JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Influenza polymerase activity correlates with the strength of interaction between nucleoprotein and PB2 through the host-specific residue K/E627.
The ribonucleoprotein (RNP) complex is the essential transcription-replication machinery of the influenza virus. It is composed of the trimeric polymerase (PA, PB1 and PB2), nucleoprotein (NP) and RNA. Elucidating the molecular mechanisms of RNP assembly is central to our understanding of the control of viral transcription and replication and the dependence of these processes on the host cell. In this report, we show, by RNP reconstitution assays and co-immunoprecipitation, that the interaction between NP and polymerase is crucial for the function of the RNP. The functional association of NP and polymerase involves the C-terminal 627 domain of PB2 and it requires NP arginine-150 and either lysine-627 or arginine-630 of PB2. Using surface plasmon resonance, we demonstrate that the interaction between NP and PB2 takes place without the involvement of RNA. At 33, 37 and 41°C in mammalian cells, more positive charges at aa. 627 and 630 of PB2 lead to stronger NP-polymerase interaction, which directly correlates with the higher RNP activity. In conclusion, our study provides new information on the NP-PB2 interaction and shows that the strength of NP-polymerase interaction and the resulting RNP activity are promoted by the positive charges at aa. 627 and 630 of PB2.
Like all negative-strand RNA viruses, the genome of influenza viruses is packaged in the form of viral ribonucleoprotein complexes (vRNP), in which the single-stranded genome is encapsidated by the nucleoprotein (NP), and associated with the trimeric polymerase complex consisting of the PA, PB1, and PB2 subunits. However, in contrast to most RNA viruses, influenza viruses perform viral RNA synthesis in the nuclei of infected cells. Interestingly, viral mRNA synthesis uses cellular pre-mRNAs as primers, and it has been proposed that this process takes place on chromatin1. Interactions between the viral polymerase and the host RNA polymerase II, as well as between NP and host nucleosomes have also been characterized1,2. Recently, the generation of recombinant influenza viruses encoding a One-Strep-Tag genetically fused to the C-terminus of the PB2 subunit of the viral polymerase (rWSN-PB2-Strep3) has been described. These recombinant viruses allow the purification of PB2-containing complexes, including vRNPs, from infected cells. To obtain purified vRNPs, cell cultures are infected, and vRNPs are affinity purified from lysates derived from these cells. However, the lysis procedures used to date have been based on one-step detergent lysis, which, despite the presence of a general nuclease, often extract chromatin-bound material only inefficiently. Our preliminary work suggested that a large portion of nuclear vRNPs were not extracted during traditional cell lysis, and therefore could not be affinity purified. To increase this extraction efficiency, and to separate chromatin-bound from non-chromatin-bound nuclear vRNPs, we adapted a step-wise subcellular extraction protocol to influenza virus-infected cells. Briefly, this procedure first separates the nuclei from the cell and then extracts soluble nuclear proteins (here termed the "nucleoplasmic" fraction). The remaining insoluble nuclear material is then digested with Benzonase, an unspecific DNA/RNA nuclease, followed by two salt extraction steps: first using 150 mM NaCl (termed "ch150"), then 500 mM NaCl ("ch500") (Fig. 1). These salt extraction steps were chosen based on our observation that 500 mM NaCl was sufficient to solubilize over 85% of nuclear vRNPs yet still allow binding of tagged vRNPs to the affinity matrix. After subcellular fractionation of infected cells, it is possible to affinity purify PB2-tagged vRNPs from each individual fraction and analyze their protein and RNA components using Western Blot and primer extension, respectively. Recently, we utilized this method to discover that vRNP export complexes form during late points after infection on the chromatin fraction extracted with 500 mM NaCl (ch500)3.
17 Related JoVE Articles!
Play Button
Generation of Recombinant Influenza Virus from Plasmid DNA
Authors: Luis Martínez-Sobrido, Adolfo García-Sastre.
Institutions: University of Rochester School of Medicine and Dentistry, Mount Sinai School of Medicine .
Efforts by a number of influenza research groups have been pivotal in the development and improvement of influenza A virus reverse genetics. Originally established in 1999 1,2 plasmid-based reverse genetic techniques to generate recombinant viruses have revolutionized the influenza research field because specific questions have been answered by genetically engineered, infectious, recombinant influenza viruses. Such studies include virus replication, function of viral proteins, the contribution of specific mutations in viral proteins in viral replication and/or pathogenesis and, also, viral vectors using recombinant influenza viruses expressing foreign proteins 3.
Microbiology, Issue 42, influenza viruses, plasmid transfection, recombinant virus, reverse genetics techniques, HA assay
Play Button
Multi-target Parallel Processing Approach for Gene-to-structure Determination of the Influenza Polymerase PB2 Subunit
Authors: Brianna L. Armour, Steve R. Barnes, Spencer O. Moen, Eric Smith, Amy C. Raymond, James W. Fairman, Lance J. Stewart, Bart L. Staker, Darren W. Begley, Thomas E. Edwards, Donald D. Lorimer.
Institutions: Emerald Bio, Emerald Bio, Emerald Bio, Emerald Bio, Emerald Bio, Emerald Bio, Emerald Bio, Emerald Bio, Emerald Bio.
Pandemic outbreaks of highly virulent influenza strains can cause widespread morbidity and mortality in human populations worldwide. In the United States alone, an average of 41,400 deaths and 1.86 million hospitalizations are caused by influenza virus infection each year 1. Point mutations in the polymerase basic protein 2 subunit (PB2) have been linked to the adaptation of the viral infection in humans 2. Findings from such studies have revealed the biological significance of PB2 as a virulence factor, thus highlighting its potential as an antiviral drug target. The structural genomics program put forth by the National Institute of Allergy and Infectious Disease (NIAID) provides funding to Emerald Bio and three other Pacific Northwest institutions that together make up the Seattle Structural Genomics Center for Infectious Disease (SSGCID). The SSGCID is dedicated to providing the scientific community with three-dimensional protein structures of NIAID category A-C pathogens. Making such structural information available to the scientific community serves to accelerate structure-based drug design. Structure-based drug design plays an important role in drug development. Pursuing multiple targets in parallel greatly increases the chance of success for new lead discovery by targeting a pathway or an entire protein family. Emerald Bio has developed a high-throughput, multi-target parallel processing pipeline (MTPP) for gene-to-structure determination to support the consortium. Here we describe the protocols used to determine the structure of the PB2 subunit from four different influenza A strains.
Infection, Issue 76, Structural Biology, Virology, Genetics, Medicine, Biomedical Engineering, Molecular Biology, Infectious Diseases, Microbiology, Genomics, high throughput, multi-targeting, structural genomics, protein crystallization, purification, protein production, X-ray crystallography, Gene Composer, Protein Maker, expression, E. coli, fermentation, influenza, virus, vector, plasmid, cell, cell culture, PCR, sequencing
Play Button
Rescue of Recombinant Newcastle Disease Virus from cDNA
Authors: Juan Ayllon, Adolfo García-Sastre, Luis Martínez-Sobrido.
Institutions: Icahn School of Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, University of Rochester.
Newcastle disease virus (NDV), the prototype member of the Avulavirus genus of the family Paramyxoviridae1, is a non-segmented, negative-sense, single-stranded, enveloped RNA virus (Figure 1) with potential applications as a vector for vaccination and treatment of human diseases. In-depth exploration of these applications has only become possible after the establishment of reverse genetics techniques to rescue recombinant viruses from plasmids encoding their complete genomes as cDNA2-5. Viral cDNA can be conveniently modified in vitro by using standard cloning procedures to alter the genotype of the virus and/or to include new transcriptional units. Rescue of such genetically modified viruses provides a valuable tool to understand factors affecting multiple stages of infection, as well as allows for the development and improvement of vectors for the expression and delivery of antigens for vaccination and therapy. Here we describe a protocol for the rescue of recombinant NDVs.
Immunology, Issue 80, Paramyxoviridae, Vaccines, Oncolytic Virotherapy, Immunity, Innate, Newcastle disease virus (NDV), MVA-T7, reverse genetics techniques, plasmid transfection, recombinant virus, HA assay
Play Button
Generation of Recombinant Arenavirus for Vaccine Development in FDA-Approved Vero Cells
Authors: Benson Y.H. Cheng, Emilio Ortiz-Riaño, Juan Carlos de la Torre, Luis Martínez-Sobrido.
Institutions: University of Rochester School of Medicine and Dentistry, The Scripps Research Institute.
The development and implementation of arenavirus reverse genetics represents a significant breakthrough in the arenavirus field 4. The use of cell-based arenavirus minigenome systems together with the ability to generate recombinant infectious arenaviruses with predetermined mutations in their genomes has facilitated the investigation of the contribution of viral determinants to the different steps of the arenavirus life cycle, as well as virus-host interactions and mechanisms of arenavirus pathogenesis 1, 3, 11 . In addition, the development of trisegmented arenaviruses has permitted the use of the arenavirus genome to express additional foreign genes of interest, thus opening the possibility of arenavirus-based vaccine vector applications 5 . Likewise, the development of single-cycle infectious arenaviruses capable of expressing reporter genes provides a new experimental tool to improve the safety of research involving highly pathogenic human arenaviruses 16 . The generation of recombinant arenaviruses using plasmid-based reverse genetics techniques has so far relied on the use of rodent cell lines 7,19 , which poses some barriers for the development of Food and Drug Administration (FDA)-licensed vaccine or vaccine vectors. To overcome this obstacle, we describe here the efficient generation of recombinant arenaviruses in FDA-approved Vero cells.
Virology, Issue 78, Infection, Infectious Diseases, Microbiology, Molecular Biology, Cellular Biology, Medicine, Biomedical Engineering, Viruses, arenaviruses, plasmid transfection, recombinant virus, reverse genetics techniques, vaccine/vaccine vector seed development, clinical applications
Play Button
Optimization and Utilization of Agrobacterium-mediated Transient Protein Production in Nicotiana
Authors: Moneim Shamloul, Jason Trusa, Vadim Mett, Vidadi Yusibov.
Institutions: Fraunhofer USA Center for Molecular Biotechnology.
Agrobacterium-mediated transient protein production in plants is a promising approach to produce vaccine antigens and therapeutic proteins within a short period of time. However, this technology is only just beginning to be applied to large-scale production as many technological obstacles to scale up are now being overcome. Here, we demonstrate a simple and reproducible method for industrial-scale transient protein production based on vacuum infiltration of Nicotiana plants with Agrobacteria carrying launch vectors. Optimization of Agrobacterium cultivation in AB medium allows direct dilution of the bacterial culture in Milli-Q water, simplifying the infiltration process. Among three tested species of Nicotiana, N. excelsiana (N. benthamiana × N. excelsior) was selected as the most promising host due to the ease of infiltration, high level of reporter protein production, and about two-fold higher biomass production under controlled environmental conditions. Induction of Agrobacterium harboring pBID4-GFP (Tobacco mosaic virus-based) using chemicals such as acetosyringone and monosaccharide had no effect on the protein production level. Infiltrating plant under 50 to 100 mbar for 30 or 60 sec resulted in about 95% infiltration of plant leaf tissues. Infiltration with Agrobacterium laboratory strain GV3101 showed the highest protein production compared to Agrobacteria laboratory strains LBA4404 and C58C1 and wild-type Agrobacteria strains at6, at10, at77 and A4. Co-expression of a viral RNA silencing suppressor, p23 or p19, in N. benthamiana resulted in earlier accumulation and increased production (15-25%) of target protein (influenza virus hemagglutinin).
Plant Biology, Issue 86, Agroinfiltration, Nicotiana benthamiana, transient protein production, plant-based expression, viral vector, Agrobacteria
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (, a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
Play Button
High-throughput Detection Method for Influenza Virus
Authors: Pawan Kumar, Allison E. Bartoszek, Thomas M. Moran, Jack Gorski, Sanjib Bhattacharyya, Jose F. Navidad, Monica S. Thakar, Subramaniam Malarkannan.
Institutions: Blood Research Institute, Mount Sinai School of Medicine , Blood Research Institute, City of Milwaukee Health Department Laboratory, Medical College of Wisconsin , Medical College of Wisconsin .
Influenza virus is a respiratory pathogen that causes a high degree of morbidity and mortality every year in multiple parts of the world. Therefore, precise diagnosis of the infecting strain and rapid high-throughput screening of vast numbers of clinical samples is paramount to control the spread of pandemic infections. Current clinical diagnoses of influenza infections are based on serologic testing, polymerase chain reaction, direct specimen immunofluorescence and cell culture 1,2. Here, we report the development of a novel diagnostic technique used to detect live influenza viruses. We used the mouse-adapted human A/PR/8/34 (PR8, H1N1) virus 3 to test the efficacy of this technique using MDCK cells 4. MDCK cells (104 or 5 x 103 per well) were cultured in 96- or 384-well plates, infected with PR8 and viral proteins were detected using anti-M2 followed by an IR dye-conjugated secondary antibody. M2 5 and hemagglutinin 1 are two major marker proteins used in many different diagnostic assays. Employing IR-dye-conjugated secondary antibodies minimized the autofluorescence associated with other fluorescent dyes. The use of anti-M2 antibody allowed us to use the antigen-specific fluorescence intensity as a direct metric of viral quantity. To enumerate the fluorescence intensity, we used the LI-COR Odyssey-based IR scanner. This system uses two channel laser-based IR detections to identify fluorophores and differentiate them from background noise. The first channel excites at 680 nm and emits at 700 nm to help quantify the background. The second channel detects fluorophores that excite at 780 nm and emit at 800 nm. Scanning of PR8-infected MDCK cells in the IR scanner indicated a viral titer-dependent bright fluorescence. A positive correlation of fluorescence intensity to virus titer starting from 102-105 PFU could be consistently observed. Minimal but detectable positivity consistently seen with 102-103 PFU PR8 viral titers demonstrated the high sensitivity of the near-IR dyes. The signal-to-noise ratio was determined by comparing the mock-infected or isotype antibody-treated MDCK cells. Using the fluorescence intensities from 96- or 384-well plate formats, we constructed standard titration curves. In these calculations, the first variable is the viral titer while the second variable is the fluorescence intensity. Therefore, we used the exponential distribution to generate a curve-fit to determine the polynomial relationship between the viral titers and fluorescence intensities. Collectively, we conclude that IR dye-based protein detection system can help diagnose infecting viral strains and precisely enumerate the titer of the infecting pathogens.
Immunology, Issue 60, Influenza virus, Virus titer, Epithelial cells
Play Button
In vitro Reconstitution of the Active T. castaneum Telomerase
Authors: Anthony P. Schuller, Michael J. Harkisheimer, Emmanuel Skordalakes.
Institutions: University of Pennsylvania.
Efforts to isolate the catalytic subunit of telomerase, TERT, in sufficient quantities for structural studies, have been met with limited success for more than a decade. Here, we present methods for the isolation of the recombinant Tribolium castaneum TERT (TcTERT) and the reconstitution of the active T. castaneum telomerase ribonucleoprotein (RNP) complex in vitro. Telomerase is a specialized reverse transcriptase1 that adds short DNA repeats, called telomeres, to the 3' end of linear chromosomes2 that serve to protect them from end-to-end fusion and degradation. Following DNA replication, a short segment is lost at the end of the chromosome3 and without telomerase, cells continue dividing until eventually reaching their Hayflick Limit4. Additionally, telomerase is dormant in most somatic cells5 in adults, but is active in cancer cells6 where it promotes cell immortality7. The minimal telomerase enzyme consists of two core components: the protein subunit (TERT), which comprises the catalytic subunit of the enzyme and an integral RNA component (TER), which contains the template TERT uses to synthesize telomeres8,9. Prior to 2008, only structures for individual telomerase domains had been solved10,11. A major breakthrough in this field came from the determination of the crystal structure of the active12, catalytic subunit of T. castaneum telomerase, TcTERT1. Here, we present methods for producing large quantities of the active, soluble TcTERT for structural and biochemical studies, and the reconstitution of the telomerase RNP complex in vitro for telomerase activity assays. An overview of the experimental methods used is shown in Figure 1.
Molecular Biology, Issue 53, Telomerase, protein expression, purification, chromatography, RNA isolation, TRAP
Play Button
Determination of Microbial Extracellular Enzyme Activity in Waters, Soils, and Sediments using High Throughput Microplate Assays
Authors: Colin R. Jackson, Heather L. Tyler, Justin J. Millar.
Institutions: The University of Mississippi.
Much of the nutrient cycling and carbon processing in natural environments occurs through the activity of extracellular enzymes released by microorganisms. Thus, measurement of the activity of these extracellular enzymes can give insights into the rates of ecosystem level processes, such as organic matter decomposition or nitrogen and phosphorus mineralization. Assays of extracellular enzyme activity in environmental samples typically involve exposing the samples to artificial colorimetric or fluorometric substrates and tracking the rate of substrate hydrolysis. Here we describe microplate based methods for these procedures that allow the analysis of large numbers of samples within a short time frame. Samples are allowed to react with artificial substrates within 96-well microplates or deep well microplate blocks, and enzyme activity is subsequently determined by absorption or fluorescence of the resulting end product using a typical microplate reader or fluorometer. Such high throughput procedures not only facilitate comparisons between spatially separate sites or ecosystems, but also substantially reduce the cost of such assays by reducing overall reagent volumes needed per sample.
Environmental Sciences, Issue 80, Environmental Monitoring, Ecological and Environmental Processes, Environmental Microbiology, Ecology, extracellular enzymes, freshwater microbiology, soil microbiology, microbial activity, enzyme activity
Play Button
Microfluidic On-chip Capture-cycloaddition Reaction to Reversibly Immobilize Small Molecules or Multi-component Structures for Biosensor Applications
Authors: Carlos Tassa, Monty Liong, Scott Hilderbrand, Jason E. Sandler, Thomas Reiner, Edmund J. Keliher, Ralph Weissleder, Stanley Y. Shaw.
Institutions: Massachusetts General Hospital.
Methods for rapid surface immobilization of bioactive small molecules with control over orientation and immobilization density are highly desirable for biosensor and microarray applications. In this Study, we use a highly efficient covalent bioorthogonal [4+2] cycloaddition reaction between trans-cyclooctene (TCO) and 1,2,4,5-tetrazine (Tz) to enable the microfluidic immobilization of TCO/Tz-derivatized molecules. We monitor the process in real-time under continuous flow conditions using surface plasmon resonance (SPR). To enable reversible immobilization and extend the experimental range of the sensor surface, we combine a non-covalent antigen-antibody capture component with the cycloaddition reaction. By alternately presenting TCO or Tz moieties to the sensor surface, multiple capture-cycloaddition processes are now possible on one sensor surface for on-chip assembly and interaction studies of a variety of multi-component structures. We illustrate this method with two different immobilization experiments on a biosensor chip; a small molecule, AP1497 that binds FK506-binding protein 12 (FKBP12); and the same small molecule as part of an immobilized and in situ-functionalized nanoparticle.
Chemistry, Issue 79, Organic Chemicals, Macromolecular Substances, Chemistry and Materials (General), Surface Plasmon Resonance, Bioorthogonal Chemistry, Diels-Alder Cycloaddition Reaction, Small Molecule Immobilization, Binding Kinetics, Immobilized Nanoparticles
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
Play Button
Polymerase Chain Reaction: Basic Protocol Plus Troubleshooting and Optimization Strategies
Authors: Todd C. Lorenz.
Institutions: University of California, Los Angeles .
In the biological sciences there have been technological advances that catapult the discipline into golden ages of discovery. For example, the field of microbiology was transformed with the advent of Anton van Leeuwenhoek's microscope, which allowed scientists to visualize prokaryotes for the first time. The development of the polymerase chain reaction (PCR) is one of those innovations that changed the course of molecular science with its impact spanning countless subdisciplines in biology. The theoretical process was outlined by Keppe and coworkers in 1971; however, it was another 14 years until the complete PCR procedure was described and experimentally applied by Kary Mullis while at Cetus Corporation in 1985. Automation and refinement of this technique progressed with the introduction of a thermal stable DNA polymerase from the bacterium Thermus aquaticus, consequently the name Taq DNA polymerase. PCR is a powerful amplification technique that can generate an ample supply of a specific segment of DNA (i.e., an amplicon) from only a small amount of starting material (i.e., DNA template or target sequence). While straightforward and generally trouble-free, there are pitfalls that complicate the reaction producing spurious results. When PCR fails it can lead to many non-specific DNA products of varying sizes that appear as a ladder or smear of bands on agarose gels. Sometimes no products form at all. Another potential problem occurs when mutations are unintentionally introduced in the amplicons, resulting in a heterogeneous population of PCR products. PCR failures can become frustrating unless patience and careful troubleshooting are employed to sort out and solve the problem(s). This protocol outlines the basic principles of PCR, provides a methodology that will result in amplification of most target sequences, and presents strategies for optimizing a reaction. By following this PCR guide, students should be able to: ● Set up reactions and thermal cycling conditions for a conventional PCR experiment ● Understand the function of various reaction components and their overall effect on a PCR experiment ● Design and optimize a PCR experiment for any DNA template ● Troubleshoot failed PCR experiments
Basic Protocols, Issue 63, PCR, optimization, primer design, melting temperature, Tm, troubleshooting, additives, enhancers, template DNA quantification, thermal cycler, molecular biology, genetics
Play Button
Modeling The Lifecycle Of Ebola Virus Under Biosafety Level 2 Conditions With Virus-like Particles Containing Tetracistronic Minigenomes
Authors: Thomas Hoenen, Ari Watt, Anita Mora, Heinz Feldmann.
Institutions: National Institute of Allergy and Infectious Diseases, National Institutes of Health, National Institute of Allergy and Infectious Diseases, National Institutes of Health.
Ebola viruses cause severe hemorrhagic fevers in humans and non-human primates, with case fatality rates as high as 90%. There are no approved vaccines or specific treatments for the disease caused by these viruses, and work with infectious Ebola viruses is restricted to biosafety level 4 laboratories, significantly limiting the research on these viruses. Lifecycle modeling systems model the virus lifecycle under biosafety level 2 conditions; however, until recently such systems have been limited to either individual aspects of the virus lifecycle, or a single infectious cycle. Tetracistronic minigenomes, which consist of Ebola virus non-coding regions, a reporter gene, and three Ebola virus genes involved in morphogenesis, budding, and entry (VP40, GP1,2, and VP24), can be used to produce replication and transcription-competent virus-like particles (trVLPs) containing these minigenomes. These trVLPs can continuously infect cells expressing the Ebola virus proteins responsible for genome replication and transcription, allowing us to safely model multiple infectious cycles under biosafety level 2 conditions. Importantly, the viral components of this systems are solely derived from Ebola virus and not from other viruses (as is, for example, the case in systems using pseudotyped viruses), and VP40, GP1,2 and VP24 are not overexpressed in this system, making it ideally suited for studying morphogenesis, budding and entry, although other aspects of the virus lifecycle such as genome replication and transcription can also be modeled with this system. Therefore, the tetracistronic trVLP assay represents the most comprehensive lifecycle modeling system available for Ebola viruses, and has tremendous potential for use in investigating the biology of Ebola viruses in future. Here, we provide detailed information on the use of this system, as well as on expected results.
Infectious Diseases, Issue 91, hemorrhagic Fevers, Viral, Mononegavirales Infections, Ebola virus, filovirus, lifecycle modeling system, minigenome, reverse genetics, virus-like particles, replication, transcription, budding, morphogenesis, entry
Play Button
Viral Concentration Determination Through Plaque Assays: Using Traditional and Novel Overlay Systems
Authors: Alan Baer, Kylene Kehn-Hall.
Institutions: George Mason University.
Plaque assays remain one of the most accurate methods for the direct quantification of infectious virons and antiviral substances through the counting of discrete plaques (infectious units and cellular dead zones) in cell culture. Here we demonstrate how to perform a basic plaque assay, and how differing overlays and techniques can affect plaque formation and production. Typically solid or semisolid overlay substrates, such as agarose or carboxymethyl cellulose, have been used to restrict viral spread, preventing indiscriminate infection through the liquid growth medium. Immobilized overlays restrict cellular infection to the immediately surrounding monolayer, allowing the formation of discrete countable foci and subsequent plaque formation. To overcome the difficulties inherent in using traditional overlays, a novel liquid overlay utilizing microcrystalline cellulose and carboxymethyl cellulose sodium has been increasingly used as a replacement in the standard plaque assay. Liquid overlay plaque assays can be readily performed in either standard 6 or 12 well plate formats as per traditional techniques and require no special equipment. Due to its liquid state and subsequent ease of application and removal, microculture plate formats may alternatively be utilized as a rapid, accurate and high throughput alternative to larger scale viral titrations. Use of a non heated viscous liquid polymer offers the opportunity to streamline work, conserves reagents, incubator space, and increases operational safety when used in traditional or high containment labs as no reagent heating or glassware are required. Liquid overlays may also prove more sensitive than traditional overlays for certain heat labile viruses.
Virology, Issue 93, Plaque Assay, Virology, Viral Quantification, Cellular Overlays, Agarose, Avicel, Crystal Violet Staining, Serial Dilutions, Rift Valley fever virus, Venezuelan Equine Encephalitis, Influenza
Play Button
Purification and Visualization of Influenza A Viral Ribonucleoprotein Complexes
Authors: Winco W.H. Wu, Lindsay L. Weaver, Nelly Panté.
Institutions: University of British Columbia - UBC.
The influenza A viral genome consists of eight negative-sense, single stranded RNA molecules, individually packed with multiple copies of the influenza A nucleoprotein (NP) into viral ribonulceoprotein particles (vRNPs). The influenza vRNPs are enclosed within the viral envelope. During cell entry, however, these vRNP complexes are released into the cytoplasm, where they gain access to the host nuclear transport machinery. In order to study the nuclear import of influenza vRNPs and the replication of the influenza genome, it is useful to work with isolated vRNPs so that other components of the virus do not interfere with these processes. Here, we describe a procedure to purify these vRNPs from the influenza A virus. The procedure starts with the disruption of the influenza A virion with detergents in order to release the vRNP complexes from the enveloped virion. The vRNPs are then separated from the other components of the influenza A virion on a 33-70% discontinuous glycerol gradient by velocity sedimentation. The fractions obtained from the glycerol gradient are then analyzed on via SDS-PAGE after staining with Coomassie blue. The peak fractions containing NP are then pooled together and concentrated by centrifugation. After concentration, the integrity of the vRNPs is verified by visualization of the vRNPs by transmission electron microscopy after negative staining. The glycerol gradient purification is a modification of that from Kemler et al. (1994)1, and the negative staining has been performed by Wu et al. (2007).2
Immunology, Issue 24, influenza A virus, viral ribonucleoprotein, vRNP, glycerol gradient, negative staining, transmission electron microscopy
Play Button
Identification of protein complexes with quantitative proteomics in S. cerevisiae
Authors: Jesse Tzu-Cheng Chao, Leonard J. Foster, Christopher J. R. Loewen.
Institutions: University of British Columbia - UBC, University of British Columbia - UBC.
Lipids are the building blocks of cellular membranes that function as barriers and in compartmentalization of cellular processes, and recently, as important intracellular signalling molecules. However, unlike proteins, lipids are small hydrophobic molecules that traffic primarily by poorly described nonvesicular routes, which are hypothesized to occur at membrane contact sites (MCSs). MCSs are regions where the endoplasmic reticulum (ER) makes direct physical contact with a partnering organelle, e.g., plasma membrane (PM). The ER portion of ER-PM MCSs is enriched in lipid-synthesizing enzymes, suggesting that lipid synthesis is directed to these sites and implying that MCSs are important for lipid traffic. Yeast is an ideal model to study ER-PM MCSs because of their abundance, with over 1000 contacts per cell, and their conserved nature in all eukaryotes. Uncovering the proteins that constitute MCSs is critical to understanding how lipids traffic is accomplished in cells, and how they act as signaling molecules. We have found that an ER called Scs2p localize to ER-PM MCSs and is important for their formation. We are focused on uncovering the molecular partners of Scs2p. Identification of protein complexes traditionally relies on first resolving purified protein samples by gel electrophoresis, followed by in-gel digestion of protein bands and analysis of peptides by mass spectrometry. This often limits the study to a small subset of proteins. Also, protein complexes are exposed to denaturing or non-physiological conditions during the procedure. To circumvent these problems, we have implemented a large-scale quantitative proteomics technique to extract unbiased and quantified data. We use stable isotope labeling with amino acids in cell culture (SILAC) to incorporate staple isotope nuclei in proteins in an untagged control strain. Equal volumes of tagged culture and untagged, SILAC-labeled culture are mixed together and lysed by grinding in liquid nitrogen. We then carry out an affinity purification procedure to pull down protein complexes. Finally, we precipitate the protein sample, which is ready for analysis by high-performance liquid chromatography/ tandem mass spectrometry. Most importantly, proteins in the control strain are labeled by the heavy isotope and will produce a mass/ charge shift that can be quantified against the unlabeled proteins in the bait strain. Therefore, contaminants, or unspecific binding can be easily eliminated. By using this approach, we have identified several novel proteins that localize to ER-PM MCSs. Here we present a detailed description of our approach.
Biochemistry, Issue 25, Quantitative proteomics, Stable isotope, Amino acid labeling, SILAC, Isotope-coded affinity tag, Isotope labeling, Quantitation, Saccharomyces cerevisiae, ER polarization
Play Button
A Rapid High-throughput Method for Mapping Ribonucleoproteins (RNPs) on Human pre-mRNA
Authors: Katherine H. Watkins, Allan Stewart, William G. Fairbrother.
Institutions: Brown University, Brown University.
Sequencing RNAs that co-immunoprecipitate (co-IP) with RNA binding proteins has increased our understanding of splicing by demonstrating that binding location often influences function of a splicing factor. However, as with any sampling strategy the chance of identifying an RNA bound to a splicing factor is proportional to its cellular abundance. We have developed a novel in vitro approach for surveying binding specificity on otherwise transient pre-mRNA. This approach utilizes a specifically designed oligonucleotide pool that tiles across introns, exons, splice junctions, or other pre-mRNA. The pool is subjected to some kind of molecular selection. Here, we demonstrate the method by separating the oligonucleotide into a bound and unbound fraction and utilize a two color array strategy to record the enrichment of each oligonucleotide in the bound fraction. The array data generates high-resolution maps with the ability to identify sequence-specific and structural determinates of ribonucleoprotein (RNP) binding on pre-mRNA. A unique advantage to this method is its ability to avoid the sampling bias towards mRNA associated with current IP and SELEX techniques, as the pool is specifically designed and synthesized from pre-mRNA sequence. The flexibility of the oligonucleotide pool is another advantage since the experimenter chooses which regions to study and tile across, tailoring the pool to their individual needs. Using this technique, one can assay the effects of polymorphisms or mutations on binding on a large scale or clone the library into a functional splicing reporter and identify oligonucleotides that are enriched in the included fraction. This novel in vitro high-resolution mapping scheme provides a unique way to study RNP interactions with transient pre-mRNA species, whose low abundance makes them difficult to study with current in vivo techniques.
Cellular Biology, Issue 34, pre-mRNA, splicing factors, tiling array, ribonucleoprotein (RNP), binding maps
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.