JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Crystal structure of ChrR--a quinone reductase with the capacity to reduce chromate.
PLoS ONE
The Escherichia coli ChrR enzyme is an obligatory two-electron quinone reductase that has many applications, such as in chromate bioremediation. Its crystal structure, solved at 2.2 Å resolution, shows that it belongs to the flavodoxin superfamily in which flavin mononucleotide (FMN) is firmly anchored to the protein. ChrR crystallized as a tetramer, and size exclusion chromatography showed that this is the oligomeric form that catalyzes chromate reduction. Within the tetramer, the dimers interact by a pair of two hydrogen bond networks, each involving Tyr128 and Glu146 of one dimer and Arg125 and Tyr85 of the other; the latter extends to one of the redox FMN cofactors. Changes in each of these amino acids enhanced chromate reductase activity of the enzyme, showing that this network is centrally involved in chromate reduction.
Authors: Eva K. Brinkman, Kira Schipper, Nadine Bongaerts, Mathias J. Voges, Alessandro Abate, S. Aljoscha Wahl.
Published: 10-02-2012
ABSTRACT
This work puts forward a toolkit that enables the conversion of alkanes by Escherichia coli and presents a proof of principle of its applicability. The toolkit consists of multiple standard interchangeable parts (BioBricks)9 addressing the conversion of alkanes, regulation of gene expression and survival in toxic hydrocarbon-rich environments. A three-step pathway for alkane degradation was implemented in E. coli to enable the conversion of medium- and long-chain alkanes to their respective alkanols, alkanals and ultimately alkanoic-acids. The latter were metabolized via the native β-oxidation pathway. To facilitate the oxidation of medium-chain alkanes (C5-C13) and cycloalkanes (C5-C8), four genes (alkB2, rubA3, rubA4and rubB) of the alkane hydroxylase system from Gordonia sp. TF68,21 were transformed into E. coli. For the conversion of long-chain alkanes (C15-C36), theladA gene from Geobacillus thermodenitrificans was implemented. For the required further steps of the degradation process, ADH and ALDH (originating from G. thermodenitrificans) were introduced10,11. The activity was measured by resting cell assays. For each oxidative step, enzyme activity was observed. To optimize the process efficiency, the expression was only induced under low glucose conditions: a substrate-regulated promoter, pCaiF, was used. pCaiF is present in E. coli K12 and regulates the expression of the genes involved in the degradation of non-glucose carbon sources. The last part of the toolkit - targeting survival - was implemented using solvent tolerance genes, PhPFDα and β, both from Pyrococcus horikoshii OT3. Organic solvents can induce cell stress and decreased survivability by negatively affecting protein folding. As chaperones, PhPFDα and β improve the protein folding process e.g. under the presence of alkanes. The expression of these genes led to an improved hydrocarbon tolerance shown by an increased growth rate (up to 50%) in the presences of 10% n-hexane in the culture medium were observed. Summarizing, the results indicate that the toolkit enables E. coli to convert and tolerate hydrocarbons in aqueous environments. As such, it represents an initial step towards a sustainable solution for oil-remediation using a synthetic biology approach.
25 Related JoVE Articles!
Play Button
EPR Monitored Redox Titration of the Cofactors of Saccharomyces cerevisiae Nar1
Authors: Peter-Leon Hagedoorn, Laura van der Weel, Wilfred R. Hagen.
Institutions: Delft University of Technology.
Electron Paramagnetic Resonance (EPR) monitored redox titrations are a powerful method to determine the midpoint potential of cofactors in proteins and to identify and quantify the cofactors in their detectable redox state. The technique is complementary to direct electrochemistry (voltammetry) approaches, as it does not offer information on electron transfer rates, but does establish the identity and redox state of the cofactors in the protein under study. The technique is widely applicable to any protein containing an electron paramagnetic resonance (EPR) detectable cofactor. A typical titration requires 2 ml protein with a cofactor concentration in the range of 1-100 µM. The protein is titrated with a chemical reductant (sodium dithionite) or oxidant (potassium ferricyanide) in order to poise the sample at a certain potential. A platinum wire and a Ag/AgCl reference electrode are connected to a voltmeter to measure the potential of the protein solution. A set of 13 different redox mediators is used to equilibrate between the redox cofactors of the protein and the electrodes. Samples are drawn at different potentials and the Electron Paramagnetic Resonance spectra, characteristic for the different redox cofactors in the protein, are measured. The plot of the signal intensity versus the sample potential is analyzed using the Nernst equation in order to determine the midpoint potential of the cofactor.
Biochemistry, Issue 93, Redox titration, electron paramagnetic resonance, Nar1, cofactor, iron-sulfur cluster, mononuclear iron, midpoint potential
51611
Play Button
Visualizing Antigen Specific CD4+ T Cells using MHC Class II Tetramers
Authors: Eddie A. James, Rebecca LaFond, Ivana Durinovic-Bello, William Kwok.
Institutions: Benaroya Research Institute, Benaroya Research Institute, Benaroya Research Institute.
Major histocompatibility complex (MHC) class II tetramers allow the direct visualization of antigen specific CD4+ T cells by flow cytometry. This method relies on the highly specific interaction between peptide loaded MHC and the corresponding T-cell receptor. While the affinity of a single MHC/peptide molecule is low, cross-linking MHC/peptide complexes with streptavidin increases the avidity of the interaction, enabling their use as staining reagents. Because of the relatively low frequencies of CD4+ T cells (~1 in 300,000 for a single specificity) this assay utilizes an in vitro amplification step to increase its threshold of detection. Mononuclear cells are purified from peripheral blood by Ficoll underlay. CD4+ cells are then separated by negative selection using biotinylated antibody cocktail and anti-biotin labeled magnetic beads. Using adherent cells from the CD4- cell fraction as antigen presenting cells, CD4+ T cells are expanded in media by adding an antigenic peptide and IL-2. The expanded cells are stained with the corresponding class II tetramer by incubating at 37 C for one hour and subsequently stained using surface antibodies such as anti-CD4, anti-CD3, and anti-CD25. After labeling, the cells can be directly analyzed by flow cytometry. The tetramer positive cells typically form a distinct population among the expanded CD4+ cells. Tetramer positive cells are usually CD25+ and often CD4 high. Because the level of background tetramer staining can vary, positive staining results should always be compared to the staining of the same cells with an irrelevant tetramer. Multiple variations of this basic assay are possible. Tetramer positive cells may be sorted for further phenotypic analysis, inclusion in ELISPOT or proliferation assays, or other secondary assays. Several groups have also demonstrated co-staining using tetramers and either anti-cytokine or anti-FoxP3 antibodies.
Immunology, Issue 25, CD4+ T cell, MHC class II, tetramers, peripheral blood mononuclear cells, in vitro expansion, flow cytometry
1167
Play Button
An Assay for Measuring the Activity of Escherichia coli Inducible Lysine Decarboxyase
Authors: Usheer Kanjee, Walid A. Houry.
Institutions: University of Toronto.
Escherichia coli is an enteric bacterium that is capable of growing over a wide range of pH values (pH 5 - 9)1 and, incredibly, is able to survive extreme acid stresses including passage through the mammalian stomach where the pH can fall to as low as pH 1 - 22. To enable such a broad range of acidic pH survival, E. coli possesses four different inducible amino acid decarboxylases that decarboxylate their substrate amino acids in a proton-dependent manner thus raising the internal pH. The decarboxylases include the glutamic acid decarboxylases GadA and GadB3, the arginine decarboxylase AdiA4, the lysine decarboxylase LdcI5, 6 and the ornithine decarboxylase SpeF7. All of these enzymes utilize pyridoxal-5'-phospate as a co-factor8 and function together with inner-membrane substrate-product antiporters that remove decarboxylation products to the external medium in exchange for fresh substrate2. In the case of LdcI, the lysine-cadaverine antiporter is called CadB. Recently, we determined the X-ray crystal structure of LdcI to 2.0 Å, and we discovered a novel small-molecule bound to LdcI the stringent response regulator guanosine 5'-diphosphate,3'-diphosphate (ppGpp) 14. The stringent response occurs when exponentially growing cells experience nutrient deprivation or one of a number of other stresses9. As a result, cells produce ppGpp which leads to a signaling cascade culminating in the shift from exponential growth to stationary phase growth10. We have demonstrated that ppGpp is a specific inhibitor of LdcI 14. Here we describe the lysine decarboxylase assay, modified from the assay developed by Phan et al.11, that we have used to determine the activity of LdcI and the effect of pppGpp/ppGpp on that activity. The LdcI decarboxylation reaction removes the α-carboxy group of L-lysine and produces carbon dioxide and the polyamine cadaverine (1,5-diaminopentane)5. L-lysine and cadaverine can be reacted with 2,4,6-trinitrobenzensulfonic acid (TNBS) at high pH to generate N,N'-bistrinitrophenylcadaverine (TNP-cadaverine) and N,N′-bistrinitrophenyllysine (TNP-lysine), respectively11. The TNP-cadaverine can be separated from the TNP-lysine as the former is soluble in organic solvents such as toluene while the latter is not (See Figure 1). The linear range of the assay was determined empirically using purified cadaverine.
Biochemistry, Issue 46, Inducible Lysine Decarboxyase, Acid Stress, Stringent Response, Pyridoxal-5'-phosphate dependent decarboxylase, guanosine 5'-diphosphate, 3'-diphosphate
2094
Play Button
In vitro Reconstitution of the Active T. castaneum Telomerase
Authors: Anthony P. Schuller, Michael J. Harkisheimer, Emmanuel Skordalakes.
Institutions: University of Pennsylvania.
Efforts to isolate the catalytic subunit of telomerase, TERT, in sufficient quantities for structural studies, have been met with limited success for more than a decade. Here, we present methods for the isolation of the recombinant Tribolium castaneum TERT (TcTERT) and the reconstitution of the active T. castaneum telomerase ribonucleoprotein (RNP) complex in vitro. Telomerase is a specialized reverse transcriptase1 that adds short DNA repeats, called telomeres, to the 3' end of linear chromosomes2 that serve to protect them from end-to-end fusion and degradation. Following DNA replication, a short segment is lost at the end of the chromosome3 and without telomerase, cells continue dividing until eventually reaching their Hayflick Limit4. Additionally, telomerase is dormant in most somatic cells5 in adults, but is active in cancer cells6 where it promotes cell immortality7. The minimal telomerase enzyme consists of two core components: the protein subunit (TERT), which comprises the catalytic subunit of the enzyme and an integral RNA component (TER), which contains the template TERT uses to synthesize telomeres8,9. Prior to 2008, only structures for individual telomerase domains had been solved10,11. A major breakthrough in this field came from the determination of the crystal structure of the active12, catalytic subunit of T. castaneum telomerase, TcTERT1. Here, we present methods for producing large quantities of the active, soluble TcTERT for structural and biochemical studies, and the reconstitution of the telomerase RNP complex in vitro for telomerase activity assays. An overview of the experimental methods used is shown in Figure 1.
Molecular Biology, Issue 53, Telomerase, protein expression, purification, chromatography, RNA isolation, TRAP
2799
Play Button
Optimized Negative Staining: a High-throughput Protocol for Examining Small and Asymmetric Protein Structure by Electron Microscopy
Authors: Matthew Rames, Yadong Yu, Gang Ren.
Institutions: The Molecular Foundry.
Structural determination of proteins is rather challenging for proteins with molecular masses between 40 - 200 kDa. Considering that more than half of natural proteins have a molecular mass between 40 - 200 kDa1,2, a robust and high-throughput method with a nanometer resolution capability is needed. Negative staining (NS) electron microscopy (EM) is an easy, rapid, and qualitative approach which has frequently been used in research laboratories to examine protein structure and protein-protein interactions. Unfortunately, conventional NS protocols often generate structural artifacts on proteins, especially with lipoproteins that usually form presenting rouleaux artifacts. By using images of lipoproteins from cryo-electron microscopy (cryo-EM) as a standard, the key parameters in NS specimen preparation conditions were recently screened and reported as the optimized NS protocol (OpNS), a modified conventional NS protocol 3 . Artifacts like rouleaux can be greatly limited by OpNS, additionally providing high contrast along with reasonably high‐resolution (near 1 nm) images of small and asymmetric proteins. These high-resolution and high contrast images are even favorable for an individual protein (a single object, no average) 3D reconstruction, such as a 160 kDa antibody, through the method of electron tomography4,5. Moreover, OpNS can be a high‐throughput tool to examine hundreds of samples of small proteins. For example, the previously published mechanism of 53 kDa cholesteryl ester transfer protein (CETP) involved the screening and imaging of hundreds of samples 6. Considering cryo-EM rarely successfully images proteins less than 200 kDa has yet to publish any study involving screening over one hundred sample conditions, it is fair to call OpNS a high-throughput method for studying small proteins. Hopefully the OpNS protocol presented here can be a useful tool to push the boundaries of EM and accelerate EM studies into small protein structure, dynamics and mechanisms.
Environmental Sciences, Issue 90, small and asymmetric protein structure, electron microscopy, optimized negative staining
51087
Play Button
Fabrication And Characterization Of Photonic Crystal Slow Light Waveguides And Cavities
Authors: Christopher Paul Reardon, Isabella H. Rey, Karl Welna, Liam O'Faolain, Thomas F. Krauss.
Institutions: University of St Andrews.
Slow light has been one of the hot topics in the photonics community in the past decade, generating great interest both from a fundamental point of view and for its considerable potential for practical applications. Slow light photonic crystal waveguides, in particular, have played a major part and have been successfully employed for delaying optical signals1-4 and the enhancement of both linear5-7 and nonlinear devices.8-11 Photonic crystal cavities achieve similar effects to that of slow light waveguides, but over a reduced band-width. These cavities offer high Q-factor/volume ratio, for the realization of optically12 and electrically13 pumped ultra-low threshold lasers and the enhancement of nonlinear effects.14-16 Furthermore, passive filters17 and modulators18-19 have been demonstrated, exhibiting ultra-narrow line-width, high free-spectral range and record values of low energy consumption. To attain these exciting results, a robust repeatable fabrication protocol must be developed. In this paper we take an in-depth look at our fabrication protocol which employs electron-beam lithography for the definition of photonic crystal patterns and uses wet and dry etching techniques. Our optimised fabrication recipe results in photonic crystals that do not suffer from vertical asymmetry and exhibit very good edge-wall roughness. We discuss the results of varying the etching parameters and the detrimental effects that they can have on a device, leading to a diagnostic route that can be taken to identify and eliminate similar issues. The key to evaluating slow light waveguides is the passive characterization of transmission and group index spectra. Various methods have been reported, most notably resolving the Fabry-Perot fringes of the transmission spectrum20-21 and interferometric techniques.22-25 Here, we describe a direct, broadband measurement technique combining spectral interferometry with Fourier transform analysis.26 Our method stands out for its simplicity and power, as we can characterise a bare photonic crystal with access waveguides, without need for on-chip interference components, and the setup only consists of a Mach-Zehnder interferometer, with no need for moving parts and delay scans. When characterising photonic crystal cavities, techniques involving internal sources21 or external waveguides directly coupled to the cavity27 impact on the performance of the cavity itself, thereby distorting the measurement. Here, we describe a novel and non-intrusive technique that makes use of a cross-polarised probe beam and is known as resonant scattering (RS), where the probe is coupled out-of plane into the cavity through an objective. The technique was first demonstrated by McCutcheon et al.28 and further developed by Galli et al.29
Physics, Issue 69, Optics and Photonics, Astronomy, light scattering, light transmission, optical waveguides, photonics, photonic crystals, Slow-light, Cavities, Waveguides, Silicon, SOI, Fabrication, Characterization
50216
Play Button
In Situ Neutron Powder Diffraction Using Custom-made Lithium-ion Batteries
Authors: William R. Brant, Siegbert Schmid, Guodong Du, Helen E. A. Brand, Wei Kong Pang, Vanessa K. Peterson, Zaiping Guo, Neeraj Sharma.
Institutions: University of Sydney, University of Wollongong, Australian Synchrotron, Australian Nuclear Science and Technology Organisation, University of Wollongong, University of New South Wales.
Li-ion batteries are widely used in portable electronic devices and are considered as promising candidates for higher-energy applications such as electric vehicles.1,2 However, many challenges, such as energy density and battery lifetimes, need to be overcome before this particular battery technology can be widely implemented in such applications.3 This research is challenging, and we outline a method to address these challenges using in situ NPD to probe the crystal structure of electrodes undergoing electrochemical cycling (charge/discharge) in a battery. NPD data help determine the underlying structural mechanism responsible for a range of electrode properties, and this information can direct the development of better electrodes and batteries. We briefly review six types of battery designs custom-made for NPD experiments and detail the method to construct the ‘roll-over’ cell that we have successfully used on the high-intensity NPD instrument, WOMBAT, at the Australian Nuclear Science and Technology Organisation (ANSTO). The design considerations and materials used for cell construction are discussed in conjunction with aspects of the actual in situ NPD experiment and initial directions are presented on how to analyze such complex in situ data.
Physics, Issue 93, In operando, structure-property relationships, electrochemical cycling, electrochemical cells, crystallography, battery performance
52284
Play Button
Determining the Ice-binding Planes of Antifreeze Proteins by Fluorescence-based Ice Plane Affinity
Authors: Koli Basu, Christopher P. Garnham, Yoshiyuki Nishimiya, Sakae Tsuda, Ido Braslavsky, Peter Davies.
Institutions: Queen's University, Porter Neuroscience Research Center, National Institute of Advanced Industrial Science and Technology, The Hebrew University of Jerusalem.
Antifreeze proteins (AFPs) are expressed in a variety of cold-hardy organisms to prevent or slow internal ice growth. AFPs bind to specific planes of ice through their ice-binding surfaces. Fluorescence-based ice plane affinity (FIPA) analysis is a modified technique used to determine the ice planes to which the AFPs bind. FIPA is based on the original ice-etching method for determining AFP-bound ice-planes. It produces clearer images in a shortened experimental time. In FIPA analysis, AFPs are fluorescently labeled with a chimeric tag or a covalent dye then slowly incorporated into a macroscopic single ice crystal, which has been preformed into a hemisphere and oriented to determine the a- and c-axes. The AFP-bound ice hemisphere is imaged under UV light to visualize AFP-bound planes using filters to block out nonspecific light. Fluorescent labeling of the AFPs allows real-time monitoring of AFP adsorption into ice. The labels have been found not to influence the planes to which AFPs bind. FIPA analysis also introduces the option to bind more than one differently tagged AFP on the same single ice crystal to help differentiate their binding planes. These applications of FIPA are helping to advance our understanding of how AFPs bind to ice to halt its growth and why many AFP-producing organisms express multiple AFP isoforms.
Chemistry, Issue 83, Materials, Life Sciences, Optics, antifreeze proteins, Ice adsorption, Fluorescent labeling, Ice lattice planes, ice-binding proteins, Single ice crystal
51185
Play Button
Improving the Success Rate of Protein Crystallization by Random Microseed Matrix Screening
Authors: Marisa Till, Alice Robson, Matthew J. Byrne, Asha V. Nair, Stefan A. Kolek, Patrick D. Shaw Stewart, Paul R. Race.
Institutions: University of Bristol, Douglas Instruments.
Random microseed matrix screening (rMMS) is a protein crystallization technique in which seed crystals are added to random screens. By increasing the likelihood that crystals will grow in the metastable zone of a protein's phase diagram, extra crystallization leads are often obtained, the quality of crystals produced may be increased, and a good supply of crystals for data collection and soaking experiments is provided. Here we describe a general method for rMMS that may be applied to either sitting drop or hanging drop vapor diffusion experiments, established either by hand or using liquid handling robotics, in 96-well or 24-well tray format.
Structural Biology, Issue 78, Crystallography, X-Ray, Biochemical Phenomena, Molecular Structure, Molecular Conformation, protein crystallization, seeding, protein structure
50548
Play Button
Harvesting and Cryo-cooling Crystals of Membrane Proteins Grown in Lipidic Mesophases for Structure Determination by Macromolecular Crystallography
Authors: Dianfan Li, Coilín Boland, David Aragao, Kilian Walsh, Martin Caffrey.
Institutions: Trinity College Dublin .
An important route to understanding how proteins function at a mechanistic level is to have the structure of the target protein available, ideally at atomic resolution. Presently, there is only one way to capture such information as applied to integral membrane proteins (Figure 1), and the complexes they form, and that method is macromolecular X-ray crystallography (MX). To do MX diffraction quality crystals are needed which, in the case of membrane proteins, do not form readily. A method for crystallizing membrane proteins that involves the use of lipidic mesophases, specifically the cubic and sponge phases1-5, has gained considerable attention of late due to the successes it has had in the G protein-coupled receptor field6-21 (www.mpdb.tcd.ie). However, the method, henceforth referred to as the in meso or lipidic cubic phase method, comes with its own technical challenges. These arise, in part, due to the generally viscous and sticky nature of the lipidic mesophase in which the crystals, which are often micro-crystals, grow. Manipulating crystals becomes difficult as a result and particularly so during harvesting22,23. Problems arise too at the step that precedes harvesting which requires that the glass sandwich plates in which the crystals grow (Figure 2)24,25 are opened to expose the mesophase bolus, and the crystals therein, for harvesting, cryo-cooling and eventual X-ray diffraction data collection. The cubic and sponge mesophase variants (Figure 3) from which crystals must be harvested have profoundly different rheologies4,26. The cubic phase is viscous and sticky akin to a thick toothpaste. By contrast, the sponge phase is more fluid with a distinct tendency to flow. Accordingly, different approaches for opening crystallization wells containing crystals growing in the cubic and the sponge phase are called for as indeed different methods are required for harvesting crystals from the two mesophase types. Protocols for doing just that have been refined and implemented in the Membrane Structural and Functional Biology (MS&FB) Group, and are described in detail in this JoVE article (Figure 4). Examples are given of situations where crystals are successfully harvested and cryo-cooled. We also provide examples of cases where problems arise that lead to the irretrievable loss of crystals and describe how these problems can be avoided. In this article the Viewer is provided with step-by-step instructions for opening glass sandwich crystallization wells, for harvesting and for cryo-cooling crystals of membrane proteins growing in cubic and in sponge phases.
Materials Science, Issue 67, crystallization, glass sandwich plates, GPCR, harvesting, in meso, LCP, lipidic mesophases, macromolecular X-ray crystallography, membrane protein
4001
Play Button
Towards Biomimicking Wood: Fabricated Free-standing Films of Nanocellulose, Lignin, and a Synthetic Polycation
Authors: Karthik Pillai, Fernando Navarro Arzate, Wei Zhang, Scott Renneckar.
Institutions: Virginia Tech, Virginia Tech, Illinois Institute of Technology- Moffett Campus, University of Guadalajara, Virginia Tech, Virginia Tech.
Woody materials are comprised of plant cell walls that contain a layered secondary cell wall composed of structural polymers of polysaccharides and lignin. Layer-by-layer (LbL) assembly process which relies on the assembly of oppositely charged molecules from aqueous solutions was used to build a freestanding composite film of isolated wood polymers of lignin and oxidized nanofibril cellulose (NFC). To facilitate the assembly of these negatively charged polymers, a positively charged polyelectrolyte, poly(diallyldimethylammomium chloride) (PDDA), was used as a linking layer to create this simplified model cell wall. The layered adsorption process was studied quantitatively using quartz crystal microbalance with dissipation monitoring (QCM-D) and ellipsometry. The results showed that layer mass/thickness per adsorbed layer increased as a function of total number of layers. The surface coverage of the adsorbed layers was studied with atomic force microscopy (AFM). Complete coverage of the surface with lignin in all the deposition cycles was found for the system, however, surface coverage by NFC increased with the number of layers. The adsorption process was carried out for 250 cycles (500 bilayers) on a cellulose acetate (CA) substrate. Transparent free-standing LBL assembled nanocomposite films were obtained when the CA substrate was later dissolved in acetone. Scanning electron microscopy (SEM) of the fractured cross-sections showed a lamellar structure, and the thickness per adsorption cycle (PDDA-Lignin-PDDA-NC) was estimated to be 17 nm for two different lignin types used in the study. The data indicates a film with highly controlled architecture where nanocellulose and lignin are spatially deposited on the nanoscale (a polymer-polymer nanocomposites), similar to what is observed in the native cell wall.
Plant Biology, Issue 88, nanocellulose, thin films, quartz crystal microbalance, layer-by-layer, LbL
51257
Play Button
Using Microwave and Macroscopic Samples of Dielectric Solids to Study the Photonic Properties of Disordered Photonic Bandgap Materials
Authors: Seyed Reza Hashemizad, Sam Tsitrin, Polin Yadak, Yingquan He, Daniel Cuneo, Eric Paul Williamson, Devin Liner, Weining Man.
Institutions: San Francisco State University.
Recently, disordered photonic materials have been suggested as an alternative to periodic crystals for the formation of a complete photonic bandgap (PBG). In this article we will describe the methods for constructing and characterizing macroscopic disordered photonic structures using microwaves. The microwave regime offers the most convenient experimental sample size to build and test PBG media. Easily manipulated dielectric lattice components extend flexibility in building various 2D structures on top of pre-printed plastic templates. Once built, the structures could be quickly modified with point and line defects to make freeform waveguides and filters. Testing is done using a widely available Vector Network Analyzer and pairs of microwave horn antennas. Due to the scale invariance property of electromagnetic fields, the results we obtained in the microwave region can be directly applied to infrared and optical regions. Our approach is simple but delivers exciting new insight into the nature of light and disordered matter interaction. Our representative results include the first experimental demonstration of the existence of a complete and isotropic PBG in a two-dimensional (2D) hyperuniform disordered dielectric structure. Additionally we demonstrate experimentally the ability of this novel photonic structure to guide electromagnetic waves (EM) through freeform waveguides of arbitrary shape.
Physics, Issue 91, optics and photonics, photonic crystals, photonic bandgap, hyperuniform, disordered media, waveguides
51614
Play Button
Photo-Induced Cross-Linking of Unmodified Proteins (PICUP) Applied to Amyloidogenic Peptides
Authors: Farid Rahimi, Panchanan Maiti, Gal Bitan.
Institutions: University of California, Los Angeles, University of California, Los Angeles, University of California, Los Angeles.
The assembly of amyloidogenic proteins into toxic oligomers is a seminal event in the pathogenesis of protein misfolding diseases, including Alzheimer's, Parkinson's, and Huntington's diseases, hereditary amyotrophic lateral sclerosis, and type 2 diabetes. Owing to the metastable nature of these protein assemblies, it is difficult to assess their oligomer size distribution quantitatively using classical methods, such as electrophoresis, chromatography, fluorescence, or dynamic light scattering. Oligomers of amyloidogenic proteins exist as metastable mixtures, in which the oligomers dissociate into monomers and associate into larger assemblies simultaneously. PICUP stabilizes oligomer populations by covalent cross-linking and when combined with fractionation methods, such as sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) or size-exclusion chromatography (SEC), PICUP provides snapshots of the oligomer size distributions that existed before cross-linking. Hence, PICUP enables visualization and quantitative analysis of metastable protein populations and can be used to monitor assembly and decipher relationships between sequence modifications and oligomerization1. Mechanistically, PICUP involves photo-oxidation of Ru2+ in a tris(bipyridyl)Ru(II) complex (RuBpy) to Ru3+ by irradiation with visible light in the presence of an electron acceptor. Ru3+ is a strong one-electron oxidizer capable of abstracting an electron from a neighboring protein molecule, generating a protein radical1,2. Radicals are unstable, highly-reactive species and therefore disappear rapidly through a variety of intra- and intermolecular reactions. A radical may utilize the high energy of an unpaired electron to react with another protein monomer forming a dimeric radical, which subsequently loses a hydrogen atom and forms a stable, covalently-linked dimer. The dimer may then react further through a similar mechanism with monomers or other dimers to form higher-order oligomers. Advantages of PICUP relative to other photo- or chemical cross-linking methods3,4 include short (≤1 s) exposure to non-destructive visible light, no need for pre facto modification of the native sequence, and zero-length covalent cross-linking. In addition, PICUP enables cross-linking of proteins within wide pH and temperature ranges, including physiologic parameters. Here, we demonstrate application of PICUP to cross-linking of three amyloidogenic proteins the 40- and 42-residue amyloid β-protein variants (Aβ40 and Aβ42), and calcitonin, and a control protein, growth-hormone releasing factor (GRF).
Cross-linking, Issue 23, PICUP, amyloid β-protein, oligomer, amyloid, protein assembly
1071
Play Button
Monitoring the Reductive and Oxidative Half-Reactions of a Flavin-Dependent Monooxygenase using Stopped-Flow Spectrophotometry
Authors: Elvira Romero, Reeder Robinson, Pablo Sobrado.
Institutions: Virginia Polytechnic Institute and State University.
Aspergillus fumigatus siderophore A (SidA) is an FAD-containing monooxygenase that catalyzes the hydroxylation of ornithine in the biosynthesis of hydroxamate siderophores that are essential for virulence (e.g. ferricrocin or N',N",N'''-triacetylfusarinine C)1. The reaction catalyzed by SidA can be divided into reductive and oxidative half-reactions (Scheme 1). In the reductive half-reaction, the oxidized FAD bound to Af SidA, is reduced by NADPH2,3. In the oxidative half-reaction, the reduced cofactor reacts with molecular oxygen to form a C4a-hydroperoxyflavin intermediate, which transfers an oxygen atom to ornithine. Here, we describe a procedure to measure the rates and detect the different spectral forms of SidA using a stopped-flow instrument installed in an anaerobic glove box. In the stopped-flow instrument, small volumes of reactants are rapidly mixed, and after the flow is stopped by the stop syringe (Figure 1), the spectral changes of the solution placed in the observation cell are recorded over time. In the first part of the experiment, we show how we can use the stopped-flow instrument in single mode, where the anaerobic reduction of the flavin in Af SidA by NADPH is directly measured. We then use double mixing settings where Af SidA is first anaerobically reduced by NADPH for a designated period of time in an aging loop, and then reacted with molecular oxygen in the observation cell (Figure 1). In order to perform this experiment, anaerobic buffers are necessary because when only the reductive half-reaction is monitored, any oxygen in the solutions will react with the reduced flavin cofactor and form a C4a-hydroperoxyflavin intermediate that will ultimately decay back into the oxidized flavin. This would not allow the user to accurately measure rates of reduction since there would be complete turnover of the enzyme. When the oxidative half-reaction is being studied the enzyme must be reduced in the absence of oxygen so that just the steps between reduction and oxidation are observed. One of the buffers used in this experiment is oxygen saturated so that we can study the oxidative half-reaction at higher concentrations of oxygen. These are often the procedures carried out when studying either the reductive or oxidative half-reactions with flavin-containing monooxygenases. The time scale of the pre-steady-state experiments performed with the stopped-flow is milliseconds to seconds, which allow the determination of intrinsic rate constants and the detection and identification of intermediates in the reaction4. The procedures described here can be applied to other flavin-dependent monooxygenases.5,6
Bioengineering, Issue 61, Stopped-flow, kinetic mechanism, SidA, C4a-hydroperoxyflavin, monooxygenase, Aspergillus fumigatus
3803
Play Button
Lignin Down-regulation of Zea mays via dsRNAi and Klason Lignin Analysis
Authors: Sang-Hyuck Park, Rebecca Garlock Ong, Chuansheng Mei, Mariam Sticklen.
Institutions: University of Arizona, Michigan State University, The Institute for Advanced Learning and Research, Michigan State University.
To facilitate the use of lignocellulosic biomass as an alternative bioenergy resource, during biological conversion processes, a pretreatment step is needed to open up the structure of the plant cell wall, increasing the accessibility of the cell wall carbohydrates. Lignin, a polyphenolic material present in many cell wall types, is known to be a significant hindrance to enzyme access. Reduction in lignin content to a level that does not interfere with the structural integrity and defense system of the plant might be a valuable step to reduce the costs of bioethanol production. In this study, we have genetically down-regulated one of the lignin biosynthesis-related genes, cinnamoyl-CoA reductase (ZmCCR1) via a double stranded RNA interference technique. The ZmCCR1_RNAi construct was integrated into the maize genome using the particle bombardment method. Transgenic maize plants grew normally as compared to the wild-type control plants without interfering with biomass growth or defense mechanisms, with the exception of displaying of brown-coloration in transgenic plants leaf mid-ribs, husks, and stems. The microscopic analyses, in conjunction with the histological assay, revealed that the leaf sclerenchyma fibers were thinned but the structure and size of other major vascular system components was not altered. The lignin content in the transgenic maize was reduced by 7-8.7%, the crystalline cellulose content was increased in response to lignin reduction, and hemicelluloses remained unchanged. The analyses may indicate that carbon flow might have been shifted from lignin biosynthesis to cellulose biosynthesis. This article delineates the procedures used to down-regulate the lignin content in maize via RNAi technology, and the cell wall compositional analyses used to verify the effect of the modifications on the cell wall structure.
Bioengineering, Issue 89, Zea mays, cinnamoyl-CoA reductase (CCR), dsRNAi, Klason lignin measurement, cell wall carbohydrate analysis, gas chromatography (GC)
51340
Play Button
Reconstitution of a Kv Channel into Lipid Membranes for Structural and Functional Studies
Authors: Sungsoo Lee, Hui Zheng, Liang Shi, Qiu-Xing Jiang.
Institutions: University of Texas Southwestern Medical Center at Dallas.
To study the lipid-protein interaction in a reductionistic fashion, it is necessary to incorporate the membrane proteins into membranes of well-defined lipid composition. We are studying the lipid-dependent gating effects in a prototype voltage-gated potassium (Kv) channel, and have worked out detailed procedures to reconstitute the channels into different membrane systems. Our reconstitution procedures take consideration of both detergent-induced fusion of vesicles and the fusion of protein/detergent micelles with the lipid/detergent mixed micelles as well as the importance of reaching an equilibrium distribution of lipids among the protein/detergent/lipid and the detergent/lipid mixed micelles. Our data suggested that the insertion of the channels in the lipid vesicles is relatively random in orientations, and the reconstitution efficiency is so high that no detectable protein aggregates were seen in fractionation experiments. We have utilized the reconstituted channels to determine the conformational states of the channels in different lipids, record electrical activities of a small number of channels incorporated in planar lipid bilayers, screen for conformation-specific ligands from a phage-displayed peptide library, and support the growth of 2D crystals of the channels in membranes. The reconstitution procedures described here may be adapted for studying other membrane proteins in lipid bilayers, especially for the investigation of the lipid effects on the eukaryotic voltage-gated ion channels.
Molecular Biology, Issue 77, Biochemistry, Genetics, Cellular Biology, Structural Biology, Biophysics, Membrane Lipids, Phospholipids, Carrier Proteins, Membrane Proteins, Micelles, Molecular Motor Proteins, life sciences, biochemistry, Amino Acids, Peptides, and Proteins, lipid-protein interaction, channel reconstitution, lipid-dependent gating, voltage-gated ion channel, conformation-specific ligands, lipids
50436
Play Button
High Throughput Quantitative Expression Screening and Purification Applied to Recombinant Disulfide-rich Venom Proteins Produced in E. coli
Authors: Natalie J. Saez, Hervé Nozach, Marilyne Blemont, Renaud Vincentelli.
Institutions: Aix-Marseille Université, Commissariat à l'énergie atomique et aux énergies alternatives (CEA) Saclay, France.
Escherichia coli (E. coli) is the most widely used expression system for the production of recombinant proteins for structural and functional studies. However, purifying proteins is sometimes challenging since many proteins are expressed in an insoluble form. When working with difficult or multiple targets it is therefore recommended to use high throughput (HTP) protein expression screening on a small scale (1-4 ml cultures) to quickly identify conditions for soluble expression. To cope with the various structural genomics programs of the lab, a quantitative (within a range of 0.1-100 mg/L culture of recombinant protein) and HTP protein expression screening protocol was implemented and validated on thousands of proteins. The protocols were automated with the use of a liquid handling robot but can also be performed manually without specialized equipment. Disulfide-rich venom proteins are gaining increasing recognition for their potential as therapeutic drug leads. They can be highly potent and selective, but their complex disulfide bond networks make them challenging to produce. As a member of the FP7 European Venomics project (www.venomics.eu), our challenge is to develop successful production strategies with the aim of producing thousands of novel venom proteins for functional characterization. Aided by the redox properties of disulfide bond isomerase DsbC, we adapted our HTP production pipeline for the expression of oxidized, functional venom peptides in the E. coli cytoplasm. The protocols are also applicable to the production of diverse disulfide-rich proteins. Here we demonstrate our pipeline applied to the production of animal venom proteins. With the protocols described herein it is likely that soluble disulfide-rich proteins will be obtained in as little as a week. Even from a small scale, there is the potential to use the purified proteins for validating the oxidation state by mass spectrometry, for characterization in pilot studies, or for sensitive micro-assays.
Bioengineering, Issue 89, E. coli, expression, recombinant, high throughput (HTP), purification, auto-induction, immobilized metal affinity chromatography (IMAC), tobacco etch virus protease (TEV) cleavage, disulfide bond isomerase C (DsbC) fusion, disulfide bonds, animal venom proteins/peptides
51464
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (http://www.proteinwisdom.org), a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
50476
Play Button
Ratiometric Biosensors that Measure Mitochondrial Redox State and ATP in Living Yeast Cells
Authors: Jason D. Vevea, Dana M. Alessi Wolken, Theresa C. Swayne, Adam B. White, Liza A. Pon.
Institutions: Columbia University, Columbia University.
Mitochondria have roles in many cellular processes, from energy metabolism and calcium homeostasis to control of cellular lifespan and programmed cell death. These processes affect and are affected by the redox status of and ATP production by mitochondria. Here, we describe the use of two ratiometric, genetically encoded biosensors that can detect mitochondrial redox state and ATP levels at subcellular resolution in living yeast cells. Mitochondrial redox state is measured using redox-sensitive Green Fluorescent Protein (roGFP) that is targeted to the mitochondrial matrix. Mito-roGFP contains cysteines at positions 147 and 204 of GFP, which undergo reversible and environment-dependent oxidation and reduction, which in turn alter the excitation spectrum of the protein. MitGO-ATeam is a Förster resonance energy transfer (FRET) probe in which the ε subunit of the FoF1-ATP synthase is sandwiched between FRET donor and acceptor fluorescent proteins. Binding of ATP to the ε subunit results in conformation changes in the protein that bring the FRET donor and acceptor in close proximity and allow for fluorescence resonance energy transfer from the donor to acceptor.
Bioengineering, Issue 77, Microbiology, Cellular Biology, Molecular Biology, Biochemistry, life sciences, roGFP, redox-sensitive green fluorescent protein, GO-ATeam, ATP, FRET, ROS, mitochondria, biosensors, GFP, ImageJ, microscopy, confocal microscopy, cell, imaging
50633
Play Button
Microwave-assisted Functionalization of Poly(ethylene glycol) and On-resin Peptides for Use in Chain Polymerizations and Hydrogel Formation
Authors: Amy H. Van Hove, Brandon D. Wilson, Danielle S. W. Benoit.
Institutions: University of Rochester, University of Rochester, University of Rochester Medical Center.
One of the main benefits to using poly(ethylene glycol) (PEG) macromers in hydrogel formation is synthetic versatility. The ability to draw from a large variety of PEG molecular weights and configurations (arm number, arm length, and branching pattern) affords researchers tight control over resulting hydrogel structures and properties, including Young’s modulus and mesh size. This video will illustrate a rapid, efficient, solvent-free, microwave-assisted method to methacrylate PEG precursors into poly(ethylene glycol) dimethacrylate (PEGDM). This synthetic method provides much-needed starting materials for applications in drug delivery and regenerative medicine. The demonstrated method is superior to traditional methacrylation methods as it is significantly faster and simpler, as well as more economical and environmentally friendly, using smaller amounts of reagents and solvents. We will also demonstrate an adaptation of this technique for on-resin methacrylamide functionalization of peptides. This on-resin method allows the N-terminus of peptides to be functionalized with methacrylamide groups prior to deprotection and cleavage from resin. This allows for selective addition of methacrylamide groups to the N-termini of the peptides while amino acids with reactive side groups (e.g. primary amine of lysine, primary alcohol of serine, secondary alcohols of threonine, and phenol of tyrosine) remain protected, preventing functionalization at multiple sites. This article will detail common analytical methods (proton Nuclear Magnetic Resonance spectroscopy (;H-NMR) and Matrix Assisted Laser Desorption Ionization Time of Flight mass spectrometry (MALDI-ToF)) to assess the efficiency of the functionalizations. Common pitfalls and suggested troubleshooting methods will be addressed, as will modifications of the technique which can be used to further tune macromer functionality and resulting hydrogel physical and chemical properties. Use of synthesized products for the formation of hydrogels for drug delivery and cell-material interaction studies will be demonstrated, with particular attention paid to modifying hydrogel composition to affect mesh size, controlling hydrogel stiffness and drug release.
Chemistry, Issue 80, Poly(ethylene glycol), peptides, polymerization, polymers, methacrylation, peptide functionalization, 1H-NMR, MALDI-ToF, hydrogels, macromer synthesis
50890
Play Button
Analyzing Protein Dynamics Using Hydrogen Exchange Mass Spectrometry
Authors: Nikolai Hentze, Matthias P. Mayer.
Institutions: University of Heidelberg.
All cellular processes depend on the functionality of proteins. Although the functionality of a given protein is the direct consequence of its unique amino acid sequence, it is only realized by the folding of the polypeptide chain into a single defined three-dimensional arrangement or more commonly into an ensemble of interconverting conformations. Investigating the connection between protein conformation and its function is therefore essential for a complete understanding of how proteins are able to fulfill their great variety of tasks. One possibility to study conformational changes a protein undergoes while progressing through its functional cycle is hydrogen-1H/2H-exchange in combination with high-resolution mass spectrometry (HX-MS). HX-MS is a versatile and robust method that adds a new dimension to structural information obtained by e.g. crystallography. It is used to study protein folding and unfolding, binding of small molecule ligands, protein-protein interactions, conformational changes linked to enzyme catalysis, and allostery. In addition, HX-MS is often used when the amount of protein is very limited or crystallization of the protein is not feasible. Here we provide a general protocol for studying protein dynamics with HX-MS and describe as an example how to reveal the interaction interface of two proteins in a complex.   
Chemistry, Issue 81, Molecular Chaperones, mass spectrometers, Amino Acids, Peptides, Proteins, Enzymes, Coenzymes, Protein dynamics, conformational changes, allostery, protein folding, secondary structure, mass spectrometry
50839
Play Button
Polymerase Chain Reaction: Basic Protocol Plus Troubleshooting and Optimization Strategies
Authors: Todd C. Lorenz.
Institutions: University of California, Los Angeles .
In the biological sciences there have been technological advances that catapult the discipline into golden ages of discovery. For example, the field of microbiology was transformed with the advent of Anton van Leeuwenhoek's microscope, which allowed scientists to visualize prokaryotes for the first time. The development of the polymerase chain reaction (PCR) is one of those innovations that changed the course of molecular science with its impact spanning countless subdisciplines in biology. The theoretical process was outlined by Keppe and coworkers in 1971; however, it was another 14 years until the complete PCR procedure was described and experimentally applied by Kary Mullis while at Cetus Corporation in 1985. Automation and refinement of this technique progressed with the introduction of a thermal stable DNA polymerase from the bacterium Thermus aquaticus, consequently the name Taq DNA polymerase. PCR is a powerful amplification technique that can generate an ample supply of a specific segment of DNA (i.e., an amplicon) from only a small amount of starting material (i.e., DNA template or target sequence). While straightforward and generally trouble-free, there are pitfalls that complicate the reaction producing spurious results. When PCR fails it can lead to many non-specific DNA products of varying sizes that appear as a ladder or smear of bands on agarose gels. Sometimes no products form at all. Another potential problem occurs when mutations are unintentionally introduced in the amplicons, resulting in a heterogeneous population of PCR products. PCR failures can become frustrating unless patience and careful troubleshooting are employed to sort out and solve the problem(s). This protocol outlines the basic principles of PCR, provides a methodology that will result in amplification of most target sequences, and presents strategies for optimizing a reaction. By following this PCR guide, students should be able to: ● Set up reactions and thermal cycling conditions for a conventional PCR experiment ● Understand the function of various reaction components and their overall effect on a PCR experiment ● Design and optimize a PCR experiment for any DNA template ● Troubleshoot failed PCR experiments
Basic Protocols, Issue 63, PCR, optimization, primer design, melting temperature, Tm, troubleshooting, additives, enhancers, template DNA quantification, thermal cycler, molecular biology, genetics
3998
Play Button
Preparation of the Mgm101 Recombination Protein by MBP-based Tagging Strategy
Authors: Xiaowen Wang, MacMillan Mbantenkhu, Sara Wierzbicki, Xin Jie Chen.
Institutions: State University of New York Upstate Medical University.
The MGM101 gene was identified 20 years ago for its role in the maintenance of mitochondrial DNA. Studies from several groups have suggested that the Mgm101 protein is involved in the recombinational repair of mitochondrial DNA. Recent investigations have indicated that Mgm101 is related to the Rad52-type recombination protein family. These proteins form large oligomeric rings and promote the annealing of homologous single stranded DNA molecules. However, the characterization of Mgm101 has been hindered by the difficulty in producing the recombinant protein. Here, a reliable procedure for the preparation of recombinant Mgm101 is described. Maltose Binding Protein (MBP)-tagged Mgm101 is first expressed in Escherichia coli. The fusion protein is initially purified by amylose affinity chromatography. After being released by proteolytic cleavage, Mgm101 is separated from MBP by cationic exchange chromatography. Monodispersed Mgm101 is then obtained by size exclusion chromatography. A yield of ~0.87 mg of Mgm101 per liter of bacterial culture can be routinely obtained. The recombinant Mgm101 has minimal contamination of DNA. The prepared samples are successfully used for biochemical, structural and single particle image analyses of Mgm101. This protocol may also be used for the preparation of other large oligomeric DNA-binding proteins that may be misfolded and toxic to bacterial cells.
Biochemistry, Issue 76, Genetics, Molecular Biology, Cellular Biology, Microbiology, Bacteria, Proteins, Mgm101, Rad52, mitochondria, recombination, mtDNA, maltose-binding protein, MBP, E. coli., yeast, Saccharomyces cerevisiae, chromatography, electron microscopy, cell culture
50448
Play Button
A Protocol for the Production of KLRG1 Tetramer
Authors: Stephanie C. Terrizzi, Cindy Banh, Laurent Brossay.
Institutions: Brown University.
Killer cell lectin-like receptor G1 (KLRG1) is a type II transmembrane glycoprotein inhibitory receptor belonging to the C type lectin-like superfamily. KLRG1 exists both as a monomer and as a disulfide-linked homodimer. This well-conserved receptor is found on the most mature and recently activated NK cells as well as on a subset of effector/memory T cells. Using KLRG1 tetramer as well as other methods, E-, N-, and R-cadherins were identified as KLRG1 ligands. These Ca2+-dependent cell-cell adhesion molecules comprises of an extracellular domain containing five cadherin repeats responsible for cell-cell interactions, a transmembrane domain and a cytoplasmic domain that is linked to the actin cytoskeleton. Generation of the KLRG1 tetramer was essential to the identification of the KLRG1 ligands. KLRG1 tetramer is also a unique tool to elucidate the roles cadherin and KLRG1 play in regulating the immune response and tissue integrity.
Microbiology, Issue 35, Immunology, Basic Protocols, Tetramer, Inclusion Bodies, Refolding, Monomer, Flow Cytometry, KLRG1, Cadherins
1701
Play Button
Principles of Site-Specific Recombinase (SSR) Technology
Authors: Frank Bucholtz.
Institutions: Max Plank Institute for Molecular Cell Biology and Genetics, Dresden.
Site-specific recombinase (SSR) technology allows the manipulation of gene structure to explore gene function and has become an integral tool of molecular biology. Site-specific recombinases are proteins that bind to distinct DNA target sequences. The Cre/lox system was first described in bacteriophages during the 1980's. Cre recombinase is a Type I topoisomerase that catalyzes site-specific recombination of DNA between two loxP (locus of X-over P1) sites. The Cre/lox system does not require any cofactors. LoxP sequences contain distinct binding sites for Cre recombinases that surround a directional core sequence where recombination and rearrangement takes place. When cells contain loxP sites and express the Cre recombinase, a recombination event occurs. Double-stranded DNA is cut at both loxP sites by the Cre recombinase, rearranged, and ligated ("scissors and glue"). Products of the recombination event depend on the relative orientation of the asymmetric sequences. SSR technology is frequently used as a tool to explore gene function. Here the gene of interest is flanked with Cre target sites loxP ("floxed"). Animals are then crossed with animals expressing the Cre recombinase under the control of a tissue-specific promoter. In tissues that express the Cre recombinase it binds to target sequences and excises the floxed gene. Controlled gene deletion allows the investigation of gene function in specific tissues and at distinct time points. Analysis of gene function employing SSR technology --- conditional mutagenesis -- has significant advantages over traditional knock-outs where gene deletion is frequently lethal.
Cellular Biology, Issue 15, Molecular Biology, Site-Specific Recombinase, Cre recombinase, Cre/lox system, transgenic animals, transgenic technology
718
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.