JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Extracellular matrix mineralization promotes E11/gp38 glycoprotein expression and drives osteocytic differentiation.
Osteocytes are terminally differentiated osteoblasts which reside in a mineralized extracellular matrix (ECM). The factors that regulate this differentiation process are unknown. We have investigated whether ECM mineralization could promote osteocyte formation. To do this we have utilised MLO-A5 pre-osteocyte-like cells and western blotting and comparative RT-PCR to examine whether the expression of osteocyte-selective markers is elevated concurrently with the onset of ECM mineralization. Secondly, if mineralization of the ECM is indeed a driver of osteocyte formation, we reasoned that impairment of ECM mineralization would result in a reversible inhibition of osteocyte formation. Supplementation of MLO-A5 cell cultures with ascorbic acid and phosphate promoted progressive ECM mineralization as well as temporally associated increases in expression of the osteocyte-selective markers, E11/gp38 glycoprotein and sclerostin. Consistent with a primary role for ECM mineralization in osteocyte formation, we also found that inhibition of ECM mineralization, by omitting phosphate or adding sodium pyrophosphate, a recognized inhibitor of hydroxyapatite formation, resulted in a 15-fold decrease in mineral deposition that was closely accompanied by lower expression of E11 and other osteocyte markers such as Dmp1, Cd44 and Sost whilst expression of osteoblast markers Ocn and Col1a increased. To rule out the possibility that such restriction of ECM mineralization may produce an irreversible modification in osteoblast behaviour to limit E11 expression and osteocytogenesis, we also measured the capacity of MLO-A5 cells to re-enter the osteocyte differentiation programme. We found that the mineralisation process was re-initiated and closely allied to increased expression of E11 protein after re-administration of phosphate or omission of sodium pyrophosphate, indicating an ECM mineralization-induced restoration in osteocyte formation. These results emphasise the importance of cell-ECM interactions in regulating osteoblast behaviour and, more importantly, suggest that ECM mineralization exerts pivotal control during terminal osteoblast differentiation and acquisition of the osteocyte phenotype.
Developing wisdom teeth are easy-accessible source of stem cells during the adulthood which could be obtained by routine orthodontic treatments. Human pulp-derived stem cells (hDPSCs) possess high proliferation potential with multi-lineage differentiation capacity compare to the ordinary source of adult stem cells1-8; therefore, hDPSCs could be the good candidates for autologous transplantation in tissue engineering and regenerative medicine. Along with these benefits, possessing the mesenchymal stem cells (MSC) features, such as immunolodulatory effect, make hDPSCs more valuable, even in the case of allograft transplantation6,9,10. Therefore, the primary step for using this source of stem cells is to select the best protocol for isolating hDPSCs from pulp tissue. In order to achieve this goal, it is crucial to investigate the effect of various isolation conditions on different cellular behaviors, such as their common surface markers & also their differentiation capacity. Thus, here we separate human pulp tissue from impacted third molar teeth, and then used both existing protocols based on literature, for isolating hDPSCs,11-13 i.e. enzymatic dissociation of pulp tissue (DPSC-ED) or outgrowth from tissue explants (DPSC-OG). In this regards, we tried to facilitate the isolation methods by using dental diamond disk. Then, these cells characterized in terms of stromal-associated Markers (CD73, CD90, CD105 & CD44), hematopoietic/endothelial Markers (CD34, CD45 & CD11b), perivascular marker, like CD146 and also STRO-1. Afterwards, these two protocols were compared based on the differentiation potency into odontoblasts by both quantitative polymerase chain reaction (QPCR) & Alizarin Red Staining. QPCR were used for the assessment of the expression of the mineralization-related genes (alkaline phosphatase; ALP, matrix extracellular phosphoglycoprotein; MEPE & dentin sialophosphoprotein; DSPP).14
19 Related JoVE Articles!
Play Button
Development of Amelogenin-chitosan Hydrogel for In Vitro Enamel Regrowth with a Dense Interface
Authors: Qichao Ruan, Janet Moradian-Oldak.
Institutions: University of Southern California.
Biomimetic enamel reconstruction is a significant topic in material science and dentistry as a novel approach for the treatment of dental caries or erosion. Amelogenin has been proven to be a critical protein for controlling the organized growth of apatite crystals. In this paper, we present a detailed protocol for superficial enamel reconstruction by using a novel amelogenin-chitosan hydrogel. Compared to other conventional treatments, such as topical fluoride and mouthwash, this method not only has the potential to prevent the development of dental caries but also promotes significant and durable enamel restoration. The organized enamel-like microstructure regulated by amelogenin assemblies can significantly improve the mechanical properties of etched enamel, while the dense enamel-restoration interface formed by an in situ regrowth of apatite crystals can improve the effectiveness and durability of restorations. Furthermore, chitosan hydrogel is easy to use and can suppress bacterial infection, which is the major risk factor for the occurrence of dental caries. Therefore, this biocompatible and biodegradable amelogenin-chitosan hydrogel shows promise as a biomaterial for the prevention, restoration, and treatment of defective enamel.
Bioengineering, Issue 89, Enamel, Amelogenin, Chitosan hydrogel, Apatite, Biomimetic, Erosion, Superficial enamel reconstruction, Dense interface
Play Button
Studying the Effects of Matrix Stiffness on Cellular Function using Acrylamide-based Hydrogels
Authors: Alexandra Cretu, Paola Castagnino, Richard Assoian.
Institutions: University of Pennsylvania .
Tissue stiffness is an important determinant of cellular function, and changes in tissue stiffness are commonly associated with fibrosis, cancer and cardiovascular disease1-11. Traditional cell biological approaches to studying cellular function involve culturing cells on a rigid substratum (plastic dishes or glass coverslips) which cannot account for the effect of an elastic ECM or the variations in ECM stiffness between tissues. To model in vivo tissue compliance conditions in vitro, we and others use ECM-coated hydrogels. In our laboratory, the hydrogels are based on polyacrylamide which can mimic the range of tissue compliances seen biologically12. "Reactive" cover slips are generated by incubation with NaOH followed by addition of 3-APTMS. Glutaraldehyde is used to cross-link the 3-APTMS and the polyacrylamide gel. A solution of acrylamide (AC), bis-acrylamide (Bis-AC) and ammonium persulfate is used for the polymerization of the hydrogel. N-hydroxysuccinimide (NHS) is incorporated into the AC solution to crosslink ECM protein to the hydrogel. Following polymerization of the hydrogel, the gel surface is coated with an ECM protein of choice such as fibronectin, vitronectin, collagen, etc. The stiffness of a hydrogel can be determined by rheology or atomic force microscopy (AFM) and adjusted by varying the percentage of AC and/or bis-AC in the solution12. In this manner, substratum stiffness can be matched to the stiffness of biological tissues which can also be quantified using rheology or AFM. Cells can then be seeded on these hydrogels and cultured based upon the experimental conditions required. Imaging of the cells and their recovery for molecular analysis is straightforward. For this article, we define soft substrata as those having elastic moduli (E) <3000 Pascal and stiff substrata/tissues as those with E >20,000 Pascal.
Cellular Biology, Issue 42, substrata stiffness, polyacrylamide, hydrogel, synthetic matrix, extracellular matrix, ECM
Play Button
Ex vivo Mimicry of Normal and Abnormal Human Hematopoiesis
Authors: Teresa Mortera-Blanco, Maria Rende, Hugo Macedo, Serene Farah, Alexander Bismarck, Athanasios Mantalaris, Nicki Panoskaltsis.
Institutions: Imperial College London , Imperial College London .
Hematopoietic stem cells require a unique microenvironment in order to sustain blood cell formation1; the bone marrow (BM) is a complex three-dimensional (3D) tissue wherein hematopoiesis is regulated by spatially organized cellular microenvironments termed niches2-4. The organization of the BM niches is critical for the function or dysfunction of normal or malignant BM5. Therefore a better understanding of the in vivo microenvironment using an ex vivo mimicry would help us elucidate the molecular, cellular and microenvironmental determinants of leukemogenesis6. Currently, hematopoietic cells are cultured in vitro in two-dimensional (2D) tissue culture flasks/well-plates7 requiring either co-culture with allogenic or xenogenic stromal cells or addition of exogenous cytokines8. These conditions are artificial and differ from the in vivo microenvironment in that they lack the 3D cellular niches and expose the cells to abnormally high cytokine concentrations which can result in differentiation and loss of pluripotency9,10. Herein, we present a novel 3D bone marrow culture system that simulates the in vivo 3D growth environment and supports multilineage hematopoiesis in the absence of exogenous growth factors. The highly porous scaffold used in this system made of polyurethane (PU), facilitates high-density cell growth across a higher specific surface area than the conventional monolayer culture in 2D11. Our work has indicated that this model supported the growth of human cord blood (CB) mononuclear cells (MNC)12 and primary leukemic cells in the absence of exogenous cytokines. This novel 3D mimicry provides a viable platform for the development of a human experimental model to study hematopoiesis and to explore novel treatments for leukemia.
Bioengineering, Issue 62, three-dimensional culture, hematopoiesis, leukemia, cord blood
Play Button
Fabrication of Biologically Derived Injectable Materials for Myocardial Tissue Engineering
Authors: Sonya Seif-Naraghi, Jennifer Singelyn, Jessica DeQuach, Pamela Schup-Magoffin, Karen Christman.
Institutions: University of California, San Diego.
This protocol provides methods for the preparation of an injectable extracellular matrix (ECM) gel for myocardial tissue engineering applications. Briefly, decellularized tissue is lyophilized, milled, enzymatically digested, and then brought to physiological pH. The lyophilization removes all water content from the tissue, resulting in dry ECM that can be ground into a fine powder with a small mill. After milling, the ECM powder is digested with pepsin to form an injectable matrix. After adjustment to pH 7.4, the liquid matrix material can be injected into the myocardium. Results of previous characterization assays have shown that matrix gels produced from decellularized pericardial and myocardial tissue retain native ECM components, including diverse proteins, peptides and glycosaminoglycans. Given the use of this material for tissue engineering, in vivo characterization is especially useful; here, a method for performing an intramural injection into the left ventricular (LV) free wall is presented as a means of analyzing the host response to the matrix gel in a small animal model. Access to the chest cavity is gained through the diaphragm and the injection is made slightly above the apex in the LV free wall. The biologically derived scaffold can be visualized by biotin-labeling before injection and then staining tissue sections with a horse radish peroxidase-conjugated neutravidin and visualizing via diaminobenzidine (DAB) staining. Analysis of the injection region can also be done with histological and immunohistochemical staining. In this way, the previously examined pericardial and myocardial matrix gels were shown to form fibrous, porous networks and promote vessel formation within the injection region.
Bioengineering, Issue 46, Decellularized, pericardium, extracellular matrix, in situ gelation, injectable, myocardial tissue engineering
Play Button
Isolation of Murine Lymph Node Stromal Cells
Authors: Maria A. S. Broggi, Mathias Schmaler, Nadège Lagarde, Simona W. Rossi.
Institutions: University of Basel and University Hospital Basel.
Secondary lymphoid organs including lymph nodes are composed of stromal cells that provide a structural environment for homeostasis, activation and differentiation of lymphocytes. Various stromal cell subsets have been identified by the expression of the adhesion molecule CD31 and glycoprotein podoplanin (gp38), T zone reticular cells or fibroblastic reticular cells, lymphatic endothelial cells, blood endothelial cells and FRC-like pericytes within the double negative cell population. For all populations different functions are described including, separation and lining of different compartments, attraction of and interaction with different cell types, filtration of the draining fluidics and contraction of the lymphatic vessels. In the last years, different groups have described an additional role of stromal cells in orchestrating and regulating cytotoxic T cell responses potentially dangerous for the host. Lymph nodes are complex structures with many different cell types and therefore require a appropriate procedure for isolation of the desired cell populations. Currently, protocols for the isolation of lymph node stromal cells rely on enzymatic digestion with varying incubation times; however, stromal cells and their surface molecules are sensitive to these enzymes, which results in loss of surface marker expression and cell death. Here a short enzymatic digestion protocol combined with automated mechanical disruption to obtain viable single cells suspension of lymph node stromal cells maintaining their surface molecule expression is proposed.
Immunology, Issue 90, lymph node, lymph node stromal cells, digestion, isolation, enzymes, fibroblastic reticular cell, lymphatic endothelial cell, blood endothelial cell
Play Button
A Method for Culturing Embryonic C. elegans Cells
Authors: Rachele Sangaletti, Laura Bianchi.
Institutions: University of Miami .
C. elegans is a powerful model system, in which genetic and molecular techniques are easily applicable. Until recently though, techniques that require direct access to cells and isolation of specific cell types, could not be applied in C. elegans. This limitation was due to the fact that tissues are confined within a pressurized cuticle which is not easily digested by treatment with enzymes and/or detergents. Based on early pioneer work by Laird Bloom, Christensen and colleagues 1 developed a robust method for culturing C. elegans embryonic cells in large scale. Eggs are isolated from gravid adults by treatment with bleach/NaOH and subsequently treated with chitinase to remove the eggshells. Embryonic cells are then dissociated by manual pipetting and plated onto substrate-covered glass in serum-enriched media. Within 24 hr of isolation cells begin to differentiate by changing morphology and by expressing cell specific markers. C. elegans cells cultured using this method survive for up 2 weeks in vitro and have been used for electrophysiological, immunochemical, and imaging analyses as well as they have been sorted and used for microarray profiling.
Developmental Biology, Issue 79, Eukaryota, Biological Phenomena, Cell Physiological Phenomena, C. elegans, cell culture, embryonic cells
Play Button
Generation of Lymph Node-fat Pad Chimeras for the Study of Lymph Node Stromal Cell Origin
Authors: Cecile Benezech, Jorge H. Caamano.
Institutions: University of Birmingham, University of Edinburgh.
The stroma is a key component of the lymph node structure and function. However, little is known about its origin, exact cellular composition and the mechanisms governing its formation. Lymph nodes are always encapsulated in adipose tissue and we recently demonstrated the importance of this relation for the formation of lymph node stroma. Adipocyte precursor cells migrate into the lymph node during its development and upon engagement of the Lymphotoxin-b receptor switch off adipogenesis and differentiate into lymphoid stromal cells (Bénézech et al.14). Based on the lymphoid stroma potential of adipose tissue, we present a method using a lymph node/fat pad chimera that allows the lineage tracing of lymph node stromal cell precursors. We show how to isolate newborn lymph nodes and EYFP+ embryonic adipose tissue and make a LN/ EYFP+ fat pad chimera. After transfer under the kidney capsule of a host mouse, the lymph node incorporates local adipose tissue precursor cells and finishes its formation. Progeny analysis of EYFP+ fat pad cells in the resulting lymph nodes can be performed by flow-cytometric analysis of enzymatically digested lymph nodes or by immunofluorescence analysis of lymph nodes cryosections. By using fat pads from different knockout mouse models, this method will provide an efficient way of analyzing the origin of the different lymph node stromal cell populations.
Immunology, Issue 82, Adipose Tissue, Mesenchymal Stromal Cells, Immune System, Lymphoid Tissue, Lymph Nodes, Lymph node development, lymph node stromal cells, lymph node transplantation, immune responses, adipose tissue, adipose tissue stromal cells, stem cells
Play Button
Adult and Embryonic Skeletal Muscle Microexplant Culture and Isolation of Skeletal Muscle Stem Cells
Authors: Deborah Merrick, Hung-Chih Chen, Dean Larner, Janet Smith.
Institutions: University of Birmingham.
Cultured embryonic and adult skeletal muscle cells have a number of different uses. The micro-dissected explants technique described in this chapter is a robust and reliable method for isolating relatively large numbers of proliferative skeletal muscle cells from juvenile, adult or embryonic muscles as a source of skeletal muscle stem cells. The authors have used micro-dissected explant cultures to analyse the growth characteristics of skeletal muscle cells in wild-type and dystrophic muscles. Each of the components of tissue growth, namely cell survival, proliferation, senescence and differentiation can be analysed separately using the methods described here. The net effect of all components of growth can be established by means of measuring explant outgrowth rates. The micro-explant method can be used to establish primary cultures from a wide range of different muscle types and ages and, as described here, has been adapted by the authors to enable the isolation of embryonic skeletal muscle precursors. Uniquely, micro-explant cultures have been used to derive clonal (single cell origin) skeletal muscle stem cell (SMSc) lines which can be expanded and used for in vivo transplantation. In vivo transplanted SMSc behave as functional, tissue-specific, satellite cells which contribute to skeletal muscle fibre regeneration but which are also retained (in the satellite cell niche) as a small pool of undifferentiated stem cells which can be re-isolated into culture using the micro-explant method.
Cellular Biology, Issue 43, Skeletal muscle stem cell, embryonic tissue culture, apoptosis, growth factor, proliferation, myoblast, myogenesis, satellite cell, skeletal muscle differentiation, muscular dystrophy
Play Button
Isolation and Th17 Differentiation of Naïve CD4 T Lymphocytes
Authors: Simone K. Bedoya, Tenisha D. Wilson, Erin L. Collins, Kenneth Lau, Joseph Larkin III.
Institutions: The University of Florida.
Th17 cells are a distinct subset of T cells that have been found to produce interleukin 17 (IL-17), and differ in function from the other T cell subsets including Th1, Th2, and regulatory T cells. Th17 cells have emerged as a central culprit in overzealous inflammatory immune responses associated with many autoimmune disorders. In this method we purify T lymphocytes from the spleen and lymph nodes of C57BL/6 mice, and stimulate purified CD4+ T cells under control and Th17-inducing environments. The Th17-inducing environment includes stimulation in the presence of anti-CD3 and anti-CD28 antibodies, IL-6, and TGF-β. After incubation for at least 72 hours and for up to five days at 37 °C, cells are subsequently analyzed for the capability to produce IL-17 through flow cytometry, qPCR, and ELISAs. Th17 differentiated CD4+CD25- T cells can be utilized to further elucidate the role that Th17 cells play in the onset and progression of autoimmunity and host defense. Moreover, Th17 differentiation of CD4+CD25- lymphocytes from distinct murine knockout/disease models can contribute to our understanding of cell fate plasticity.
Immunology, Issue 79, Cellular Biology, Molecular Biology, Medicine, Infection, Th17 cells, IL-17, Th17 differentiation, T cells, autoimmunity, cell, isolation, culture
Play Button
A Novel Three-dimensional Flow Chamber Device to Study Chemokine-directed Extravasation of Cells Circulating under Physiological Flow Conditions
Authors: Valentina Goncharova, Sophia K. Khaldoyanidi.
Institutions: Torrey Pines Institute for Molecular Studies, Cascade LifeSciences Inc..
Extravasation of circulating cells from the bloodstream plays a central role in many physiological and pathophysiological processes, including stem cell homing and tumor metastasis. The three-dimensional flow chamber device (hereafter the 3D device) is a novel in vitro technology that recreates physiological shear stress and allows each step of the cell extravasation cascade to be quantified. The 3D device consists of an upper compartment in which the cells of interest circulate under shear stress, and a lower compartment of static wells that contain the chemoattractants of interest. The two compartments are separated by porous inserts coated with a monolayer of endothelial cells (EC). An optional second insert with microenvironmental cells of interest can be placed immediately beneath the EC layer. A gas exchange unit allows the optimal CO2 tension to be maintained and provides an access point to add or withdraw cells or compounds during the experiment. The test cells circulate in the upper compartment at the desired shear stress (flow rate) controlled by a peristaltic pump. At the end of the experiment, the circulating and migrated cells are collected for further analyses. The 3D device can be used to examine cell rolling on and adhesion to EC under shear stress, transmigration in response to chemokine gradients, resistance to shear stress, cluster formation, and cell survival. In addition, the optional second insert allows the effects of crosstalk between EC and microenvironmental cells to be examined. The translational applications of the 3D device include testing of drug candidates that target cell migration and predicting the in vivo behavior of cells after intravenous injection. Thus, the novel 3D device is a versatile and inexpensive tool to study the molecular mechanisms that mediate cellular extravasation.
Bioengineering, Issue 77, Cellular Biology, Biophysics, Physiology, Molecular Biology, Biomedical Engineering, Immunology, Cells, Biological Factors, Equipment and Supplies, Cell Physiological Phenomena, Natural Science Disciplines, Life Sciences (General), circulating cells, extravasation, physiological shear stress, endothelial cells, microenvironment, chemokine gradient, flow, chamber, cell culture, assay
Play Button
Application of Retinoic Acid to Obtain Osteocytes Cultures from Primary Mouse Osteoblasts
Authors: Deborah Mattinzoli, Piergiorgio Messa, Alessandro Corbelli, Masami Ikehata, Anna Mondini, Cristina Zennaro, Silvia Armelloni, Min Li, Laura Giardino, Maria Pia Rastaldi.
Institutions: Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Trieste.
The need for osteocyte cultures is well known to the community of bone researchers; isolation of primary osteocytes is difficult and produces low cell numbers. Therefore, the most widely used cellular system is the osteocyte-like MLO-Y4 cell line. The method here described refers to the use of retinoic acid to generate a homogeneous population of ramified cells with morphological and molecular osteocyte features. After isolation of osteoblasts from mouse calvaria, all-trans retinoic acid (ATRA) is added to cell medium, and cell monitoring is conducted daily under an inverted microscope. First morphological changes are detectable after 2 days of treatment and differentiation is generally complete in 5 days, with progressive development of dendrites, loss of the ability to produce extracellular matrix, down-regulation of osteoblast markers and up-regulation of osteocyte-specific molecules. Daily cell monitoring is needed because of the inherent variability of primary cells, and the protocol can be adapted with minimal variation to cells obtained from different mouse strains and applied to transgenic models. The method is easy to perform and does not require special instrumentation, it is highly reproducible, and rapidly generates a mature osteocyte population in complete absence of extracellular matrix, allowing the use of these cells for unlimited biological applications.
Cellular Biology, Issue 87, cell biology, cell culture, bone, retinoic acid, primary osteoblasts, osteocytes, cell differentiation, mouse calvaria, sclerostin, fibroblast growth factor 23, microscopy, immunostaining
Play Button
ECM Protein Nanofibers and Nanostructures Engineered Using Surface-initiated Assembly
Authors: John M. Szymanski, Quentin Jallerat, Adam W. Feinberg.
Institutions: Carnegie Mellon University, Carnegie Mellon University.
The extracellular matrix (ECM) in tissues is synthesized and assembled by cells to form a 3D fibrillar, protein network with tightly regulated fiber diameter, composition and organization. In addition to providing structural support, the physical and chemical properties of the ECM play an important role in multiple cellular processes including adhesion, differentiation, and apoptosis. In vivo, the ECM is assembled by exposing cryptic self-assembly (fibrillogenesis) sites within proteins. This process varies for different proteins, but fibronectin (FN) fibrillogenesis is well-characterized and serves as a model system for cell-mediated ECM assembly. Specifically, cells use integrin receptors on the cell membrane to bind FN dimers and actomyosin-generated contractile forces to unfold and expose binding sites for assembly into insoluble fibers. This receptor-mediated process enables cells to assemble and organize the ECM from the cellular to tissue scales. Here, we present a method termed surface-initiated assembly (SIA), which recapitulates cell-mediated matrix assembly using protein-surface interactions to unfold ECM proteins and assemble them into insoluble fibers. First, ECM proteins are adsorbed onto a hydrophobic polydimethylsiloxane (PDMS) surface where they partially denature (unfold) and expose cryptic binding domains. The unfolded proteins are then transferred in well-defined micro- and nanopatterns through microcontact printing onto a thermally responsive poly(N-isopropylacrylamide) (PIPAAm) surface. Thermally-triggered dissolution of the PIPAAm leads to final assembly and release of insoluble ECM protein nanofibers and nanostructures with well-defined geometries. Complex architectures are possible by engineering defined patterns on the PDMS stamps used for microcontact printing. In addition to FN, the SIA process can be used with laminin, fibrinogen and collagens type I and IV to create multi-component ECM nanostructures. Thus, SIA can be used to engineer ECM protein-based materials with precise control over the protein composition, fiber geometry and scaffold architecture in order to recapitulate the structure and composition of the ECM in vivo.
Bioengineering, Issue 86, Nanofibers, Nanofabrics, Extracellular Matrix Proteins, Microcontact Printing, Fibronectin, Laminin, Tissue Engineering, poly(N-isopropylacrylamide), Surface-Initiated Assembly
Play Button
Quantification of Breast Cancer Cell Invasiveness Using a Three-dimensional (3D) Model
Authors: Donna Cvetković, Cameron Glenn-Franklin Goertzen, Moshmi Bhattacharya.
Institutions: University of Western Ontario, University of Western Ontario, Lawson Health Research Institute.
It is now well known that the cellular and tissue microenvironment are critical regulators influencing tumor initiation and progression. Moreover, the extracellular matrix (ECM) has been demonstrated to be a critical regulator of cell behavior in culture and homeostasis in vivo. The current approach of culturing cells on two-dimensional (2D), plastic surfaces results in the disturbance and loss of complex interactions between cells and their microenvironment. Through the use of three-dimensional (3D) culture assays, the conditions for cell-microenvironment interaction are established resembling the in vivo microenvironment. This article provides a detailed methodology to grow breast cancer cells in a 3D basement membrane protein matrix, exemplifying the potential of 3D culture in the assessment of cell invasion into the surrounding environment. In addition, we discuss how these 3D assays have the potential to examine the loss of signaling molecules that regulate epithelial morphology by immunostaining procedures. These studies aid to identify important mechanistic details into the processes regulating invasion, required for the spread of breast cancer.
Medicine, Issue 88, Breast cancer, cell invasion, extracellular matrix (ECM), three-dimensional (3D) cultures, immunocytochemistry, Matrigel, basement membrane matrix
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
Play Button
Microwave-assisted Functionalization of Poly(ethylene glycol) and On-resin Peptides for Use in Chain Polymerizations and Hydrogel Formation
Authors: Amy H. Van Hove, Brandon D. Wilson, Danielle S. W. Benoit.
Institutions: University of Rochester, University of Rochester, University of Rochester Medical Center.
One of the main benefits to using poly(ethylene glycol) (PEG) macromers in hydrogel formation is synthetic versatility. The ability to draw from a large variety of PEG molecular weights and configurations (arm number, arm length, and branching pattern) affords researchers tight control over resulting hydrogel structures and properties, including Young’s modulus and mesh size. This video will illustrate a rapid, efficient, solvent-free, microwave-assisted method to methacrylate PEG precursors into poly(ethylene glycol) dimethacrylate (PEGDM). This synthetic method provides much-needed starting materials for applications in drug delivery and regenerative medicine. The demonstrated method is superior to traditional methacrylation methods as it is significantly faster and simpler, as well as more economical and environmentally friendly, using smaller amounts of reagents and solvents. We will also demonstrate an adaptation of this technique for on-resin methacrylamide functionalization of peptides. This on-resin method allows the N-terminus of peptides to be functionalized with methacrylamide groups prior to deprotection and cleavage from resin. This allows for selective addition of methacrylamide groups to the N-termini of the peptides while amino acids with reactive side groups (e.g. primary amine of lysine, primary alcohol of serine, secondary alcohols of threonine, and phenol of tyrosine) remain protected, preventing functionalization at multiple sites. This article will detail common analytical methods (proton Nuclear Magnetic Resonance spectroscopy (;H-NMR) and Matrix Assisted Laser Desorption Ionization Time of Flight mass spectrometry (MALDI-ToF)) to assess the efficiency of the functionalizations. Common pitfalls and suggested troubleshooting methods will be addressed, as will modifications of the technique which can be used to further tune macromer functionality and resulting hydrogel physical and chemical properties. Use of synthesized products for the formation of hydrogels for drug delivery and cell-material interaction studies will be demonstrated, with particular attention paid to modifying hydrogel composition to affect mesh size, controlling hydrogel stiffness and drug release.
Chemistry, Issue 80, Poly(ethylene glycol), peptides, polymerization, polymers, methacrylation, peptide functionalization, 1H-NMR, MALDI-ToF, hydrogels, macromer synthesis
Play Button
High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry
Authors: Subarna Bhattacharya, Paul W. Burridge, Erin M. Kropp, Sandra L. Chuppa, Wai-Meng Kwok, Joseph C. Wu, Kenneth R. Boheler, Rebekah L. Gundry.
Institutions: Medical College of Wisconsin, Stanford University School of Medicine, Medical College of Wisconsin, Hong Kong University, Johns Hopkins University School of Medicine, Medical College of Wisconsin.
There is an urgent need to develop approaches for repairing the damaged heart, discovering new therapeutic drugs that do not have toxic effects on the heart, and improving strategies to accurately model heart disease. The potential of exploiting human induced pluripotent stem cell (hiPSC) technology to generate cardiac muscle “in a dish” for these applications continues to generate high enthusiasm. In recent years, the ability to efficiently generate cardiomyogenic cells from human pluripotent stem cells (hPSCs) has greatly improved, offering us new opportunities to model very early stages of human cardiac development not otherwise accessible. In contrast to many previous methods, the cardiomyocyte differentiation protocol described here does not require cell aggregation or the addition of Activin A or BMP4 and robustly generates cultures of cells that are highly positive for cardiac troponin I and T (TNNI3, TNNT2), iroquois-class homeodomain protein IRX-4 (IRX4), myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC2v) and myosin regulatory light chain 2, atrial isoform (MLC2a) by day 10 across all human embryonic stem cell (hESC) and hiPSC lines tested to date. Cells can be passaged and maintained for more than 90 days in culture. The strategy is technically simple to implement and cost-effective. Characterization of cardiomyocytes derived from pluripotent cells often includes the analysis of reference markers, both at the mRNA and protein level. For protein analysis, flow cytometry is a powerful analytical tool for assessing quality of cells in culture and determining subpopulation homogeneity. However, technical variation in sample preparation can significantly affect quality of flow cytometry data. Thus, standardization of staining protocols should facilitate comparisons among various differentiation strategies. Accordingly, optimized staining protocols for the analysis of IRX4, MLC2v, MLC2a, TNNI3, and TNNT2 by flow cytometry are described.
Cellular Biology, Issue 91, human induced pluripotent stem cell, flow cytometry, directed differentiation, cardiomyocyte, IRX4, TNNI3, TNNT2, MCL2v, MLC2a
Play Button
Isolation and Culture of Neonatal Mouse Cardiomyocytes
Authors: Elisabeth Ehler, Thomas Moore-Morris, Stephan Lange.
Institutions: King’s College London, University of California San Diego .
Cultured neonatal cardiomyocytes have long been used to study myofibrillogenesis and myofibrillar functions. Cultured cardiomyocytes allow for easy investigation and manipulation of biochemical pathways, and their effect on the biomechanical properties of spontaneously beating cardiomyocytes. The following 2-day protocol describes the isolation and culture of neonatal mouse cardiomyocytes. We show how to easily dissect hearts from neonates, dissociate the cardiac tissue and enrich cardiomyocytes from the cardiac cell-population. We discuss the usage of different enzyme mixes for cell-dissociation, and their effects on cell-viability. The isolated cardiomyocytes can be subsequently used for a variety of morphological, electrophysiological, biochemical, cell-biological or biomechanical assays. We optimized the protocol for robustness and reproducibility, by using only commercially available solutions and enzyme mixes that show little lot-to-lot variability. We also address common problems associated with the isolation and culture of cardiomyocytes, and offer a variety of options for the optimization of isolation and culture conditions.
Cellular Biology, Issue 79, Biomedical Engineering, Bioengineering, Molecular Biology, Cell Culture Techniques, Primary Cell Culture, Cell Culture Techniques, Primary Cell Culture, Cell Culture Techniques, Primary Cell Culture, Cell Culture Techniques, Disease Models, Animal, Models, Cardiovascular, Cell Biology, neonatal mouse, cardiomyocytes, isolation, culture, primary cells, NMC, heart cells, animal model
Play Button
A Simple Hanging Drop Cell Culture Protocol for Generation of 3D Spheroids
Authors: Ramsey Foty.
Institutions: UMDNJ-Robert Wood Johnson Medical School.
Studies of cell-cell cohesion and cell-substratum adhesion have historically been performed on monolayer cultures adherent to rigid substrates. Cells within a tissue, however, are typically encased within a closely packed tissue mass in which cells establish intimate connections with many near-neighbors and with extracellular matrix components. Accordingly, the chemical milieu and physical forces experienced by cells within a 3D tissue are fundamentally different than those experienced by cells grown in monolayer culture. This has been shown to markedly impact cellular morphology and signaling. Several methods have been devised to generate 3D cell cultures including encapsulation of cells in collagen gels1or in biomaterial scaffolds2. Such methods, while useful, do not recapitulate the intimate direct cell-cell adhesion architecture found in normal tissues. Rather, they more closely approximate culture systems in which single cells are loosely dispersed within a 3D meshwork of ECM products. Here, we describe a simple method in which cells are placed in hanging drop culture and incubated under physiological conditions until they form true 3D spheroids in which cells are in direct contact with each other and with extracellular matrix components. The method requires no specialized equipment and can be adapted to include addition of any biological agent in very small quantities that may be of interest in elucidating effects on cell-cell or cell-ECM interaction. The method can also be used to co-culture two (or more) different cell populations so as to elucidate the role of cell-cell or cell-ECM interactions in specifying spatial relationships between cells. Cell-cell cohesion and cell-ECM adhesion are the cornerstones of studies of embryonic development, tumor-stromal cell interaction in malignant invasion, wound healing, and for applications to tissue engineering. This simple method will provide a means of generating tissue-like cellular aggregates for measurement of biomechanical properties or for molecular and biochemical analysis in a physiologically relevant model.
Bioengineering, Issue 51, 3D, hanging drop cultures, cell sorting-out, differential adhesion
Play Button
An Explant Assay for Assessing Cellular Behavior of the Cranial Mesenchyme
Authors: Anjali A. Sarkar, Irene E. Zohn.
Institutions: Children's National Medical Center.
The central nervous system is derived from the neural plate that undergoes a series of complex morphogenetic movements resulting in formation of the neural tube in a process known as neurulation. During neurulation, morphogenesis of the mesenchyme that underlies the neural plate is believed to drive neural fold elevation. The cranial mesenchyme is comprised of the paraxial mesoderm and neural crest cells. The cells of the cranial mesenchyme form a pourous meshwork composed of stellate shaped cells and intermingling extracellular matrix (ECM) strands that support the neural folds. During neurulation, the cranial mesenchyme undergoes stereotypical rearrangements resulting in its expansion and these movements are believed to provide a driving force for neural fold elevation. However, the pathways and cellular behaviors that drive cranial mesenchyme morphogenesis remain poorly studied. Interactions between the ECM and the cells of the cranial mesenchyme underly these cell behaviors. Here we describe a simple ex vivo explant assay devised to characterize the behaviors of these cells. This assay is amendable to pharmacological manipulations to dissect the signaling pathways involved and live imaging analyses to further characterize the behavior of these cells. We present a representative experiment demonstrating the utility of this assay in characterizing the migratory properties of the cranial mesenchyme on a variety of ECM components.
Neurobiology, Issue 71, Cellular Biology, Neuroscience, Medicine, Molecular Biology, Pharmacology, exencephaly, cranial mesenchyme, migration, neural tube closure, cell rearrangement, extracellular matrix, pharmacological treatment
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.