JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Telomerase efficiently elongates highly transcribing telomeres in human cancer cells.
PLoS ONE
RNA polymerase II transcribes the physical ends of linear eukaryotic chromosomes into a variety of long non-coding RNA molecules including telomeric repeat-containing RNA (TERRA). Since TERRA discovery, advances have been made in the characterization of TERRA biogenesis and regulation; on the contrary its associated functions remain elusive. Most of the biological roles so far proposed for TERRA are indeed based on in vitro experiments carried out using short TERRA-like RNA oligonucleotides. In particular, it has been suggested that TERRA inhibits telomerase activity. We have exploited two alternative cellular systems to test whether TERRA and/or telomere transcription influence telomerase-mediated telomere elongation in human cancer cells. In cells lacking the two DNA methyltransferases DNMT1 and DNMT3b, TERRA transcription and steady-state levels are greatly increased while telomerase is able to elongate telomeres normally. Similarly, telomerase can efficiently elongate transgenic inducible telomeres whose transcription has been experimentally augmented. Our data challenge the current hypothesis that TERRA functions as a general inhibitor of telomerase and suggest that telomere length homeostasis is maintained independently of TERRA and telomere transcription.
Authors: Mary Derasmo Axelrad, Temuri Budagov, Gil Atzmon.
Published: 05-22-2013
ABSTRACT
Telomeres are repeating DNA sequences at the tip ends of the chromosomes that are diverse in length and in humans can reach a length of 15,000 base pairs. The telomere serves as a bioprotective mechanism of chromosome attrition at each cell division. At a certain length, telomeres become too short to allow replication, a process that may lead to chromosome instability or cell death. Telomere length is regulated by two opposing mechanisms: attrition and elongation. Attrition occurs as each cell divides. In contrast, elongation is partially modulated by the enzyme telomerase, which adds repeating sequences to the ends of the chromosomes. In this way, telomerase could possibly reverse an aging mechanism and rejuvenates cell viability. These are crucial elements in maintaining cell life and are used to assess cellular aging. In this manuscript we will describe an accurate, short, sophisticated and cheap method to assess telomere length in multiple tissues and species. This method takes advantage of two key elements, the tandem repeat of the telomere sequence and the sensitivity of the qRT-PCR to detect differential copy numbers of tested samples. In addition, we will describe a simple assay to assess telomerase activity as a complementary backbone test for telomere length.
19 Related JoVE Articles!
Play Button
In vitro Reconstitution of the Active T. castaneum Telomerase
Authors: Anthony P. Schuller, Michael J. Harkisheimer, Emmanuel Skordalakes.
Institutions: University of Pennsylvania.
Efforts to isolate the catalytic subunit of telomerase, TERT, in sufficient quantities for structural studies, have been met with limited success for more than a decade. Here, we present methods for the isolation of the recombinant Tribolium castaneum TERT (TcTERT) and the reconstitution of the active T. castaneum telomerase ribonucleoprotein (RNP) complex in vitro. Telomerase is a specialized reverse transcriptase1 that adds short DNA repeats, called telomeres, to the 3' end of linear chromosomes2 that serve to protect them from end-to-end fusion and degradation. Following DNA replication, a short segment is lost at the end of the chromosome3 and without telomerase, cells continue dividing until eventually reaching their Hayflick Limit4. Additionally, telomerase is dormant in most somatic cells5 in adults, but is active in cancer cells6 where it promotes cell immortality7. The minimal telomerase enzyme consists of two core components: the protein subunit (TERT), which comprises the catalytic subunit of the enzyme and an integral RNA component (TER), which contains the template TERT uses to synthesize telomeres8,9. Prior to 2008, only structures for individual telomerase domains had been solved10,11. A major breakthrough in this field came from the determination of the crystal structure of the active12, catalytic subunit of T. castaneum telomerase, TcTERT1. Here, we present methods for producing large quantities of the active, soluble TcTERT for structural and biochemical studies, and the reconstitution of the telomerase RNP complex in vitro for telomerase activity assays. An overview of the experimental methods used is shown in Figure 1.
Molecular Biology, Issue 53, Telomerase, protein expression, purification, chromatography, RNA isolation, TRAP
2799
Play Button
Examination of the Telomere G-overhang Structure in Trypanosoma brucei
Authors: Ranjodh Sandhu, Bibo Li.
Institutions: Cleveland State University.
The telomere G-overhang structure has been identified in many eukaryotes including yeast, vertebrates, and Trypanosoma brucei. It serves as the substrate for telomerase for de novo telomere DNA synthesis and is therefore important for telomere maintenance. T. brucei is a protozoan parasite that causes sleeping sickness in humans and nagana in cattle. Once infected mammalian host, T. brucei cell regularly switches its surface antigen to evade the host's immune attack. We have recently demonstrated that the T. brucei telomere structure plays an essential role in regulation of surface antigen gene expression, which is critical for T. brucei pathogenesis. However, T. brucei telomere structure has not been extensively studied due to the limitation of methods for analysis of this specialized structure. We have now successfully adopted the native in-gel hybridization and ligation-mediated primer extension methods for examination of the telomere G-overhang structure and an adaptor ligation method for determination of the telomere terminal nucleotide in T. brucei cells. Here, we will describe the protocols in detail and compare their different advantages and limitations.
Immunology, Issue 47, Telomeres, telomeric G-overhang structure, native in-gel hybridization, ligation-mediated primer extension, Trypanosoma brucei
1959
Play Button
Telomerase Activity in the Various Regions of Mouse Brain: Non-Radioactive Telomerase Repeat Amplification Protocol (TRAP) Assay
Authors: Yossi Grin, Tamar Admoni, Esther Priel.
Institutions: Ben-Gurion University of the Negev.
Telomerase, a ribonucleoprotein, is responsible for maintaining the telomere length and therefore promoting genomic integrity, proliferation, and lifespan. In addition, telomerase protects the mitochondria from oxidative stress and confers resistance to apoptosis, suggesting its possible importance for the surviving of non-mitotic, highly active cells such as neurons. We previously demonstrated the ability of novel telomerase activators to increase telomerase activity and expression in the various mouse brain regions and to protect motor neurons cells from oxidative stress. These results strengthen the notion that telomerase is involved in the protection of neurons from various lesions. To underline the role of telomerase in the brain, we here compare the activity of telomerase in male and female mouse brain and its dependence on age. TRAP assay is a standard method for detecting telomerase activity in various tissues or cell lines. Here we demonstrate the analysis of telomerase activity in three regions of the mouse brain by non-denaturing protein extraction using CHAPS lysis buffer followed by modification of the standard TRAP assay. In this 2-step assay, endogenous telomerase elongates a specific telomerase substrate (TS primer) by adding TTAGGG 6 bp repeats (telomerase reaction). The telomerase reaction products are amplified by PCR reaction creating a DNA ladder of 6 bp increments. The analysis of the DNA ladder is made by 4.5% high resolution agarose gel electrophoresis followed by staining with highly sensitive nucleic acid stain. Compared to the traditional TRAP assay that utilize 32P labeled radioactive dCTP's for DNA detection and polyacrylamide gel electrophoresis for resolving the DNA ladder, this protocol offers a non-toxic time saving TRAP assay for evaluating telomerase activity in the mouse brain, demonstrating the ability to detect differences in telomerase activity in the various female and male mouse brain region.
Neuroscience, Issue 91, telomerase, telomeres, TRAP assay, PCR, gel electrophoresis, frontal lobe, cerebellum, brain stem
51865
Play Button
Substrate Generation for Endonucleases of CRISPR/Cas Systems
Authors: Judith Zoephel, Srivatsa Dwarakanath, Hagen Richter, André Plagens, Lennart Randau.
Institutions: Max-Planck-Institute for Terrestrial Microbiology.
The interaction of viruses and their prokaryotic hosts shaped the evolution of bacterial and archaeal life. Prokaryotes developed several strategies to evade viral attacks that include restriction modification, abortive infection and CRISPR/Cas systems. These adaptive immune systems found in many Bacteria and most Archaea consist of clustered regularly interspaced short palindromic repeat (CRISPR) sequences and a number of CRISPR associated (Cas) genes (Fig. 1) 1-3. Different sets of Cas proteins and repeats define at least three major divergent types of CRISPR/Cas systems 4. The universal proteins Cas1 and Cas2 are proposed to be involved in the uptake of viral DNA that will generate a new spacer element between two repeats at the 5' terminus of an extending CRISPR cluster 5. The entire cluster is transcribed into a precursor-crRNA containing all spacer and repeat sequences and is subsequently processed by an enzyme of the diverse Cas6 family into smaller crRNAs 6-8. These crRNAs consist of the spacer sequence flanked by a 5' terminal (8 nucleotides) and a 3' terminal tag derived from the repeat sequence 9. A repeated infection of the virus can now be blocked as the new crRNA will be directed by a Cas protein complex (Cascade) to the viral DNA and identify it as such via base complementarity10. Finally, for CRISPR/Cas type 1 systems, the nuclease Cas3 will destroy the detected invader DNA 11,12 . These processes define CRISPR/Cas as an adaptive immune system of prokaryotes and opened a fascinating research field for the study of the involved Cas proteins. The function of many Cas proteins is still elusive and the causes for the apparent diversity of the CRISPR/Cas systems remain to be illuminated. Potential activities of most Cas proteins were predicted via detailed computational analyses. A major fraction of Cas proteins are either shown or proposed to function as endonucleases 4. Here, we present methods to generate crRNAs and precursor-cRNAs for the study of Cas endoribonucleases. Different endonuclease assays require either short repeat sequences that can directly be synthesized as RNA oligonucleotides or longer crRNA and pre-crRNA sequences that are generated via in vitro T7 RNA polymerase run-off transcription. This methodology allows the incorporation of radioactive nucleotides for the generation of internally labeled endonuclease substrates and the creation of synthetic or mutant crRNAs. Cas6 endonuclease activity is utilized to mature pre-crRNAs into crRNAs with 5'-hydroxyl and a 2',3'-cyclic phosphate termini.
Molecular biology, Issue 67, CRISPR/Cas, endonuclease, in vitro transcription, crRNA, Cas6
4277
Play Button
Direct Restart of a Replication Fork Stalled by a Head-On RNA Polymerase
Authors: Richard T. Pomerantz, Mike O'Donnell.
Institutions: Rockefeller University.
In vivo studies suggest that replication forks are arrested due to encounters with head-on transcription complexes. Yet, the fate of the replisome and RNA polymerase (RNAP) following a head-on collision is unknown. Here, we find that the E. coli replisome stalls upon collision with a head-on transcription complex, but instead of collapsing, the replication fork remains highly stable and eventually resumes elongation after displacing the RNAP from DNA. We also find that the transcription-repair coupling factor, Mfd, promotes direct restart of the fork following the collision by facilitating displacement of the RNAP. These findings demonstrate the intrinsic stability of the replication apparatus and a novel role for the transcription-coupled repair pathway in promoting replication past a RNAP block.
Cellular Biology, Issue 38, replication, transcription, transcription-coupled repair, replisome, RNA polymerase, collision
1919
Play Button
Measuring the Kinetics of mRNA Transcription in Single Living Cells
Authors: Yehuda Brody, Yaron Shav-Tal.
Institutions: Bar-Ilan University.
The transcriptional activity of RNA polymerase II (Pol II) is a dynamic process and therefore measuring the kinetics of the transcriptional process in vivo is of importance. Pol II kinetics have been measured using biochemical or molecular methods.1-3 In recent years, with the development of new visualization methods, it has become possible to follow transcription as it occurs in real time in single living cells.4 Herein we describe how to perform analysis of Pol II elongation kinetics on a specific gene in living cells.5, 6 Using a cell line in which a specific gene locus (DNA), its mRNA product, and the final protein product can be fluorescently labeled and visualized in vivo, it is possible to detect the actual transcription of mRNAs on the gene of interest.7, 8 The mRNA is fluorescently tagged using the MS2 system for tagging mRNAs in vivo, where the 3'UTR of the mRNA transcripts contain 24 MS2 stem-loop repeats, which provide highly specific binding sites for the YFP-MS2 coat protein that labels the mRNA as it is transcribed.9 To monitor the kinetics of transcription we use the Fluorescence Recovery After Photobleaching (FRAP) method. By photobleaching the YFP-MS2-tagged nascent transcripts at the site of transcription and then following the recovery of this signal over time, we obtain the synthesis rate of the newly made mRNAs.5 In other words, YFP-MS2 fluorescence recovery reflects the generation of new MS2 stem-loops in the nascent transcripts and their binding by fluorescent free YFP-MS2 molecules entering from the surrounding nucleoplasm. The FRAP recovery curves are then analyzed using mathematical mechanistic models formalized by a series of differential equations, in order to retrieve the kinetic time parameters of transcription.
Cell Biology, Issue 54, mRNA transcription, nucleus, live-cell imaging, cellular dynamics, FRAP
2898
Play Button
The ChroP Approach Combines ChIP and Mass Spectrometry to Dissect Locus-specific Proteomic Landscapes of Chromatin
Authors: Monica Soldi, Tiziana Bonaldi.
Institutions: European Institute of Oncology.
Chromatin is a highly dynamic nucleoprotein complex made of DNA and proteins that controls various DNA-dependent processes. Chromatin structure and function at specific regions is regulated by the local enrichment of histone post-translational modifications (hPTMs) and variants, chromatin-binding proteins, including transcription factors, and DNA methylation. The proteomic characterization of chromatin composition at distinct functional regions has been so far hampered by the lack of efficient protocols to enrich such domains at the appropriate purity and amount for the subsequent in-depth analysis by Mass Spectrometry (MS). We describe here a newly designed chromatin proteomics strategy, named ChroP (Chromatin Proteomics), whereby a preparative chromatin immunoprecipitation is used to isolate distinct chromatin regions whose features, in terms of hPTMs, variants and co-associated non-histonic proteins, are analyzed by MS. We illustrate here the setting up of ChroP for the enrichment and analysis of transcriptionally silent heterochromatic regions, marked by the presence of tri-methylation of lysine 9 on histone H3. The results achieved demonstrate the potential of ChroP in thoroughly characterizing the heterochromatin proteome and prove it as a powerful analytical strategy for understanding how the distinct protein determinants of chromatin interact and synergize to establish locus-specific structural and functional configurations.
Biochemistry, Issue 86, chromatin, histone post-translational modifications (hPTMs), epigenetics, mass spectrometry, proteomics, SILAC, chromatin immunoprecipitation , histone variants, chromatome, hPTMs cross-talks
51220
Play Button
Heterotypic Three-dimensional In Vitro Modeling of Stromal-Epithelial Interactions During Ovarian Cancer Initiation and Progression
Authors: Kate Lawrenson, Barbara Grun, Simon A. Gayther.
Institutions: University of Southern California, University College London.
Epithelial ovarian cancers (EOCs) are the leading cause of death from gynecological malignancy in Western societies. Despite advances in surgical treatments and improved platinum-based chemotherapies, there has been little improvement in EOC survival rates for more than four decades 1,2. Whilst stage I tumors have 5-year survival rates >85%, survival rates for stage III/IV disease are <40%. Thus, the high rates of mortality for EOC could be significantly decreased if tumors were detected at earlier, more treatable, stages 3-5. At present, the molecular genetic and biological basis of early stage disease development is poorly understood. More specifically, little is known about the role of the microenvironment during tumor initiation; but known risk factors for EOCs (e.g. age and parity) suggest that the microenvironment plays a key role in the early genesis of EOCs. We therefore developed three-dimensional heterotypic models of both the normal ovary and of early stage ovarian cancers. For the normal ovary, we co-cultured normal ovarian surface epithelial (IOSE) and normal stromal fibroblast (INOF) cells, immortalized by retrovrial transduction of the catalytic subunit of human telomerase holoenzyme (hTERT) to extend the lifespan of these cells in culture. To model the earliest stages of ovarian epithelial cell transformation, overexpression of the CMYC oncogene in IOSE cells, again co-cultured with INOF cells. These heterotypic models were used to investigate the effects of aging and senescence on the transformation and invasion of epithelial cells. Here we describe the methodological steps in development of these three-dimensional model; these methodologies aren't specific to the development of normal ovary and ovarian cancer tissues, and could be used to study other tissue types where stromal and epithelial cell interactions are a fundamental aspect of the tissue maintenance and disease development.
Cancer Biology, Issue 66, Medicine, Tissue Engineering, three-dimensional cultures, stromal-epithelial interactions, epithelial ovarian cancer, ovarian surface epithelium, ovarian fibroblasts, tumor initiation
4206
Play Button
Polymalic Acid-based Nano Biopolymers for Targeting of Multiple Tumor Markers: An Opportunity for Personalized Medicine?
Authors: Julia Y. Ljubimova, Hui Ding, Jose Portilla-Arias, Rameshwar Patil, Pallavi R. Gangalum, Alexandra Chesnokova, Satoshi Inoue, Arthur Rekechenetskiy, Tala Nassoura, Keith L. Black, Eggehard Holler.
Institutions: Cedars-Sinai Medical Center.
Tumors with similar grade and morphology often respond differently to the same treatment because of variations in molecular profiling. To account for this diversity, personalized medicine is developed for silencing malignancy associated genes. Nano drugs fit these needs by targeting tumor and delivering antisense oligonucleotides for silencing of genes. As drugs for the treatment are often administered repeatedly, absence of toxicity and negligible immune response are desirable. In the example presented here, a nano medicine is synthesized from the biodegradable, non-toxic and non-immunogenic platform polymalic acid by controlled chemical ligation of antisense oligonucleotides and tumor targeting molecules. The synthesis and treatment is exemplified for human Her2-positive breast cancer using an experimental mouse model. The case can be translated towards synthesis and treatment of other tumors.
Chemistry, Issue 88, Cancer treatment, personalized medicine, polymalic acid, nanodrug, biopolymer, targeting, host compatibility, biodegradability
50668
Play Button
Agrobacterium-Mediated Virus-Induced Gene Silencing Assay In Cotton
Authors: Xiquan Gao, Robert C. Britt Jr., Libo Shan, Ping He.
Institutions: Texas A&M University, Texas A&M University.
Cotton (Gossypium hirsutum) is one of the most important crops worldwide. Considerable efforts have been made on molecular breeding of new varieties. The large-scale gene functional analysis in cotton has been lagged behind most of the modern plant species, likely due to its large size of genome, gene duplication and polyploidy, long growth cycle and recalcitrance to genetic transformation1. To facilitate high throughput functional genetic/genomic study in cotton, we attempt to develop rapid and efficient transient assays to assess cotton gene functions. Virus-Induced Gene Silencing (VIGS) is a powerful technique that was developed based on the host Post-Transcriptional Gene Silencing (PTGS) to repress viral proliferation2,3. Agrobacterium-mediated VIGS has been successfully applied in a wide range of dicots species such as Solanaceae, Arabidopsis and legume species, and monocots species including barley, wheat and maize, for various functional genomic studies3,4. As this rapid and efficient approach avoids plant transformation and overcomes functional redundancy, it is particularly attractive and suitable for functional genomic study in crop species like cotton not amenable for transformation. In this study, we report the detailed protocol of Agrobacterium-mediated VIGS system in cotton. Among the several viral VIGS vectors, the tobacco rattle virus (TRV) invades a wide range of hosts and is able to spread vigorously throughout the entire plant yet produce mild symptoms on the hosts5. To monitor the silencing efficiency, GrCLA1, a homolog gene of Arabidopsis Cloroplastos alterados 1 gene (AtCLA1) in cotton, has been cloned and inserted into the VIGS binary vector pYL156. CLA1 gene is involved in chloroplast development6, and previous studies have shown that loss-of-function of AtCLA1 resulted in an albino phenotype on true leaves7, providing an excellent visual marker for silencing efficiency. At approximately two weeks post Agrobacterium infiltration, the albino phenotype started to appear on the true leaves, with 100% silencing efficiency in all replicated experiments. The silencing of endogenous gene expression was also confirmed by RT-PCR analysis. Significantly, silencing could potently occur in all the cultivars we tested, including various commercially grown varieties in Texas. This rapid and efficient Agrobacterium-mediated VIGS assay provides a very powerful tool for rapid large-scale analysis of gene functions at genome-wide level in cotton.
Plant Biology, Issue 54, Agrobacterium, Cotton, Functional Genomics, Virus-Induced Gene Silencing
2938
Play Button
Combining Magnetic Sorting of Mother Cells and Fluctuation Tests to Analyze Genome Instability During Mitotic Cell Aging in Saccharomyces cerevisiae
Authors: Melissa N. Patterson, Patrick H. Maxwell.
Institutions: Rensselaer Polytechnic Institute.
Saccharomyces cerevisiae has been an excellent model system for examining mechanisms and consequences of genome instability. Information gained from this yeast model is relevant to many organisms, including humans, since DNA repair and DNA damage response factors are well conserved across diverse species. However, S. cerevisiae has not yet been used to fully address whether the rate of accumulating mutations changes with increasing replicative (mitotic) age due to technical constraints. For instance, measurements of yeast replicative lifespan through micromanipulation involve very small populations of cells, which prohibit detection of rare mutations. Genetic methods to enrich for mother cells in populations by inducing death of daughter cells have been developed, but population sizes are still limited by the frequency with which random mutations that compromise the selection systems occur. The current protocol takes advantage of magnetic sorting of surface-labeled yeast mother cells to obtain large enough populations of aging mother cells to quantify rare mutations through phenotypic selections. Mutation rates, measured through fluctuation tests, and mutation frequencies are first established for young cells and used to predict the frequency of mutations in mother cells of various replicative ages. Mutation frequencies are then determined for sorted mother cells, and the age of the mother cells is determined using flow cytometry by staining with a fluorescent reagent that detects bud scars formed on their cell surfaces during cell division. Comparison of predicted mutation frequencies based on the number of cell divisions to the frequencies experimentally observed for mother cells of a given replicative age can then identify whether there are age-related changes in the rate of accumulating mutations. Variations of this basic protocol provide the means to investigate the influence of alterations in specific gene functions or specific environmental conditions on mutation accumulation to address mechanisms underlying genome instability during replicative aging.
Microbiology, Issue 92, Aging, mutations, genome instability, Saccharomyces cerevisiae, fluctuation test, magnetic sorting, mother cell, replicative aging
51850
Play Button
Metabolic Labeling of Newly Transcribed RNA for High Resolution Gene Expression Profiling of RNA Synthesis, Processing and Decay in Cell Culture
Authors: Bernd Rädle, Andrzej J. Rutkowski, Zsolt Ruzsics, Caroline C. Friedel, Ulrich H. Koszinowski, Lars Dölken.
Institutions: Max von Pettenkofer Institute, University of Cambridge, Ludwig-Maximilians-University Munich.
The development of whole-transcriptome microarrays and next-generation sequencing has revolutionized our understanding of the complexity of cellular gene expression. Along with a better understanding of the involved molecular mechanisms, precise measurements of the underlying kinetics have become increasingly important. Here, these powerful methodologies face major limitations due to intrinsic properties of the template samples they study, i.e. total cellular RNA. In many cases changes in total cellular RNA occur either too slowly or too quickly to represent the underlying molecular events and their kinetics with sufficient resolution. In addition, the contribution of alterations in RNA synthesis, processing, and decay are not readily differentiated. We recently developed high-resolution gene expression profiling to overcome these limitations. Our approach is based on metabolic labeling of newly transcribed RNA with 4-thiouridine (thus also referred to as 4sU-tagging) followed by rigorous purification of newly transcribed RNA using thiol-specific biotinylation and streptavidin-coated magnetic beads. It is applicable to a broad range of organisms including vertebrates, Drosophila, and yeast. We successfully applied 4sU-tagging to study real-time kinetics of transcription factor activities, provide precise measurements of RNA half-lives, and obtain novel insights into the kinetics of RNA processing. Finally, computational modeling can be employed to generate an integrated, comprehensive analysis of the underlying molecular mechanisms.
Genetics, Issue 78, Cellular Biology, Molecular Biology, Microbiology, Biochemistry, Eukaryota, Investigative Techniques, Biological Phenomena, Gene expression profiling, RNA synthesis, RNA processing, RNA decay, 4-thiouridine, 4sU-tagging, microarray analysis, RNA-seq, RNA, DNA, PCR, sequencing
50195
Play Button
Polymerase Chain Reaction: Basic Protocol Plus Troubleshooting and Optimization Strategies
Authors: Todd C. Lorenz.
Institutions: University of California, Los Angeles .
In the biological sciences there have been technological advances that catapult the discipline into golden ages of discovery. For example, the field of microbiology was transformed with the advent of Anton van Leeuwenhoek's microscope, which allowed scientists to visualize prokaryotes for the first time. The development of the polymerase chain reaction (PCR) is one of those innovations that changed the course of molecular science with its impact spanning countless subdisciplines in biology. The theoretical process was outlined by Keppe and coworkers in 1971; however, it was another 14 years until the complete PCR procedure was described and experimentally applied by Kary Mullis while at Cetus Corporation in 1985. Automation and refinement of this technique progressed with the introduction of a thermal stable DNA polymerase from the bacterium Thermus aquaticus, consequently the name Taq DNA polymerase. PCR is a powerful amplification technique that can generate an ample supply of a specific segment of DNA (i.e., an amplicon) from only a small amount of starting material (i.e., DNA template or target sequence). While straightforward and generally trouble-free, there are pitfalls that complicate the reaction producing spurious results. When PCR fails it can lead to many non-specific DNA products of varying sizes that appear as a ladder or smear of bands on agarose gels. Sometimes no products form at all. Another potential problem occurs when mutations are unintentionally introduced in the amplicons, resulting in a heterogeneous population of PCR products. PCR failures can become frustrating unless patience and careful troubleshooting are employed to sort out and solve the problem(s). This protocol outlines the basic principles of PCR, provides a methodology that will result in amplification of most target sequences, and presents strategies for optimizing a reaction. By following this PCR guide, students should be able to: ● Set up reactions and thermal cycling conditions for a conventional PCR experiment ● Understand the function of various reaction components and their overall effect on a PCR experiment ● Design and optimize a PCR experiment for any DNA template ● Troubleshoot failed PCR experiments
Basic Protocols, Issue 63, PCR, optimization, primer design, melting temperature, Tm, troubleshooting, additives, enhancers, template DNA quantification, thermal cycler, molecular biology, genetics
3998
Play Button
Profiling of Estrogen-regulated MicroRNAs in Breast Cancer Cells
Authors: Anne Katchy, Cecilia Williams.
Institutions: University of Houston.
Estrogen plays vital roles in mammary gland development and breast cancer progression. It mediates its function by binding to and activating the estrogen receptors (ERs), ERα, and ERβ. ERα is frequently upregulated in breast cancer and drives the proliferation of breast cancer cells. The ERs function as transcription factors and regulate gene expression. Whereas ERα's regulation of protein-coding genes is well established, its regulation of noncoding microRNA (miRNA) is less explored. miRNAs play a major role in the post-transcriptional regulation of genes, inhibiting their translation or degrading their mRNA. miRNAs can function as oncogenes or tumor suppressors and are also promising biomarkers. Among the miRNA assays available, microarray and quantitative real-time polymerase chain reaction (qPCR) have been extensively used to detect and quantify miRNA levels. To identify miRNAs regulated by estrogen signaling in breast cancer, their expression in ERα-positive breast cancer cell lines were compared before and after estrogen-activation using both the µParaflo-microfluidic microarrays and Dual Labeled Probes-low density arrays. Results were validated using specific qPCR assays, applying both Cyanine dye-based and Dual Labeled Probes-based chemistry. Furthermore, a time-point assay was used to identify regulations over time. Advantages of the miRNA assay approach used in this study is that it enables a fast screening of mature miRNA regulations in numerous samples, even with limited sample amounts. The layout, including the specific conditions for cell culture and estrogen treatment, biological and technical replicates, and large-scale screening followed by in-depth confirmations using separate techniques, ensures a robust detection of miRNA regulations, and eliminates false positives and other artifacts. However, mutated or unknown miRNAs, or regulations at the primary and precursor transcript level, will not be detected. The method presented here represents a thorough investigation of estrogen-mediated miRNA regulation.
Medicine, Issue 84, breast cancer, microRNA, estrogen, estrogen receptor, microarray, qPCR
51285
Play Button
Nanomanipulation of Single RNA Molecules by Optical Tweezers
Authors: William Stephenson, Gorby Wan, Scott A. Tenenbaum, Pan T. X. Li.
Institutions: University at Albany, State University of New York, University at Albany, State University of New York, University at Albany, State University of New York, University at Albany, State University of New York, University at Albany, State University of New York.
A large portion of the human genome is transcribed but not translated. In this post genomic era, regulatory functions of RNA have been shown to be increasingly important. As RNA function often depends on its ability to adopt alternative structures, it is difficult to predict RNA three-dimensional structures directly from sequence. Single-molecule approaches show potentials to solve the problem of RNA structural polymorphism by monitoring molecular structures one molecule at a time. This work presents a method to precisely manipulate the folding and structure of single RNA molecules using optical tweezers. First, methods to synthesize molecules suitable for single-molecule mechanical work are described. Next, various calibration procedures to ensure the proper operations of the optical tweezers are discussed. Next, various experiments are explained. To demonstrate the utility of the technique, results of mechanically unfolding RNA hairpins and a single RNA kissing complex are used as evidence. In these examples, the nanomanipulation technique was used to study folding of each structural domain, including secondary and tertiary, independently. Lastly, the limitations and future applications of the method are discussed.
Bioengineering, Issue 90, RNA folding, single-molecule, optical tweezers, nanomanipulation, RNA secondary structure, RNA tertiary structure
51542
Play Button
Rapid Analysis of Chromosome Aberrations in Mouse B Lymphocytes by PNA-FISH
Authors: Sarah M. Misenko, Samuel F. Bunting.
Institutions: Rutgers, the State University of New Jersey.
Defective DNA repair leads to increased genomic instability, which is the root cause of mutations that lead to tumorigenesis. Analysis of the frequency and type of chromosome aberrations in different cell types allows defects in DNA repair pathways to be elucidated. Understanding mammalian DNA repair biology has been greatly helped by the production of mice with knockouts in specific genes. The goal of this protocol is to quantify genomic instability in mouse B lymphocytes. Labeling of the telomeres using PNA-FISH probes (peptide nucleic acid - fluorescent in situ hybridization) facilitates the rapid analysis of genomic instability in metaphase chromosome spreads. B cells have specific advantages relative to fibroblasts, because they have normal ploidy and a higher mitotic index. Short-term culture of B cells therefore enables precise measurement of genomic instability in a primary cell population which is likely to have fewer secondary genetic mutations than what is typically found in transformed fibroblasts or patient cell lines.
Immunology, Issue 90, genomic instability, DNA repair, mouse, metaphase spread, FISH, primary culture
51806
Play Button
Propagation of Homalodisca coagulata virus-01 via Homalodisca vitripennis Cell Culture
Authors: Anna M. Biesbrock, Christopher M. Powell, Wayne B. Hunter, Blake R. Bextine.
Institutions: University of Texas at Tyler, USDA ARS.
The glassy-winged sharpshooter (Homalodisca vitripennis) is a highly vagile and polyphagous insect found throughout the southwestern United States. These insects are the predominant vectors of Xylella fastidiosa (X. fastidiosa), a xylem-limited bacterium that is the causal agent of Pierce's disease (PD) of grapevine. Pierce’s disease is economically damaging; thus, H. vitripennis have become a target for pathogen management strategies. A dicistrovirus identified as Homalodisca coagulata virus-01 (HoCV-01) has been associated with an increased mortality in H. vitripennis populations. Because a host cell is required for HoCV-01 replication, cell culture provides a uniform environment for targeted replication that is logistically and economically valuable for biopesticide production. In this study, a system for large-scale propagation of H. vitripennis cells via tissue culture was developed, providing a viral replication mechanism. HoCV-01 was extracted from whole body insects and used to inoculate cultured H. vitripennis cells at varying levels. The culture medium was removed every 24 hr for 168 hr, RNA extracted and analyzed with qRT-PCR. Cells were stained with trypan blue and counted to quantify cell survivability using light microscopy. Whole virus particles were extracted up to 96 hr after infection, which was the time point determined to be before total cell culture collapse occurred. Cells were also subjected to fluorescent staining and viewed using confocal microscopy to investigate viral activity on F-actin attachment and nuclei integrity. The conclusion of this study is that H. vitripennis cells are capable of being cultured and used for mass production of HoCV-01 at a suitable level to allow production of a biopesticide.
Infection, Issue 91, Homalodisca vitripennis, Homalodisca coagulata virus-01, cell culture, Pierce’s disease of grapevine, Xylella fastidiosa, Dicistroviridae
51953
Play Button
Quantitative, Real-time Analysis of Base Excision Repair Activity in Cell Lysates Utilizing Lesion-specific Molecular Beacons
Authors: David Svilar, Conchita Vens, Robert W. Sobol.
Institutions: University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, The Netherlands Cancer Institute, University of Pittsburgh School of Public Health.
We describe a method for the quantitative, real-time measurement of DNA glycosylase and AP endonuclease activities in cell nuclear lysates using base excision repair (BER) molecular beacons. The substrate (beacon) is comprised of a deoxyoligonucleotide containing a single base lesion with a 6-Carboxyfluorescein (6-FAM) moiety conjugated to the 5'end and a Dabcyl moiety conjugated to the 3' end of the oligonucleotide. The BER molecular beacon is 43 bases in length and the sequence is designed to promote the formation of a stem-loop structure with 13 nucleotides in the loop and 15 base pairs in the stem1,2. When folded in this configuration the 6-FAM moiety is quenched by Dabcyl in a non-fluorescent manner via Förster Resonance Energy Transfer (FRET)3,4. The lesion is positioned such that following base lesion removal and strand scission the remaining 5 base oligonucleotide containing the 6-FAM moiety is released from the stem. Release and detachment from the quencher (Dabcyl) results in an increase of fluorescence that is proportionate to the level of DNA repair. By collecting multiple reads of the fluorescence values, real-time assessment of BER activity is possible. The use of standard quantitative real-time PCR instruments allows the simultaneous analysis of numerous samples. The design of these BER molecular beacons, with a single base lesion, is amenable to kinetic analyses, BER quantification and inhibitor validation and is adaptable for quantification of DNA Repair activity in tissue and tumor cell lysates or with purified proteins. The analysis of BER activity in tumor lysates or tissue aspirates using these molecular beacons may be applicable to functional biomarker measurements. Further, the analysis of BER activity with purified proteins using this quantitative assay provides a rapid, high-throughput method for the discovery and validation of BER inhibitors.
Molecular Biology, Issue 66, Genetics, Cancer Biology, Base excision repair, DNA glycosylase, AP endonuclease, fluorescent, real-time, activity assay, molecular beacon, biomarker, DNA Damage, base lesion
4168
Play Button
Using SCOPE to Identify Potential Regulatory Motifs in Coregulated Genes
Authors: Viktor Martyanov, Robert H. Gross.
Institutions: Dartmouth College.
SCOPE is an ensemble motif finder that uses three component algorithms in parallel to identify potential regulatory motifs by over-representation and motif position preference1. Each component algorithm is optimized to find a different kind of motif. By taking the best of these three approaches, SCOPE performs better than any single algorithm, even in the presence of noisy data1. In this article, we utilize a web version of SCOPE2 to examine genes that are involved in telomere maintenance. SCOPE has been incorporated into at least two other motif finding programs3,4 and has been used in other studies5-8. The three algorithms that comprise SCOPE are BEAM9, which finds non-degenerate motifs (ACCGGT), PRISM10, which finds degenerate motifs (ASCGWT), and SPACER11, which finds longer bipartite motifs (ACCnnnnnnnnGGT). These three algorithms have been optimized to find their corresponding type of motif. Together, they allow SCOPE to perform extremely well. Once a gene set has been analyzed and candidate motifs identified, SCOPE can look for other genes that contain the motif which, when added to the original set, will improve the motif score. This can occur through over-representation or motif position preference. Working with partial gene sets that have biologically verified transcription factor binding sites, SCOPE was able to identify most of the rest of the genes also regulated by the given transcription factor. Output from SCOPE shows candidate motifs, their significance, and other information both as a table and as a graphical motif map. FAQs and video tutorials are available at the SCOPE web site which also includes a "Sample Search" button that allows the user to perform a trial run. Scope has a very friendly user interface that enables novice users to access the algorithm's full power without having to become an expert in the bioinformatics of motif finding. As input, SCOPE can take a list of genes, or FASTA sequences. These can be entered in browser text fields, or read from a file. The output from SCOPE contains a list of all identified motifs with their scores, number of occurrences, fraction of genes containing the motif, and the algorithm used to identify the motif. For each motif, result details include a consensus representation of the motif, a sequence logo, a position weight matrix, and a list of instances for every motif occurrence (with exact positions and "strand" indicated). Results are returned in a browser window and also optionally by email. Previous papers describe the SCOPE algorithms in detail1,2,9-11.
Genetics, Issue 51, gene regulation, computational biology, algorithm, promoter sequence motif
2703
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.