovascular Research Centre, Université Paris Descartes.
Neisseria meningitidis causes a severe, frequently fatal sepsis when it enters the human blood stream. Infection leads to extensive damage of the blood vessels resulting in vascular leak, the development of purpuric rashes and eventual tissue necrosis. Studying the pathogenesis of this infection was previously limited by the human specificity of the bacteria, which makes in vivo models difficult. In this protocol, we describe a humanized model for this infection in which human skin, containing dermal microvessels, is grafted onto immunocompromised mice. These vessels anastomose with the mouse circulation while maintaining their human characteristics. Once introduced into this model, N. meningitidis adhere exclusively to the human vessels, resulting in extensive vascular damage, inflammation and in some cases the development of purpuric rash. This protocol describes the grafting, infection and evaluation steps of this model in the context of N. meningitidis infection. The technique may be applied to numerous human specific pathogens that infect the blood stream.
Infection, Issue 86, Disease Models, Bacteria, Bacterial Infections and Mycoses, Neisseria meningitidis, purpura, vascular infection, humanized model
Play Button
Mouse Models for Graft Arteriosclerosis
Authors: Lingfeng Qin, Luyang Yu, Wang Min.
Institutions: Yale University School of Medicine , Yale University School of Medicine .
Graft arteriosclerois (GA), also called allograft vasculopathy, is a pathologic lesion that develops over months to years in transplanted organs characterized by diffuse, circumferential stenosis of the entire graft vascular tree. The most critical component of GA pathogenesis is the proliferation of smooth muscle-like cells within the intima. When a human coronary artery segment is interposed into the infra-renal aortae of immunodeficient mice, the intimas could be expand in response to adoptively transferred human T cells allogeneic to the artery donor or exogenous human IFN-γ in the absence of human T cells. Interposition of a mouse aorta from one strain into another mouse strain recipient is limited as a model for chronic rejection in humans because the acute cell-mediated rejection response in this mouse model completely eliminates all donor-derived vascular cells from the graft within two-three weeks. We have recently developed two new mouse models to circumvent these problems. The first model involves interposition of a vessel segment from a male mouse into a female recipient of the same inbred strain (C57BL/6J). Graft rejection in this case is directed only against minor histocompatibility antigens encoded by the Y chromosome (present in the male but not the female) and the rejection response that ensues is sufficiently indolent to preserve donor-derived smooth muscle cells for several weeks. The second model involves interposing an artery segment from a wild type C57BL/6J mouse donor into a host mouse of the same strain and gender that lacks the receptor for IFN-γ followed by administration of mouse IFN-γ (delivered via infection of the mouse liver with an adenoviral vector. There is no rejection in this case as both donor and recipient mice are of the same strain and gender but donor smooth muscle cells proliferate in response to the cytokine while host-derived cells, lacking receptor for this cytokine, are unresponsive. By backcrossing additional genetic changes into the vessel donor, both models can be used to assess the effect of specific genes on GA progression. Here, we describe detailed protocols for our mouse GA models.
Medicine, Issue 75, Anatomy, Physiology, Biomedical Engineering, Bioengineering, Cardiology, Pathology, Surgery, Tissue Engineering, Cardiovascular Diseases, vascular biology, graft arteriosclerosis, GA, mouse models, transplantation, graft, vessels, arteries, mouse, animal model, surgical techniques
Play Button
Orthotopic Xenografting of Human Luciferase-Tagged Malignant Peripheral Nerve Sheath Tumor Cells for in vivo Testing of Candidate Therapeutic Agents
Authors: Amy N. Turk, Stephanie J. Byer, Kurt R. Zinn, Steven L. Carroll.
Institutions: University of Alabama at Birmingham - UAB, University of Alabama at Birmingham - UAB, University of Alabama at Birmingham - UAB.
Although in vitro screens are essential for the initial identification of candidate therapeutic agents, a rigorous assessment of the drug's ability to inhibit tumor growth must be performed in a suitable animal model. The type of animal model that is best for this purpose is a topic of intense discussion. Some evidence indicates that preclinical trials examining drug effects on tumors arising in transgenic mice are more predictive of clinical outcome1and so candidate therapeutic agents are often tested in these models. Unfortunately, transgenic models are not available for many tumor types. Further, transgenic models often have other limitations such as concerns as to how well the mouse tumor models its human counterpart, incomplete penetrance of the tumor phenotype and an inability to predict when tumors will develop. Consequently, many investigators use xenograft models (human tumor cells grafted into immunodeficient mice) for preclinical trials if appropriate transgenic tumor models are not available. Even if transgenic models are available, they are often partnered with xenograft models as the latter facilitate rapid determination of therapeutic ranges. Further, this partnership allows a comparison of the effectiveness of the agent in transgenic tumors and genuine human tumor cells. Historically, xenografting has often been performed by injecting tumor cells subcutaneously (ectopic xenografts). This technique is rapid and reproducible, relatively inexpensive and allows continuous quantitation of tumor growth during the therapeutic period2. However, the subcutaneous space is not the normal microenvironment for most neoplasms and so results obtained with ectopic xenografting can be misleading due to factors such as an absence of organ-specific expression of host tissue and tumor genes. It has thus been strongly recommended that ectopic grafting studies be replaced or complemented by studies in which human tumor cells are grafted into their tissue of origin (orthotopic xenografting)2. Unfortunately, implementation of this recommendation is often thwarted by the fact that orthotopic xenografting methodologies have not yet been developed for many tumor types. Malignant peripheral nerve sheath tumors (MPNSTs) are highly aggressive sarcomas that occur sporadically or in association with neurofibromatosis type 13and most commonly arise in the sciatic nerve4. Here we describe a technically straightforward method in which firefly luciferase-tagged human MPNST cells are orthopically xenografted into the sciatic nerve of immunodeficient mice. Our approach to assessing the success of the grafting procedure in individual animals and subsequent non-biased randomization into study groups is also discussed.
Medicine, Issue 49, Orthotopic grafting, Schwann cell, sciatic nerve, MPNST, neurofibrosarcoma, neurofibromatosis, experimental therapeutics
Play Button
Examination of Thymic Positive and Negative Selection by Flow Cytometry
Authors: Qian Hu, Stephanie A. Nicol, Alexander Y.W. Suen, Troy A. Baldwin.
Institutions: University of Alberta.
A healthy immune system requires that T cells respond to foreign antigens while remaining tolerant to self-antigens. Random rearrangement of the T cell receptor (TCR) α and β loci generates a T cell repertoire with vast diversity in antigen specificity, both to self and foreign. Selection of the repertoire during development in the thymus is critical for generating safe and useful T cells. Defects in thymic selection contribute to the development of autoimmune and immunodeficiency disorders1-4. T cell progenitors enter the thymus as double negative (DN) thymocytes that do not express CD4 or CD8 co-receptors. Expression of the αβTCR and both co-receptors occurs at the double positive (DP) stage. Interaction of the αβTCR with self-peptide-MHC (pMHC) presented by thymic cells determines the fate of the DP thymocyte. High affinity interactions lead to negative selection and elimination of self-reactive thymocytes. Low affinity interactions result in positive selection and development of CD4 or CD8 single positive (SP) T cells capable of recognizing foreign antigens presented by self-MHC5. Positive selection can be studied in mice with a polyclonal (wildtype) TCR repertoire by observing the generation of mature T cells. However, they are not ideal for the study of negative selection, which involves deletion of small antigen-specific populations. Many model systems have been used to study negative selection but vary in their ability to recapitulate physiological events6. For example, in vitro stimulation of thymocytes lacks the thymic environment that is intimately involved in selection, while administration of exogenous antigen can lead to non-specific deletion of thymocytes7-9. Currently, the best tools for studying in vivo negative selection are mice that express a transgenic TCR specific for endogenous self-antigen. However, many classical TCR transgenic models are characterized by premature expression of the transgenic TCRα chain at the DN stage, resulting in premature negative selection. Our lab has developed the HYcd4 model, in which the transgenic HY TCRα is conditionally expressed at the DP stage, allowing negative selection to occur during the DP to SP transition as occurs in wildtype mice10. Here, we describe a flow cytometry-based protocol to examine thymic positive and negative selection in the HYcd4 mouse model. While negative selection in HYcd4 mice is highly physiological, these methods can also be applied to other TCR transgenic models. We will also present general strategies for analyzing positive selection in a polyclonal repertoire applicable to any genetically manipulated mice.
Immunology, Issue 68, Medicine, Cellular Biology, Anatomy, Physiology, Thymus, T cell, negative selection, positive selection, autoimmunity, flow cytometry
Play Button
Peptide:MHC Tetramer-based Enrichment of Epitope-specific T cells
Authors: Francois P. Legoux, James J. Moon.
Institutions: Massachusetts General Hospital and Harvard Medical School.
A basic necessity for researchers studying adaptive immunity with in vivo experimental models is an ability to identify T cells based on their T cell antigen receptor (TCR) specificity. Many indirect methods are available in which a bulk population of T cells is stimulated in vitro with a specific antigen and epitope-specific T cells are identified through the measurement of a functional response such as proliferation, cytokine production, or expression of activation markers1. However, these methods only identify epitope-specific T cells exhibiting one of many possible functions, and they are not sensitive enough to detect epitope-specific T cells at naive precursor frequencies. A popular alternative is the TCR transgenic adoptive transfer model, in which monoclonal T cells from a TCR transgenic mouse are seeded into histocompatible hosts to create a large precursor population of epitope-specific T cells that can be easily tracked with the use of a congenic marker antibody2,3. While powerful, this method suffers from experimental artifacts associated with the unphysiological frequency of T cells with specificity for a single epitope4,5. Moreover, this system cannot be used to investigate the functional heterogeneity of epitope-specific T cell clones within a polyclonal population. The ideal way to study adaptive immunity should involve the direct detection of epitope-specific T cells from the endogenous T cell repertoire using a method that distinguishes TCR specificity solely by its binding to cognate peptide:MHC (pMHC) complexes. The use of pMHC tetramers and flow cytometry accomplishes this6, but is limited to the detection of high frequency populations of epitope-specific T cells only found following antigen-induced clonal expansion. In this protocol, we describe a method that coordinates the use of pMHC tetramers and magnetic cell enrichment technology to enable detection of extremely low frequency epitope-specific T cells from mouse lymphoid tissues3,7. With this technique, one can comprehensively track entire epitope-specific populations of endogenous T cells in mice at all stages of the immune response.
Immunology, Issue 68, Cellular Biology, Molecular Biology, T cell, T cell receptor, tetramer, flow cytometry, antigen-specific, immunology, immune response, magnetic, enrichment, in vivo
Play Button
Primary Orthotopic Glioma Xenografts Recapitulate Infiltrative Growth and Isocitrate Dehydrogenase I Mutation
Authors: J. Geraldo Valadez, Anuraag Sarangi, Christopher J. Lundberg, Michael K. Cooper.
Institutions: Vanderbilt University Medical Center, Vanderbilt University Medical Center, Veteran Affairs TVHS.
Malignant gliomas constitute a heterogeneous group of highly infiltrative glial neoplasms with distinct clinical and molecular features. Primary orthotopic xenografts recapitulate the histopathological and molecular features of malignant glioma subtypes in preclinical animal models. To model WHO grades III and IV malignant gliomas in transplantation assays, human tumor cells are xenografted into an orthotopic site, the brain, of immunocompromised mice. In contrast to secondary xenografts that utilize cultured tumor cells, human glioma cells are dissociated from resected specimens and transplanted without prior passage in tissue culture to generate primary xenografts. The procedure in this report details tumor sample preparation, intracranial transplantation into immunocompromised mice, monitoring for tumor engraftment and tumor harvesting for subsequent passage into recipient animals or analysis. Tumor cell preparation requires 2 hr and surgical procedure requires 20 min/animal.
Medicine, Issue 83, Glioma, Malignant glioma, primary orthotopic xenograft, isocitrate dehydrogenase
Play Button
Accelerated Type 1 Diabetes Induction in Mice by Adoptive Transfer of Diabetogenic CD4+ T Cells
Authors: Gregory Berry, Hanspeter Waldner.
Institutions: Pennsylvania State University College of Medicine.
The nonobese diabetic (NOD) mouse spontaneously develops autoimmune diabetes after 12 weeks of age and is the most extensively studied animal model of human Type 1 diabetes (T1D). Cell transfer studies in irradiated recipient mice have established that T cells are pivotal in T1D pathogenesis in this model. We describe herein a simple method to rapidly induce T1D by adoptive transfer of purified, primary CD4+ T cells from pre-diabetic NOD mice transgenic for the islet-specific T cell receptor (TCR) BDC2.5 into NOD.SCID recipient mice. The major advantages of this technique are that isolation and adoptive transfer of diabetogenic T cells can be completed within the same day, irradiation of the recipients is not required, and a high incidence of T1D is elicited within 2 weeks after T cell transfer. Thus, studies of pathogenesis and therapeutic interventions in T1D can proceed at a faster rate than with methods that rely on heterogenous T cell populations or clones derived from diabetic NOD mice.
Immunology, Issue 75, Medicine, Cellular Biology, Molecular Biology, Microbiology, Anatomy, Physiology, Biomedical Engineering, Genetics, Surgery, Type 1 diabetes, CD4+ T cells, diabetogenic T cells, T cell transfer, diabetes induction method, diabetes, T cells, isolation, cell sorting, FACS, transgenic mice, animal model
Play Button
Using the BLT Humanized Mouse as a Stem Cell based Gene Therapy Tumor Model
Authors: Dimitrios N. Vatakis, Gregory C. Bristol, Sohn G. Kim, Bernard Levin, Wei Liu, Caius G. Radu, Scott G. Kitchen, Jerome A. Zack.
Institutions: David Geffen School of Medicine at UCLA, UCLA AIDS Institute, Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA.
Small animal models such as mice have been extensively used to study human disease and to develop new therapeutic interventions. Despite the wealth of information gained from these studies, the unique characteristics of mouse immunity as well as the species specificity of viral diseases such as human immunodeficiency virus (HIV) infection led to the development of humanized mouse models. The earlier models involved the use of C. B 17 scid/scid mice and the transplantation of human fetal thymus and fetal liver termed thy/liv (SCID-hu) 1, 2 or the adoptive transfer of human peripheral blood leukocytes (SCID-huPBL) 3. Both models were mainly utilized for the study of HIV infection. One of the main limitations of both of these models was the lack of stable reconstitution of human immune cells in the periphery to make them a more physiologically relevant model to study HIV disease. To this end, the BLT humanized mouse model was developed. BLT stands for bone marrow/liver/thymus. In this model, 6 to 8 week old NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) immunocompromised mice receive the thy/liv implant as in the SCID-hu mouse model only to be followed by a second human hematopoietic stem cell transplant 4. The advantage of this system is the full reconstitution of the human immune system in the periphery. This model has been used to study HIV infection and latency 5-8. We have generated a modified version of this model in which we use genetically modified human hematopoietic stem cells (hHSC) to construct the thy/liv implant followed by injection of transduced autologous hHSC 7, 9. This approach results in the generation of genetically modified lineages. More importantly, we adapted this system to examine the potential of generating functional cytotoxic T cells (CTL) expressing a melanoma specific T cell receptor. Using this model we were able to assess the functionality of our transgenic CTL utilizing live positron emission tomography (PET) imaging to determine tumor regression (9). The goal of this protocol is to describe the process of generating these transgenic mice and assessing in vivo efficacy using live PET imaging. As a note, since we use human tissues and lentiviral vectors, our facilities conform to CDC NIH guidelines for Biosafety Level 2 (BSL2) with special precautions (BSL2+). In addition, the NSG mice are severely immunocompromised thus, their housing and maintenance must conform to the highest health standards (
Cancer Biology, Issue 70, Stem Cell Biology, Immunology, Biomedical Engineering, Medicine, Bioengineering, Genetics, Oncology, Humanized mice, stem cell transplantation, stem cells, in vivo animal imaging, T cells, cancer, animal model
Play Button
Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney
Authors: Kristen K. McCampbell, Kristin N. Springer, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
Cellular Biology, Issue 90, zebrafish; kidney; nephron; nephrology; renal; regeneration; proximal tubule; distal tubule; segment; mesonephros; physiology; acute kidney injury (AKI)
Play Button
A Microplate Assay to Assess Chemical Effects on RBL-2H3 Mast Cell Degranulation: Effects of Triclosan without Use of an Organic Solvent
Authors: Lisa M. Weatherly, Rachel H. Kennedy, Juyoung Shim, Julie A. Gosse.
Institutions: University of Maine, Orono, University of Maine, Orono.
Mast cells play important roles in allergic disease and immune defense against parasites. Once activated (e.g. by an allergen), they degranulate, a process that results in the exocytosis of allergic mediators. Modulation of mast cell degranulation by drugs and toxicants may have positive or adverse effects on human health. Mast cell function has been dissected in detail with the use of rat basophilic leukemia mast cells (RBL-2H3), a widely accepted model of human mucosal mast cells3-5. Mast cell granule component and the allergic mediator β-hexosaminidase, which is released linearly in tandem with histamine from mast cells6, can easily and reliably be measured through reaction with a fluorogenic substrate, yielding measurable fluorescence intensity in a microplate assay that is amenable to high-throughput studies1. Originally published by Naal et al.1, we have adapted this degranulation assay for the screening of drugs and toxicants and demonstrate its use here. Triclosan is a broad-spectrum antibacterial agent that is present in many consumer products and has been found to be a therapeutic aid in human allergic skin disease7-11, although the mechanism for this effect is unknown. Here we demonstrate an assay for the effect of triclosan on mast cell degranulation. We recently showed that triclosan strongly affects mast cell function2. In an effort to avoid use of an organic solvent, triclosan is dissolved directly into aqueous buffer with heat and stirring, and resultant concentration is confirmed using UV-Vis spectrophotometry (using ε280 = 4,200 L/M/cm)12. This protocol has the potential to be used with a variety of chemicals to determine their effects on mast cell degranulation, and more broadly, their allergic potential.
Immunology, Issue 81, mast cell, basophil, degranulation, RBL-2H3, triclosan, irgasan, antibacterial, β-hexosaminidase, allergy, Asthma, toxicants, ionophore, antigen, fluorescence, microplate, UV-Vis
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
Play Button
Systemic Injection of Neural Stem/Progenitor Cells in Mice with Chronic EAE
Authors: Matteo Donegà, Elena Giusto, Chiara Cossetti, Julia Schaeffer, Stefano Pluchino.
Institutions: University of Cambridge, UK, University of Cambridge, UK.
Neural stem/precursor cells (NPCs) are a promising stem cell source for transplantation approaches aiming at brain repair or restoration in regenerative neurology. This directive has arisen from the extensive evidence that brain repair is achieved after focal or systemic NPC transplantation in several preclinical models of neurological diseases. These experimental data have identified the cell delivery route as one of the main hurdles of restorative stem cell therapies for brain diseases that requires urgent assessment. Intraparenchymal stem cell grafting represents a logical approach to those pathologies characterized by isolated and accessible brain lesions such as spinal cord injuries and Parkinson's disease. Unfortunately, this principle is poorly applicable to conditions characterized by a multifocal, inflammatory and disseminated (both in time and space) nature, including multiple sclerosis (MS). As such, brain targeting by systemic NPC delivery has become a low invasive and therapeutically efficacious protocol to deliver cells to the brain and spinal cord of rodents and nonhuman primates affected by experimental chronic inflammatory damage of the central nervous system (CNS). This alternative method of cell delivery relies on the NPC pathotropism, specifically their innate capacity to (i) sense the environment via functional cell adhesion molecules and inflammatory cytokine and chemokine receptors; (ii) cross the leaking anatomical barriers after intravenous (i.v.) or intracerebroventricular (i.c.v.) injection; (iii) accumulate at the level of multiple perivascular site(s) of inflammatory brain and spinal cord damage; and (i.v.) exert remarkable tissue trophic and immune regulatory effects onto different host target cells in vivo. Here we describe the methods that we have developed for the i.v. and i.c.v. delivery of syngeneic NPCs in mice with experimental autoimmune encephalomyelitis (EAE), as model of chronic CNS inflammatory demyelination, and envisage the systemic stem cell delivery as a valuable technique for the selective targeting of the inflamed brain in regenerative neurology.
Immunology, Issue 86, Somatic neural stem/precursor cells, neurodegenerative disorders, regenerative medicine, multiple sclerosis, experimental autoimmune encephalomyelitis, systemic delivery, intravenous, intracerebroventricular
Play Button
Automated, Quantitative Cognitive/Behavioral Screening of Mice: For Genetics, Pharmacology, Animal Cognition and Undergraduate Instruction
Authors: C. R. Gallistel, Fuat Balci, David Freestone, Aaron Kheifets, Adam King.
Institutions: Rutgers University, Koç University, New York University, Fairfield University.
We describe a high-throughput, high-volume, fully automated, live-in 24/7 behavioral testing system for assessing the effects of genetic and pharmacological manipulations on basic mechanisms of cognition and learning in mice. A standard polypropylene mouse housing tub is connected through an acrylic tube to a standard commercial mouse test box. The test box has 3 hoppers, 2 of which are connected to pellet feeders. All are internally illuminable with an LED and monitored for head entries by infrared (IR) beams. Mice live in the environment, which eliminates handling during screening. They obtain their food during two or more daily feeding periods by performing in operant (instrumental) and Pavlovian (classical) protocols, for which we have written protocol-control software and quasi-real-time data analysis and graphing software. The data analysis and graphing routines are written in a MATLAB-based language created to simplify greatly the analysis of large time-stamped behavioral and physiological event records and to preserve a full data trail from raw data through all intermediate analyses to the published graphs and statistics within a single data structure. The data-analysis code harvests the data several times a day and subjects it to statistical and graphical analyses, which are automatically stored in the "cloud" and on in-lab computers. Thus, the progress of individual mice is visualized and quantified daily. The data-analysis code talks to the protocol-control code, permitting the automated advance from protocol to protocol of individual subjects. The behavioral protocols implemented are matching, autoshaping, timed hopper-switching, risk assessment in timed hopper-switching, impulsivity measurement, and the circadian anticipation of food availability. Open-source protocol-control and data-analysis code makes the addition of new protocols simple. Eight test environments fit in a 48 in x 24 in x 78 in cabinet; two such cabinets (16 environments) may be controlled by one computer.
Behavior, Issue 84, genetics, cognitive mechanisms, behavioral screening, learning, memory, timing
Play Button
Adenoviral Transduction of Naive CD4 T Cells to Study Treg Differentiation
Authors: Sebastian C. Warth, Vigo Heissmeyer.
Institutions: Helmholtz Zentrum München.
Regulatory T cells (Tregs) are essential to provide immune tolerance to self as well as to certain foreign antigens. Tregs can be generated from naive CD4 T cells in vitro with TCR- and co-stimulation in the presence of TGFβ and IL-2. This bears enormous potential for future therapies, however, the molecules and signaling pathways that control differentiation are largely unknown. Primary T cells can be manipulated through ectopic gene expression, but common methods fail to target the most important naive state of the T cell prior to primary antigen recognition. Here, we provide a protocol to express ectopic genes in naive CD4 T cells in vitro before inducing Treg differentiation. It applies transduction with the replication-deficient adenovirus and explains its generation and production. The adenovirus can take up large inserts (up to 7 kb) and can be equipped with promoters to achieve high and transient overexpression in T cells. It effectively transduces naive mouse T cells if they express a transgenic Coxsackie adenovirus receptor (CAR). Importantly, after infection the T cells remain naive (CD44low, CD62Lhigh) and resting (CD25-, CD69-) and can be activated and differentiated into Tregs similar to non-infected cells. Thus, this method enables manipulation of CD4 T cell differentiation from its very beginning. It ensures that ectopic gene expression is already in place when early signaling events of the initial TCR stimulation induces cellular changes that eventually lead into Treg differentiation.
Immunology, Issue 78, Cellular Biology, Molecular Biology, Medicine, Biomedical Engineering, Bioengineering, Infection, Genetics, Microbiology, Virology, T-Lymphocytes, Regulatory, CD4-Positive T-Lymphocytes, Regulatory, Adenoviruses, Human, MicroRNAs, Antigens, Differentiation, T-Lymphocyte, Gene Transfer Techniques, Transduction, Genetic, Transfection, Adenovirus, gene transfer, microRNA, overexpression, knock down, CD4 T cells, in vitro differentiation, regulatory T cell, virus, cell, flow cytometry
Play Button
Metabolic Labeling of Newly Transcribed RNA for High Resolution Gene Expression Profiling of RNA Synthesis, Processing and Decay in Cell Culture
Authors: Bernd Rädle, Andrzej J. Rutkowski, Zsolt Ruzsics, Caroline C. Friedel, Ulrich H. Koszinowski, Lars Dölken.
Institutions: Max von Pettenkofer Institute, University of Cambridge, Ludwig-Maximilians-University Munich.
The development of whole-transcriptome microarrays and next-generation sequencing has revolutionized our understanding of the complexity of cellular gene expression. Along with a better understanding of the involved molecular mechanisms, precise measurements of the underlying kinetics have become increasingly important. Here, these powerful methodologies face major limitations due to intrinsic properties of the template samples they study, i.e. total cellular RNA. In many cases changes in total cellular RNA occur either too slowly or too quickly to represent the underlying molecular events and their kinetics with sufficient resolution. In addition, the contribution of alterations in RNA synthesis, processing, and decay are not readily differentiated. We recently developed high-resolution gene expression profiling to overcome these limitations. Our approach is based on metabolic labeling of newly transcribed RNA with 4-thiouridine (thus also referred to as 4sU-tagging) followed by rigorous purification of newly transcribed RNA using thiol-specific biotinylation and streptavidin-coated magnetic beads. It is applicable to a broad range of organisms including vertebrates, Drosophila, and yeast. We successfully applied 4sU-tagging to study real-time kinetics of transcription factor activities, provide precise measurements of RNA half-lives, and obtain novel insights into the kinetics of RNA processing. Finally, computational modeling can be employed to generate an integrated, comprehensive analysis of the underlying molecular mechanisms.
Genetics, Issue 78, Cellular Biology, Molecular Biology, Microbiology, Biochemistry, Eukaryota, Investigative Techniques, Biological Phenomena, Gene expression profiling, RNA synthesis, RNA processing, RNA decay, 4-thiouridine, 4sU-tagging, microarray analysis, RNA-seq, RNA, DNA, PCR, sequencing
Play Button
Non-enzymatic, Serum-free Tissue Culture of Pre-invasive Breast Lesions for Spontaneous Generation of Mammospheres
Authors: Virginia Espina, Kirsten H. Edmiston, Lance A. Liotta.
Institutions: George Mason University, Virginia Surgery Associates.
Breast ductal carcinoma in situ (DCIS), by definition, is proliferation of neoplastic epithelial cells within the confines of the breast duct, without breaching the collagenous basement membrane. While DCIS is a non-obligate precursor to invasive breast cancers, the molecular mechanisms and cell populations that permit progression to invasive cancer are not fully known. To determine if progenitor cells capable of invasion existed within the DCIS cell population, we developed a methodology for collecting and culturing sterile human breast tissue at the time of surgery, without enzymatic disruption of tissue. Sterile breast tissue containing ductal segments is harvested from surgically excised breast tissue following routine pathological examination. Tissue containing DCIS is placed in nutrient rich, antibiotic-containing, serum free medium, and transported to the tissue culture laboratory. The breast tissue is further dissected to isolate the calcified areas. Multiple breast tissue pieces (organoids) are placed in a minimal volume of serum free medium in a flask with a removable lid and cultured in a humidified CO2 incubator. Epithelial and fibroblast cell populations emerge from the organoid after 10 - 14 days. Mammospheres spontaneously form on and around the epithelial cell monolayer. Specific cell populations can be harvested directly from the flask without disrupting neighboring cells. Our non-enzymatic tissue culture system reliably reveals cytogenetically abnormal, invasive progenitor cells from fresh human DCIS lesions.
Cancer Biology, Issue 93, Breast, ductal carcinoma in situ, epidermal growth factor, mammosphere, organoid, pre-invasive, primary cell culture, serum-free, spheroid
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.