JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Human FOXN1-deficiency is associated with ?? double-negative and FoxP3+ T-cell expansions that are distinctly modulated upon thymic transplantation.
Forkhead box N1 (FOXN1) is a transcription factor crucial for thymic epithelium development and prevention of its involution. Investigation of a patient with a rare homozygous FOXN1 mutation (R255X), leading to alopecia universalis and thymus aplasia, unexpectedly revealed non-maternal circulating T-cells, and, strikingly, large numbers of aberrant double-negative ?? T-cells (CD4negCD8neg, DN) and regulatory-like T-cells. These data raise the possibility that a thymic rudiment persisted, allowing T-cell development, albeit with disturbances in positive/negative selection, as suggested by DN and FoxP3+ cell expansions. Although regulatory-like T-cell numbers normalized following HLA-mismatched thymic transplantation, the ??DN subset persisted 5 years post-transplantation. Involution of thymus allograft likely occurred 3 years post-transplantation based on sj/?TREC ratio, which estimates intrathymic precursor T-cell divisions and, consequently, thymic explant output. Nevertheless, functional immune-competence was sustained, providing new insights for the design of immunological reconstitution strategies based on thymic transplantation, with potential applications in other clinical settings.
Authors: Qian Hu, Stephanie A. Nicol, Alexander Y.W. Suen, Troy A. Baldwin.
Published: 10-08-2012
A healthy immune system requires that T cells respond to foreign antigens while remaining tolerant to self-antigens. Random rearrangement of the T cell receptor (TCR) α and β loci generates a T cell repertoire with vast diversity in antigen specificity, both to self and foreign. Selection of the repertoire during development in the thymus is critical for generating safe and useful T cells. Defects in thymic selection contribute to the development of autoimmune and immunodeficiency disorders1-4. T cell progenitors enter the thymus as double negative (DN) thymocytes that do not express CD4 or CD8 co-receptors. Expression of the αβTCR and both co-receptors occurs at the double positive (DP) stage. Interaction of the αβTCR with self-peptide-MHC (pMHC) presented by thymic cells determines the fate of the DP thymocyte. High affinity interactions lead to negative selection and elimination of self-reactive thymocytes. Low affinity interactions result in positive selection and development of CD4 or CD8 single positive (SP) T cells capable of recognizing foreign antigens presented by self-MHC5. Positive selection can be studied in mice with a polyclonal (wildtype) TCR repertoire by observing the generation of mature T cells. However, they are not ideal for the study of negative selection, which involves deletion of small antigen-specific populations. Many model systems have been used to study negative selection but vary in their ability to recapitulate physiological events6. For example, in vitro stimulation of thymocytes lacks the thymic environment that is intimately involved in selection, while administration of exogenous antigen can lead to non-specific deletion of thymocytes7-9. Currently, the best tools for studying in vivo negative selection are mice that express a transgenic TCR specific for endogenous self-antigen. However, many classical TCR transgenic models are characterized by premature expression of the transgenic TCRα chain at the DN stage, resulting in premature negative selection. Our lab has developed the HYcd4 model, in which the transgenic HY TCRα is conditionally expressed at the DP stage, allowing negative selection to occur during the DP to SP transition as occurs in wildtype mice10. Here, we describe a flow cytometry-based protocol to examine thymic positive and negative selection in the HYcd4 mouse model. While negative selection in HYcd4 mice is highly physiological, these methods can also be applied to other TCR transgenic models. We will also present general strategies for analyzing positive selection in a polyclonal repertoire applicable to any genetically manipulated mice.
15 Related JoVE Articles!
Play Button
Intravital Imaging of the Mouse Thymus using 2-Photon Microscopy
Authors: Susana S. Caetano, Tatiana Teixeira, Carlos E. Tadokoro.
Institutions: Instituto Gulbenkian de Ciência.
Two-photon Microscopy (TPM) provides image acquisition in deep areas inside tissues and organs. In combination with the development of new stereotactic tools and surgical procedures, TPM becomes a powerful technique to identify "niches" inside organs and to document cellular "behaviors" in live animals. While intravital imaging provides information that best resembles the real cellular behavior inside the organ, it is both more laborious and technically demanding in terms of required equipment/procedures than alternative ex vivo imaging acquisition. Thus, we describe a surgical procedure and novel "stereotactic" organ holder that allows us to follow the movements of Foxp3+ cells within the thymus. Foxp3 is the master regulator for the generation of regulatory T cells (Tregs). Moreover, these cells can be classified according to their origin: ie. thymus-differentiated Tregs are called "naturally-occurring Tregs" (nTregs), as opposed to peripherally-converted Tregs (pTregs). Although significant amount of research has been reported in the literature concerning the phenotype and physiology of these T cells, very little is known about their in vivo interactions with other cells. This deficiency may be due to the absence of techniques that would permit such observations. The protocol described in this paper provides a remedy for this situation. Our protocol consists of using nude mice that lack an endogenous thymus since they have a punctual mutation in the DNA sequence that compromises the differentiation of some epithelial cells, including thymic epithelial cells. Nude mice were gamma-irradiated and reconstituted with bone marrows (BM) from Foxp3-KIgfp/gfp mice. After BM recovery (6 weeks), each animal received embryonic thymus transplantation inside the kidney capsule. After thymus acceptance (6 weeks), the animals were anesthetized; the kidney containing the transplanted thymus was exposed, fixed in our organ holder, and kept under physiological conditions for in vivo imaging by TPM. We have been using this approach to study the influence of drugs in the generation of regulatory T cells.
Immunology, Issue 59, intravital, in vivo, thymus, 2-photon, regulatory T cells
Play Button
Isolation, Identification, and Purification of Murine Thymic Epithelial Cells
Authors: Yan Xing, Kristin A. Hogquist.
Institutions: University of Minnesota.
The thymus is a vital organ for T lymphocyte development. Of thymic stromal cells, thymic epithelial cells (TECs) are particularly crucial at multiple stages of T cell development: T cell commitment, positive selection and negative selection. However, the function of TECs in the thymus remains incompletely understood. In the article, we provide a method to isolate TEC subsets from fresh mouse thymus using a combination of mechanical disruption and enzymatic digestion. The method allows thymic stromal cells and thymocytes to be efficiently released from cell-cell and cell-extracellular matrix connections and to form a single-cell suspension. Using the isolated cells, multiparameter flow cytometry can be applied to identification and characterization of TECs and dendritic cells. Because TECs are a rare cell population in the thymus, we also describe an effective way to enrich and purify TECs by depleting thymocytes, the most abundant cell type in the thymus. Following the enrichment, cell sorting time can be decreased so that loss of cell viability can be minimized during purification of TECs. Purified cells are suitable for various downstream analyses like Real Time-PCR, Western blot and gene expression profiling. The protocol will promote research of TEC function and as well as the development of in vitro T cell reconstitution.
Immunology, Issue 90, Immunology, Thymus, T cell development, Thymic epithelial cell, Isolation, Positive selection
Play Button
Isolation of Myeloid Dendritic Cells and Epithelial Cells from Human Thymus
Authors: Christina Stoeckle, Ioanna A. Rota, Eva Tolosa, Christoph Haller, Arthur Melms, Eleni Adamopoulou.
Institutions: Hertie Institute for Clinical Brain Research, University of Bern, University Medical Center Hamburg-Eppendorf, University Clinic Tuebingen, University Hospital Erlangen.
In this protocol we provide a method to isolate dendritic cells (DC) and epithelial cells (TEC) from the human thymus. DC and TEC are the major antigen presenting cell (APC) types found in a normal thymus and it is well established that they play distinct roles during thymic selection. These cells are localized in distinct microenvironments in the thymus and each APC type makes up only a minor population of cells. To further understand the biology of these cell types, characterization of these cell populations is highly desirable but due to their low frequency, isolation of any of these cell types requires an efficient and reproducible procedure. This protocol details a method to obtain cells suitable for characterization of diverse cellular properties. Thymic tissue is mechanically disrupted and after different steps of enzymatic digestion, the resulting cell suspension is enriched using a Percoll density centrifugation step. For isolation of myeloid DC (CD11c+), cells from the low-density fraction (LDF) are immunoselected by magnetic cell sorting. Enrichment of TEC populations (mTEC, cTEC) is achieved by depletion of hematopoietic (CD45hi) cells from the low-density Percoll cell fraction allowing their subsequent isolation via fluorescence activated cell sorting (FACS) using specific cell markers. The isolated cells can be used for different downstream applications.
Immunology, Issue 79, Immune System Processes, Biological Processes, immunology, Immune System Diseases, Immune System Phenomena, Life Sciences (General), immunology, human thymus, isolation, dendritic cells, mTEC, cTEC
Play Button
Simultaneous Quantification of T-Cell Receptor Excision Circles (TRECs) and K-Deleting Recombination Excision Circles (KRECs) by Real-time PCR
Authors: Alessandra Sottini, Federico Serana, Diego Bertoli, Marco Chiarini, Monica Valotti, Marion Vaglio Tessitore, Luisa Imberti.
Institutions: Spedali Civili di Brescia.
T-cell receptor excision circles (TRECs) and K-deleting recombination excision circles (KRECs) are circularized DNA elements formed during recombination process that creates T- and B-cell receptors. Because TRECs and KRECs are unable to replicate, they are diluted after each cell division, and therefore persist in the cell. Their quantity in peripheral blood can be considered as an estimation of thymic and bone marrow output. By combining well established and commonly used TREC assay with a modified version of KREC assay, we have developed a duplex quantitative real-time PCR that allows quantification of both newly-produced T and B lymphocytes in a single assay. The number of TRECs and KRECs are obtained using a standard curve prepared by serially diluting TREC and KREC signal joints cloned in a bacterial plasmid, together with a fragment of T-cell receptor alpha constant gene that serves as reference gene. Results are reported as number of TRECs and KRECs/106 cells or per ml of blood. The quantification of these DNA fragments have been proven useful for monitoring immune reconstitution following bone marrow transplantation in both children and adults, for improved characterization of immune deficiencies, or for better understanding of certain immunomodulating drug activity.
Immunology, Issue 94, B lymphocytes, primary immunodeficiency, real-time PCR, immune recovery, T-cell homeostasis, T lymphocytes, thymic output, bone marrow output
Play Button
Generation of Induced Regulatory T Cells from Primary Human Naïve and Memory T Cells
Authors: Gavin I. Ellis, Mary Catherine Reneer, Alejandra Catalina Vélez-Ortega, Andrea McCool, Francesc Martí.
Institutions: University of Kentucky .
The development and maintenance of immunosuppressive CD4+ regulatory T cells (Tregs) contribute to the peripheral tolerance needed to remain in immunologic homeostasis with the vast amount of self and commensal antigens in and on the human body. Perturbations in the balance between Tregs and inflammatory conventional T cells can result in immunopathology or cancer. Although therapeutic injection of Tregs has been shown to be efficacious in murine models of colitis1 , type I diabetes2 , rheumatoid arthritis and graft versus host disease,4 several fundamental differences in human versus mouse Treg biology5 has thus far precluded clinical use. The lack of sufficient number, purity, stability and homing specificity of therapeutic Tregs necessitated a dynamic platform of human Treg development on which to optimize conditions for their ex vivo expansion6. Here we describe a method for the differentiation of induced Tregs (iTregs) from a single human peripheral blood donor which can be broken down into four stages: isolation of peripheral blood mononuclear cells, magnetic selection of CD4+ T cells, in vitro cell culture and fluorescence activated cell sorting (FACS) of T cell subsets. Since the Treg signature transcription factor forkhead box P3 (FoxP3) is an activation-induced transcription factor in humans7 and no other unique marker exists, a combinatorial panel of markers must be used to identify T cells with suppressor activity. After six days in culture, cells in our system can be demarcated into naïve T cells, memory T cells or iTregs based on their relative expression of CD25 and CD45RA. As memory and naïve T cells have different reported polarization requirements and plasticities8 , pre-sorting of the initial T cell population into CD45RA+ and CD45RO+ subsets can be used to examine these discrepancies. Consistent with others, our CD25HiCD45RA- iTregs express high levels of FoxP39 , GITR and CTLA-411 and low levels of CD12712 . Following FACS of each population, resultant cells can be used in a suppressor assay which evaluates the relative ability to retard the proliferation of carboxyfluorescein succinimidyl ester (CFSE)-labeled autologous T cells.
Immunology, Issue 62, regulatory T cell, iTreg, immunosuppression, human, suppressor activity
Play Button
Induction of Alloantigen-specific Anergy in Human Peripheral Blood Mononuclear Cells by Alloantigen Stimulation with Co-stimulatory Signal Blockade
Authors: Jeff K. Davies, Christine M. Barbon, Annie R. Voskertchian, Lee M. Nadler, Eva C. Guinan.
Institutions: Dana Farber Cancer Institute, Brigham and Womens Hospital, Dana Farber Cancer Institute, Children’s Hospital Boston.
Allogeneic hematopoietic stem cell transplantation (AHSCT) offers the best chance of cure for many patients with congenital and acquired hematologic diseases. Unfortunately, transplantation of alloreactive donor T cells which recognize and damage healthy patient tissues can result in Graft-versus-Host Disease (GvHD)1. One challenge to successful AHSCT is the prevention of GvHD without associated impairment of the beneficial effects of donor T cells, particularly immune reconstitution and prevention of relapse. GvHD can be prevented by non-specific depletion of donor T cells from stem cell grafts or by administration of pharmacological immunosuppression. Unfortunately these approaches increase infection and disease relapse2-4. An alternative strategy is to selectively deplete alloreactive donor T cells after allostimulation by recipient antigen presenting cells (APC) before transplant. Early clinical trials of these allodepletion strategies improved immune reconstitution after HLA-mismatched HSCT without excess GvHD5, 6. However, some allodepletion techniques require specialized recipient APC production6, 7and some approaches may have off-target effects including depletion of donor pathogen-specific T cells8and CD4 T regulatory cells9.One alternative approach is the inactivation of alloreactive donor T cells via induction of alloantigen-specific hyporesponsiveness. This is achieved by stimulating donor cells with recipient APC while providing blockade of CD28-mediated co-stimulation signals10.This "alloanergization" approach reduces alloreactivity by 1-2 logs while preserving pathogen- and tumor-associated antigen T cell responses in vitro11. The strategy has been successfully employed in 2 completed and 1 ongoing clinical pilot studies in which alloanergized donor T cells were infused during or after HLA-mismatched HSCT resulting in rapid immune reconstitution, few infections and less severe acute and chronic GvHD than historical control recipients of unmanipulated HLA-mismatched transplantation12. Here we describe our current protocol for the generation of peripheral blood mononuclear cells (PBMC) which have been alloanergized to HLA-mismatched unrelated stimulator PBMC. Alloanergization is achieved by allostimulation in the presence of monoclonal antibodies to the ligands B7.1 and B7.1 to block CD28-mediated costimulation. This technique does not require the production of specialized stimulator APC and is simple to perform, requiring only a single and relatively brief ex vivo incubation step. As such, the approach can be easily standardized for clinical use to generate donor T cells with reduced alloreactivity but retaining pathogen-specific immunity for adoptive transfer in the setting of AHSCT to improve immune reconstitution without excessive GvHD.
Immunology, Issue 49, Allogeneic stem cell transplantation, alloreactivity, Graft-versus-Host Disease, T cell costimulation, anergy, mixed lymphocyte reaction.
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
Play Button
Using the BLT Humanized Mouse as a Stem Cell based Gene Therapy Tumor Model
Authors: Dimitrios N. Vatakis, Gregory C. Bristol, Sohn G. Kim, Bernard Levin, Wei Liu, Caius G. Radu, Scott G. Kitchen, Jerome A. Zack.
Institutions: David Geffen School of Medicine at UCLA, UCLA AIDS Institute, Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA.
Small animal models such as mice have been extensively used to study human disease and to develop new therapeutic interventions. Despite the wealth of information gained from these studies, the unique characteristics of mouse immunity as well as the species specificity of viral diseases such as human immunodeficiency virus (HIV) infection led to the development of humanized mouse models. The earlier models involved the use of C. B 17 scid/scid mice and the transplantation of human fetal thymus and fetal liver termed thy/liv (SCID-hu) 1, 2 or the adoptive transfer of human peripheral blood leukocytes (SCID-huPBL) 3. Both models were mainly utilized for the study of HIV infection. One of the main limitations of both of these models was the lack of stable reconstitution of human immune cells in the periphery to make them a more physiologically relevant model to study HIV disease. To this end, the BLT humanized mouse model was developed. BLT stands for bone marrow/liver/thymus. In this model, 6 to 8 week old NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) immunocompromised mice receive the thy/liv implant as in the SCID-hu mouse model only to be followed by a second human hematopoietic stem cell transplant 4. The advantage of this system is the full reconstitution of the human immune system in the periphery. This model has been used to study HIV infection and latency 5-8. We have generated a modified version of this model in which we use genetically modified human hematopoietic stem cells (hHSC) to construct the thy/liv implant followed by injection of transduced autologous hHSC 7, 9. This approach results in the generation of genetically modified lineages. More importantly, we adapted this system to examine the potential of generating functional cytotoxic T cells (CTL) expressing a melanoma specific T cell receptor. Using this model we were able to assess the functionality of our transgenic CTL utilizing live positron emission tomography (PET) imaging to determine tumor regression (9). The goal of this protocol is to describe the process of generating these transgenic mice and assessing in vivo efficacy using live PET imaging. As a note, since we use human tissues and lentiviral vectors, our facilities conform to CDC NIH guidelines for Biosafety Level 2 (BSL2) with special precautions (BSL2+). In addition, the NSG mice are severely immunocompromised thus, their housing and maintenance must conform to the highest health standards (
Cancer Biology, Issue 70, Stem Cell Biology, Immunology, Biomedical Engineering, Medicine, Bioengineering, Genetics, Oncology, Humanized mice, stem cell transplantation, stem cells, in vivo animal imaging, T cells, cancer, animal model
Play Button
Adenoviral Transduction of Naive CD4 T Cells to Study Treg Differentiation
Authors: Sebastian C. Warth, Vigo Heissmeyer.
Institutions: Helmholtz Zentrum München.
Regulatory T cells (Tregs) are essential to provide immune tolerance to self as well as to certain foreign antigens. Tregs can be generated from naive CD4 T cells in vitro with TCR- and co-stimulation in the presence of TGFβ and IL-2. This bears enormous potential for future therapies, however, the molecules and signaling pathways that control differentiation are largely unknown. Primary T cells can be manipulated through ectopic gene expression, but common methods fail to target the most important naive state of the T cell prior to primary antigen recognition. Here, we provide a protocol to express ectopic genes in naive CD4 T cells in vitro before inducing Treg differentiation. It applies transduction with the replication-deficient adenovirus and explains its generation and production. The adenovirus can take up large inserts (up to 7 kb) and can be equipped with promoters to achieve high and transient overexpression in T cells. It effectively transduces naive mouse T cells if they express a transgenic Coxsackie adenovirus receptor (CAR). Importantly, after infection the T cells remain naive (CD44low, CD62Lhigh) and resting (CD25-, CD69-) and can be activated and differentiated into Tregs similar to non-infected cells. Thus, this method enables manipulation of CD4 T cell differentiation from its very beginning. It ensures that ectopic gene expression is already in place when early signaling events of the initial TCR stimulation induces cellular changes that eventually lead into Treg differentiation.
Immunology, Issue 78, Cellular Biology, Molecular Biology, Medicine, Biomedical Engineering, Bioengineering, Infection, Genetics, Microbiology, Virology, T-Lymphocytes, Regulatory, CD4-Positive T-Lymphocytes, Regulatory, Adenoviruses, Human, MicroRNAs, Antigens, Differentiation, T-Lymphocyte, Gene Transfer Techniques, Transduction, Genetic, Transfection, Adenovirus, gene transfer, microRNA, overexpression, knock down, CD4 T cells, in vitro differentiation, regulatory T cell, virus, cell, flow cytometry
Play Button
New Tools to Expand Regulatory T Cells from HIV-1-infected Individuals
Authors: Mathieu Angin, Melanie King, Marylyn Martina Addo.
Institutions: Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital.
CD4+ Regulatory T cells (Tregs) are potent immune modulators and serve an important function in human immune homeostasis. Depletion of Tregs has led to measurable increases in antigen-specific T cell responses in vaccine settings for cancer and infectious pathogens. However, their role in HIV-1 immuno-pathogenesis remains controversial, as they could either serve to suppress deleterious HIV-1-associated immune activation and thus slow HIV-1 disease progression or alternatively suppress HIV-1-specific immunity and thereby promote virus spread. Understanding and modulating Treg function in the context of HIV-1 could lead to potential new strategies for immunotherapy or HIV vaccines. However, important open questions remain on their role in the context of HIV-1 infection, which needs to be carefully studied. Representing roughly 5% of human CD4+ T cells in the peripheral blood, studying the Treg population has proven to be difficult, especially in HIV-1 infected individuals where HIV-1-associated CD4 T cell and with that Treg depletion occurs. The characterization of regulatory T cells in individuals with advanced HIV-1 disease or tissue samples, for which only very small biological samples can be obtained, is therefore extremely challenging. We propose a technical solution to overcome these limitations using isolation and expansion of Tregs from HIV-1-positive individuals. Here we describe an easy and robust method to successfully expand Tregs isolated from HIV-1-infected individuals in vitro. Flow-sorted CD3+CD4+CD25+CD127low Tregs were stimulated with anti-CD3/anti-CD28 coated beads and cultured in the presence of IL-2. The expanded Tregs expressed high levels of FOXP3, CTLA4 and HELIOS compared to conventional T cells and were shown to be highly suppressive. Easier access to large numbers of Tregs will allow researchers to address important questions concerning their role in HIV-1 immunopathogenesis. We believe answering these questions may provide useful insight for the development of an effective HIV-1 vaccine.
Infection, Issue 75, Infectious Diseases, Medicine, Immunology, Virology, Cellular Biology, Molecular Biology, Lymphocytes, T-Lymphocytes, Regulatory, HIV, Culture Techniques, flow cytometry, cell culture, Treg expansion, regulatory T cells, CD4+ T cells, Tregs, HIV-1, virus, HIV-1 infection, AIDS, clinical techniques
Play Button
Isolation of Double Negative αβ T Cells from the Kidney
Authors: Maria N. Martina, Samatha Bandapalle, Hamid Rabb, Abdel R. Hamad.
Institutions: Johns Hopkins University School of Medicine, Johns Hopkins University School of Medicine.
There is currently no standard protocol for the isolation of DN T cells from the non-lymphoid tissues despite their increasingly reported involvement in various immune responses. DN T cells are a unique immune cell type that has been implicated in regulating immune and autoimmune responses and tolerance to allotransplants1-6. DN T cells are, however, rare in peripheral blood and secondary lymphoid organs (spleen and lymph nodes), but are major residents of the normal kidney. Very little is known about their pathophysiologic function7 due to their paucity in the periphery. We recently described a comprehensive phenotypic and functional analysis of this population in the kidney8 in steady state and during ischemia reperfusion injury. Analysis of DN T cell function will be greatly enhanced by developing a protocol for their isolation from the kidney. Here, we describe a novel protocol that allows isolation of highly pure ab CD4+ CD8+ T cells and DN T cells from the murine kidney. Briefly, we digest kidney tissue using collagenase and isolate kidney mononuclear cells (KMNC) by density gradient. This is followed by two steps to enrich hematopoietic T cells from 3% to 70% from KMNC. The first step consists of a positive selection of hematopoietic cells using a CD45+ isolation kit. In the second step, DN T cells are negatively isolated by removal of non-desired cells using CD4, CD8, and MHC class II monoclonal antibodies and CD1d α-galcer tetramer. This strategy leads to a population of more than 90% pure DN T cells. Surface staining with the above mentioned antibodies followed by FACs analysis is used to confirm purity.
Immunology, Issue 87, Double Negative (DN) αβ, T cells, CD45+ T cell isolation, renal lymphocytes, non-lymphoid-tissues, T cells purification, Ischemia Reperfusion Injury, Acute Kidney Injury, Tissue Resident Lymphocytes, Lymphoproliferative Disorders, Erythematosus Lupus
Play Button
A Method for Murine Islet Isolation and Subcapsular Kidney Transplantation
Authors: Erik J. Zmuda, Catherine A. Powell, Tsonwin Hai.
Institutions: The Ohio State University, The Ohio State University, The Ohio State University.
Since the early pioneering work of Ballinger and Reckard demonstrating that transplantation of islets of Langerhans into diabetic rodents could normalize their blood glucose levels, islet transplantation has been proposed to be a potential treatment for type 1 diabetes 1,2. More recently, advances in human islet transplantation have further strengthened this view 1,3. However, two major limitations prevent islet transplantation from being a widespread clinical reality: (a) the requirement for large numbers of islets per patient, which severely reduces the number of potential recipients, and (b) the need for heavy immunosuppression, which significantly affects the pediatric population of patients due to their vulnerability to long-term immunosuppression. Strategies that can overcome these limitations have the potential to enhance the therapeutic utility of islet transplantation. Islet transplantation under the mouse kidney capsule is a widely accepted model to investigate various strategies to improve islet transplantation. This experiment requires the isolation of high quality islets and implantation of islets to the diabetic recipients. Both procedures require surgical steps that can be better demonstrated by video than by text. Here, we document the detailed steps for these procedures by both video and written protocol. We also briefly discuss different transplantation models: syngeneic, allogeneic, syngeneic autoimmune, and allogeneic autoimmune.
Medicine, Issue 50, islet isolation, islet transplantation, diabetes, murine, pancreas
Play Button
Preparation of 2-dGuo-Treated Thymus Organ Cultures
Authors: William Jenkinson, Eric Jenkinson, Graham Anderson.
Institutions: University of Birmingham .
In the thymus, interactions between developing T-cell precursors and stromal cells that include cortical and medullary epithelial cells are known to play a key role in the development of a functionally competent T-cell pool. However, the complexity of T-cell development in the thymus in vivo can limit analysis of individual cellular components and particular stages of development. In vitro culture systems provide a readily accessible means to study multiple complex cellular processes. Thymus organ culture systems represent a widely used approach to study intrathymic development of T-cells under defined conditions in vitro. Here we describe a system in which mouse embryonic thymus lobes can be depleted of endogenous haemopoeitic elements by prior organ culture in 2-deoxyguanosine, a compound that is selectively toxic to haemopoeitic cells. As well as providing a readily accessible source of thymic stromal cells to investigate the role of thymic microenvironments in the development and selection of T-cells, this technique also underpins further experimental approaches that include the reconstitution of alymphoid thymus lobes in vitro with defined haemopoietic elements, the transplantation of alymphoid thymuses into recipient mice, and the formation of reaggregate thymus organ cultures. (This article is based on work first reported Methods in Molecular Biology 2007, Vol. 380 pages 185-196).
Immunology, Issue 18, Springer Protocols, Thymus, 2-dGuo, Thymus Organ Cultures, Immune Tolerance, Positive and Negative Selection, Lymphoid Development
Play Button
In situ Imaging of the Mouse Thymus Using 2-Photon Microscopy
Authors: Ena Ladi, Paul Herzmark, Ellen Robey.
Institutions: University of California, Berkeley.
Two-photon Microscopy (TPM) enables us to image deep into the thymus and document the events that are important for thymocyte development. To follow the migration of individuals in a crowd of thymocytes , we generate neonatal chimeras where less than one percent of the thymocytes are derived from a donor that is transgenic for a ubiquitously express fluorescent protein. To generate these partial hematopoetic chimeras, neonatal recipients are injected with bone marrow between 3-7 days of age. After 4-6 weeks, the mouse is sacrificed and the thymus is carefully dissected and bissected preserving the architecture of the tissue that will be imaged. The thymus is glued onto a coverslip in preparation for ex vivo imaging by TPM. During imaging the thymus is kept in DMEM without phenol red that is perfused with 95% oxygen and 5% carbon dioxide and warmed to 37°C. Using this approach, we can study the events required for the generation of a diverse T cell repertoire.
Immunology, Issue 11, 2-photon microscopy, neonatal chimera, adoptive transfer, thymus
Play Button
Reaggregate Thymus Cultures
Authors: Andrea White, Eric Jenkinson, Graham Anderson.
Institutions: University of Birmingham .
Stromal cells within lymphoid tissues are organized into three-dimensional structures that provide a scaffold that is thought to control the migration and development of haemopoeitic cells. Importantly, the maintenance of this three-dimensional organization appears to be critical for normal stromal cell function, with two-dimensional monolayer cultures often being shown to be capable of supporting only individual fragments of lymphoid tissue function. In the thymus, complex networks of cortical and medullary epithelial cells act as a framework that controls the recruitment, proliferation, differentiation and survival of lymphoid progenitors as they undergo the multi-stage process of intrathymic T-cell development. Understanding the functional role of individual stromal compartments in the thymus is essential in determining how the thymus imposes self/non-self discrimination. Here we describe a technique in which we exploit the plasticity of fetal tissues to re-associate into intact three-dimensional structures in vitro, following their enzymatic disaggregation. The dissociation of fetal thymus lobes into heterogeneous cellular mixtures, followed by their separation into individual cellular components, is then combined with the in vitro re-association of these desired cell types into three-dimensional reaggregate structures at defined ratios, thereby providing an opportunity to investigate particular aspects of T-cell development under defined cellular conditions. (This article is based on work first reported Methods in Molecular Biology 2007, Vol. 380 pages 185-196).
Immunology, Issue 18, Springer Protocols, Thymus, 2-dGuo, Thymus Organ Cultures, Immune Tolerance, Positive and Negative Selection, Lymphoid Development
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.