JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Differentiated human midbrain-derived neural progenitor cells express excitatory strychnine-sensitive glycine receptors containing ?2? subunits.
PLoS ONE
Human fetal midbrain-derived neural progenitor cells (NPCs) may deliver a tissue source for drug screening and regenerative cell therapy to treat Parkinsons disease. While glutamate and GABA(A) receptors play an important role in neurogenesis, the involvement of glycine receptors during human neurogenesis and dopaminergic differentiation as well as their molecular and functional characteristics in NPCs are largely unknown.
Authors: Pengbo Zhang, Ninuo Xia, Renee A. Reijo Pera.
Published: 09-15-2014
ABSTRACT
Dopaminergic (DA) neurons in the substantia nigra pars compacta (also known as A9 DA neurons) are the specific cell type that is lost in Parkinson’s disease (PD). There is great interest in deriving A9 DA neurons from human pluripotent stem cells (hPSCs) for regenerative cell replacement therapy for PD. During neural development, A9 DA neurons originate from the floor plate (FP) precursors located at the ventral midline of the central nervous system. Here, we optimized the culture conditions for the stepwise differentiation of hPSCs to A9 DA neurons, which mimics embryonic DA neuron development. In our protocol, we first describe the efficient generation of FP precursor cells from hPSCs using a small molecule method, and then convert the FP cells to A9 DA neurons, which could be maintained in vitro for several months. This efficient, repeatable and controllable protocol works well in human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) from normal persons and PD patients, in which one could derive A9 DA neurons to perform in vitro disease modeling and drug screening and in vivo cell transplantation therapy for PD.
23 Related JoVE Articles!
Play Button
Electric Field-controlled Directed Migration of Neural Progenitor Cells in 2D and 3D Environments
Authors: Xiaoting Meng, Wenfei Li, Fraser Young, Runchi Gao, Laura Chalmers, Min Zhao, Bing Song.
Institutions: Cardiff University , Shandong University School of Medicine, University of California at Davis.
Endogenous electric fields (EFs) occur naturally in vivo and play a critical role during tissue/organ development and regeneration, including that of the central nervous system1,2. These endogenous EFs are generated by cellular regulation of ionic transport combined with the electrical resistance of cells and tissues. It has been reported that applied EF treatment can promote functional repair of spinal cord injuries in animals and humans3,4. In particular, EF-directed cell migration has been demonstrated in a wide variety of cell types5,6, including neural progenitor cells (NPCs)7,8. Application of direct current (DC) EFs is not a commonly available technique in most laboratories. We have described detailed protocols for the application of DC EFs to cell and tissue cultures previously5,11. Here we present a video demonstration of standard methods based on a calculated field strength to set up 2D and 3D environments for NPCs, and to investigate cellular responses to EF stimulation in both single cell growth conditions in 2D, and the organotypic spinal cord slice in 3D. The spinal cordslice is an ideal recipient tissue for studying NPC ex vivo behaviours, post-transplantation, because the cytoarchitectonic tissue organization is well preserved within these cultures9,10. Additionally, this ex vivo model also allows procedures that are not technically feasible to track cells in vivo using time-lapse recording at the single cell level. It is critically essential to evaluate cell behaviours in not only a 2D environment, but also in a 3D organotypic condition which mimicks the in vivo environment. This system will allow high-resolution imaging using cover glass-based dishes in tissue or organ culture with 3D tracking of single cell migration in vitro and ex vivo and can be an intermediate step before moving onto in vivo paradigms.
Bioengineering, Issue 60, Electric field, neural progenitor cells, cell migration, spinal cord slice, ex vivo tracking, galvanotaxis, electrotaxis
3453
Play Button
Micromanipulation of Gene Expression in the Adult Zebrafish Brain Using Cerebroventricular Microinjection of Morpholino Oligonucleotides
Authors: Caghan Kizil, Anne Iltzsche, Jan Kaslin, Michael Brand.
Institutions: Cluster of Excellence (CRTD) and Biotechnology Center (BIOTEC) of the Technische Universität Dresden.
Manipulation of gene expression in tissues is required to perform functional studies. In this paper, we demonstrate the cerebroventricular microinjection (CVMI) technique as a means to modulate gene expression in the adult zebrafish brain. By using CVMI, substances can be administered into the cerebroventricular fluid and be thoroughly distributed along the rostrocaudal axis of the brain. We particularly focus on the use of antisense morpholino oligonucleotides, which are potent tools for knocking down gene expression in vivo. In our method, when applied, morpholino molecules are taken up by the cells lining the ventricular surface. These cells include the radial glial cells, which act as neurogenic progenitors. Therefore, knocking down gene expression in the radial glial cells is of utmost importance to analyze the widespread neurogenesis response in zebrafish, and also would provide insight into how vertebrates could sustain adult neurogenesis response. Such an understanding would also help the efforts for clinical applications in human neurodegenerative disorders and central nervous system regeneration. Thus, we present the cerebroventricular microinjection method as a quick and efficient way to alter gene expression and neurogenesis response in the adult zebrafish forebrain. We also provide troubleshooting tips and other useful information on how to carry out the CVMI procedure.
Neurobiology, Issue 75, Neuroscience, Genetics, Molecular Biology, Cellular Biology, Developmental Biology, Biochemistry, Brain, Zebrafish, Morpholinos, Gene Knockdown Techniques, morpholino oligonucleotides, cerebroventricular microinjection, neurosciences, radial glial cells, microinjection, gene expression, Danio rerio, animal model
50415
Play Button
Neonatal Subventricular Zone Electroporation
Authors: David M. Feliciano, Carlos A. Lafourcade, Angélique Bordey.
Institutions: Yale University School of Medicine .
Neural stem cells (NSCs) line the postnatal lateral ventricles and give rise to multiple cell types which include neurons, astrocytes, and ependymal cells1. Understanding the molecular pathways responsible for NSC self-renewal, commitment, and differentiation is critical for harnessing their unique potential to repair the brain and better understand central nervous system disorders. Previous methods for the manipulation of mammalian systems required the time consuming and expensive endeavor of genetic engineering at the whole animal level2. Thus, the vast majority of studies have explored the functions of NSC molecules in vitro or in invertebrates. Here, we demonstrate the simple and rapid technique to manipulate neonatal NPCs that is referred to as neonatal subventricular zone (SVZ) electroporation. Similar techniques were developed a decade ago to study embryonic NSCs and have aided studies on cortical development3,4 . More recently this was applied to study the postnatal rodent forebrain5-7. This technique results in robust labeling of SVZ NSCs and their progeny. Thus, postnatal SVZ electroporation provides a cost and time effective alternative for mammalian NSC genetic engineering.
Neuroscience, Issue 72, Developmental Biology, Neurobiology, Molecular Biology, Cellular Biology, Physiology, Anatomy, Biomedical Engineering, Stem Cell Biology, Genetics, Neurogenesis, Growth and Development, Surgery, Subventricular Zone, Electroporation, Neural Stem Cells, NSC, subventricular zone, brain, DNA, injection, genetic engineering, neonatal pups, animal model
50197
Play Button
Patch Clamp Recordings from Embryonic Zebrafish Mauthner Cells
Authors: Birbickram Roy, Declan William Ali.
Institutions: University of Alberta.
Mauthner cells (M-cells) are large reticulospinal neurons located in the hindbrain of teleost fish. They are key neurons involved in a characteristic behavior known as the C-start or escape response that occurs when the organism perceives a threat. The M-cell has been extensively studied in adult goldfish where it has been shown to receive a wide range of excitatory, inhibitory and neuromodulatory signals1. We have been examining M-cell activity in embryonic zebrafish in order to study aspects of synaptic development in a vertebrate preparation. In the late 1990s Ali and colleagues developed a preparation for patch clamp recording from M-cells in zebrafish embryos, in which the CNS was largely intact2,3,4. The objective at that time was to record synaptic activity from hindbrain neurons, spinal cord neurons and trunk skeletal muscle while maintaining functional synaptic connections within an intact brain-spinal cord preparation. This preparation is still used in our laboratory today. To examine the mechanisms underlying developmental synaptic plasticity, we record excitatory (AMPA and NMDA-mediated)5,6 and inhibitory (GABA and glycine) synaptic currents from developing M-cells. Importantly, this unique preparation allows us to return to the same cell (M-cell) from preparation to preparation to carefully examine synaptic plasticity and neuro-development in an embryonic organism. The benefits provided by this preparation include 1) intact, functional synaptic connections onto the M-cell, 2) relatively inexpensive preparations, 3) a large supply of readily available embryos 4) the ability to return to the same cell type (i.e. M-cell) in every preparation, so that synaptic development at the level of an individual cell can be examined from fish to fish, and 5) imaging of whole preparations due to the transparent nature of the embryos.
Neuroscience, Issue 79, Synapses, Zebrafish, Ligand-Gated Ion Channels, Neurosciences, Mauthner cells, reticulospinal neurons, Zebrafish, synapse, ion channels, AMPA receptors, NMDA receptors, action potentials, glycine receptors
50551
Play Button
Manufacturing and Using Piggy-back Multibarrel Electrodes for In vivo Pharmacological Manipulations of Neural Responses
Authors: Anna Dondzillo, Jennifer L. Thornton, Daniel J. Tollin, Achim Klug.
Institutions: University of Colorado Medical Campus.
In vivo recordings from single neurons allow an investigator to examine the firing properties of neurons, for example in response to sensory stimuli. Neurons typically receive multiple excitatory and inhibitory afferent and/or efferent inputs that integrate with each other, and the ultimate measured response properties of the neuron are driven by the neural integrations of these inputs. To study information processing in neural systems, it is necessary to understand the various inputs to a neuron or neural system, and the specific properties of these inputs. A powerful and technically relatively simple method to assess the functional role of certain inputs that a given neuron is receiving is to dynamically and reversibly suppress or eliminate these inputs, and measure the changes in the neuron's output caused by this manipulation. This can be accomplished by pharmacologically altering the neuron's immediate environment with piggy-back multibarrel electrodes. These electrodes consist of a single barrel recording electrode and a multibarrel drug electrode that can carry up to 4 different synaptic agonists or antagonists. The pharmacological agents can be applied iontophoretically at desired times during the experiment, allowing for time-controlled delivery and reversible reconfiguration of synaptic inputs. As such, pharmacological manipulation of the microenvironment represents a powerful and unparalleled method to test specific hypotheses about neural circuit function. Here we describe how piggy-back electrodes are manufactured, and how they are used during in vivo experiments. The piggy-back system allows an investigator to combine a single barrel recording electrode of any arbitrary property (resistance, tip size, shape etc) with a multibarrel drug electrode. This is a major advantage over standard multi-electrodes, where all barrels have more or less similar shapes and properties. Multibarrel electrodes were first introduced over 40 years ago 1-3, and have undergone a number of design improvements 2,3 until the piggy-back type was introduced in the 1980s 4,5. Here we present a set of important improvements in the laboratory production of piggy-back electrodes that allow for deep brain penetration in intact in vivo animal preparations due to a relatively thin electrode shaft that causes minimal damage. Furthermore these electrodes are characterized by low noise recordings, and have low resistance drug barrels for very effective iontophoresis of the desired pharmacological agents.
Neuroscience, Issue 71, Biophysics, Physiology, Neurobiology, Medicine, Pharmacology, Mechanical Engineering, Electrical Engineering, Piggyback electrode, iontophoresis, iontophoresis pump, single cell recording, neural excitation, neural inhibition, in vivo electrophysiology
4358
Play Button
Progenitor-derived Oligodendrocyte Culture System from Human Fetal Brain
Authors: Maria Chiara G. Monaco, Dragan Maric, Alexandra Bandeian, Emily Leibovitch, Wan Yang, Eugene O. Major.
Institutions: National Institute of Neurological Disorders and Stroke, National Institutes of Health, National Institute of Neurological Disorders and Stroke, National Institutes of Health.
Differentiation of human neural progenitors into neuronal and glial cell types offers a model to study and compare molecular regulation of neural cell lineage development. In vitro expansion of neural progenitors from fetal CNS tissue has been well characterized. Despite the identification and isolation of glial progenitors from adult human sub-cortical white matter and development of various culture conditions to direct differentiation of fetal neural progenitors into myelin producing oligodendrocytes, acquiring sufficient human oligodendrocytes for in vitro experimentation remains difficult. Differentiation of galactocerebroside+ (GalC) and O4+ oligodendrocyte precursor or progenitor cells (OPC) from neural precursor cells has been reported using second trimester fetal brain. However, these cells do not proliferate in the absence of support cells including astrocytes and neurons, and are lost quickly over time in culture. The need remains for a culture system to produce cells of the oligodendrocyte lineage suitable for in vitro experimentation. Culture of primary human oligodendrocytes could, for example, be a useful model to study the pathogenesis of neurotropic infectious agents like the human polyomavirus, JCV, that in vivo infects those cells. These cultured cells could also provide models of other demyelinating diseases of the central nervous system (CNS). Primary, human fetal brain-derived, multipotential neural progenitor cells proliferate in vitro while maintaining the capacity to differentiate into neurons (progenitor-derived neurons, PDN) and astrocytes (progenitor-derived astrocytes, PDA) This study shows that neural progenitors can be induced to differentiate through many of the stages of oligodendrocytic lineage development (progenitor-derived oligodendrocytes, PDO). We culture neural progenitor cells in DMEM-F12 serum-free media supplemented with basic fibroblast growth factor (bFGF), platelet derived growth factor (PDGF-AA), Sonic hedgehog (Shh), neurotrophic factor 3 (NT-3), N-2 and triiodothyronine (T3). The cultured cells are passaged at 2.5e6 cells per 75cm flasks approximately every seven days. Using these conditions, the majority of the cells in culture maintain a morphology characterized by few processes and express markers of pre-oligodendrocyte cells, such as A2B5 and O-4. When we remove the four growth factors (GF) (bFGF, PDGF-AA, Shh, NT-3) and add conditioned media from PDN, the cells start to acquire more processes and express markers specific of oligodendrocyte differentiation, such as GalC and myelin basic protein (MBP). We performed phenotypic characterization using multicolor flow cytometry to identify unique markers of oligodendrocyte.
Neuroscience, Issue 70, Developmental Biology, Medicine, Stem Cell Biology, Molecular Biology, Cellular Biology, Physiology, lineage characterization, neural progenitors, differentiation, cell culture model
4274
Play Button
Bladder Smooth Muscle Strip Contractility as a Method to Evaluate Lower Urinary Tract Pharmacology
Authors: F. Aura Kullmann, Stephanie L. Daugherty, William C. de Groat, Lori A. Birder.
Institutions: University of Pittsburgh School of Medicine, University of Pittsburgh School of Medicine.
We describe an in vitro method to measure bladder smooth muscle contractility, and its use for investigating physiological and pharmacological properties of the smooth muscle as well as changes induced by pathology. This method provides critical information for understanding bladder function while overcoming major methodological difficulties encountered in in vivo experiments, such as surgical and pharmacological manipulations that affect stability and survival of the preparations, the use of human tissue, and/or the use of expensive chemicals. It also provides a way to investigate the properties of each bladder component (i.e. smooth muscle, mucosa, nerves) in healthy and pathological conditions. The urinary bladder is removed from an anesthetized animal, placed in Krebs solution and cut into strips. Strips are placed into a chamber filled with warm Krebs solution. One end is attached to an isometric tension transducer to measure contraction force, the other end is attached to a fixed rod. Tissue is stimulated by directly adding compounds to the bath or by electric field stimulation electrodes that activate nerves, similar to triggering bladder contractions in vivo. We demonstrate the use of this method to evaluate spontaneous smooth muscle contractility during development and after an experimental spinal cord injury, the nature of neurotransmission (transmitters and receptors involved), factors involved in modulation of smooth muscle activity, the role of individual bladder components, and species and organ differences in response to pharmacological agents. Additionally, it could be used for investigating intracellular pathways involved in contraction and/or relaxation of the smooth muscle, drug structure-activity relationships and evaluation of transmitter release. The in vitro smooth muscle contractility method has been used extensively for over 50 years, and has provided data that significantly contributed to our understanding of bladder function as well as to pharmaceutical development of compounds currently used clinically for bladder management.
Medicine, Issue 90, Krebs, species differences, in vitro, smooth muscle contractility, neural stimulation
51807
Play Button
Local Application of Drugs to Study Nicotinic Acetylcholine Receptor Function in Mouse Brain Slices
Authors: Staci E. Engle, Hilary J. Broderick, Ryan M. Drenan.
Institutions: Purdue University.
Tobacco use leads to numerous health problems, including cancer, heart disease, emphysema, and stroke. Addiction to cigarette smoking is a prevalent neuropsychiatric disorder that stems from the biophysical and cellular actions of nicotine on nicotinic acetylcholine receptors (nAChRs) throughout the central nervous system. Understanding the various nAChR subtypes that exist in brain areas relevant to nicotine addiction is a major priority. Experiments that employ electrophysiology techniques such as whole-cell patch clamp or two-electrode voltage clamp recordings are useful for pharmacological characterization of nAChRs of interest. Cells expressing nAChRs, such as mammalian tissue culture cells or Xenopus laevis oocytes, are physically isolated and are therefore easily studied using the tools of modern pharmacology. Much progress has been made using these techniques, particularly when the target receptor was already known and ectopic expression was easily achieved. Often, however, it is necessary to study nAChRs in their native environment: in neurons within brain slices acutely harvested from laboratory mice or rats. For example, mice expressing "hypersensitive" nAChR subunits such as α4 L9′A mice 1 and α6 L9′S mice 2, allow for unambiguous identification of neurons based on their functional expression of a specific nAChR subunit. Although whole-cell patch clamp recordings from neurons in brain slices is routinely done by the skilled electrophysiologist, it is challenging to locally apply drugs such as acetylcholine or nicotine to the recorded cell within a brain slice. Dilution of drugs into the superfusate (bath application) is not rapidly reversible, and U-tube systems are not easily adapted to work with brain slices. In this paper, we describe a method for rapidly applying nAChR-activating drugs to neurons recorded in adult mouse brain slices. Standard whole-cell recordings are made from neurons in slices, and a second micropipette filled with a drug of interest is maneuvered into position near the recorded cell. An injection of pressurized air or inert nitrogen into the drug-filled pipette causes a small amount of drug solution to be ejected from the pipette onto the recorded cell. Using this method, nAChR-mediated currents are able to be resolved with millisecond accuracy. Drug application times can easily be varied, and the drug-filled pipette can be retracted and replaced with a new pipette, allowing for concentration-response curves to be created for a single neuron. Although described in the context of nAChR neurobiology, this technique should be useful for studying many types of ligand-gated ion channels or receptors in neurons from brain slices.
Neuroscience, Issue 68, Nicotinic, acetylcholine, neurotransmitter, neuron, patch clamp, brain slice, picospritzer
50034
Play Button
Feeder-free Derivation of Neural Crest Progenitor Cells from Human Pluripotent Stem Cells
Authors: Nadja Zeltner, Fabien G. Lafaille, Faranak Fattahi, Lorenz Studer.
Institutions: Sloan-Kettering Institute for Cancer Research, The Rockefeller University.
Human pluripotent stem cells (hPSCs) have great potential for studying human embryonic development, for modeling human diseases in the dish and as a source of transplantable cells for regenerative applications after disease or accidents. Neural crest (NC) cells are the precursors for a large variety of adult somatic cells, such as cells from the peripheral nervous system and glia, melanocytes and mesenchymal cells. They are a valuable source of cells to study aspects of human embryonic development, including cell fate specification and migration. Further differentiation of NC progenitor cells into terminally differentiated cell types offers the possibility to model human diseases in vitro, investigate disease mechanisms and generate cells for regenerative medicine. This article presents the adaptation of a currently available in vitro differentiation protocol for the derivation of NC cells from hPSCs. This new protocol requires 18 days of differentiation, is feeder-free, easily scalable and highly reproducible among human embryonic stem cell (hESC) lines as well as human induced pluripotent stem cell (hiPSC) lines. Both old and new protocols yield NC cells of equal identity.
Neuroscience, Issue 87, Embryonic Stem Cells (ESCs), Pluripotent Stem Cells, Induced Pluripotent Stem Cells (iPSCs), Neural Crest, Peripheral Nervous System (PNS), pluripotent stem cells, neural crest cells, in vitro differentiation, disease modeling, differentiation protocol, human embryonic stem cells, human pluripotent stem cells
51609
Play Button
A Galvanotaxis Assay for Analysis of Neural Precursor Cell Migration Kinetics in an Externally Applied Direct Current Electric Field
Authors: Robart Babona-Pilipos, Milos R. Popovic, Cindi M. Morshead.
Institutions: University of Toronto, Toronto Rehabilitation Institute, University of Toronto.
The discovery of neural stem and progenitor cells (collectively termed neural precursor cells) (NPCs) in the adult mammalian brain has led to a body of research aimed at utilizing the multipotent and proliferative properties of these cells for the development of neuroregenerative strategies. A critical step for the success of such strategies is the mobilization of NPCs toward a lesion site following exogenous transplantation or to enhance the response of the endogenous precursors that are found in the periventricular region of the CNS. Accordingly, it is essential to understand the mechanisms that promote, guide, and enhance NPC migration. Our work focuses on the utilization of direct current electric fields (dcEFs) to promote and direct NPC migration - a phenomenon known as galvanotaxis. Endogenous physiological electric fields function as critical cues for cell migration during normal development and wound repair. Pharmacological disruption of the trans-neural tube potential in axolotl embryos causes severe developmental malformations1. In the context of wound healing, the rate of repair of wounded cornea is directly correlated with the magnitude of the epithelial wound potential that arises after injury, as shown by pharmacological enhancement or disruption of this dcEF2-3. We have demonstrated that adult subependymal NPCs undergo rapid and directed cathodal migration in vitro when exposed to an externally applied dcEF. In this protocol we describe our lab's techniques for creating a simple and effective galvanotaxis assay for high-resolution, long-term observation of directed cell body translocation (migration) on a single-cell level. This assay would be suitable for investigating the mechanisms that regulate dcEF transduction into cellular motility through the use of transgenic or knockout mice, short interfering RNA, or specific receptor agonists/antagonists.
Neuroscience, Issue 68, Biomedical Engineering, Cellular Biology, Physiology, Molecular Biology, neural precursor cells, galvanotaxis, cell migration, time-lapse imaging, electric fields
4193
Play Button
Laser Capture Microdissection of Neurons from Differentiated Human Neuroprogenitor Cells in Culture
Authors: Ron Bouchard, Thomas Chong, Subbiah Pugazhenthi.
Institutions: Denver VA Medical Center, University of Colorado Denver School of Medicine.
Neuroprogenitor cells (NPCs) isolated from the human fetal brain were expanded under proliferative conditions in the presence of epidermal growth factor (EGF) and fibroblast growth factor (FGF) to provide an abundant supply of cells. NPCs were differentiated in the presence of a new combination of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), dibutyryl cAMP (DBC) and retinoic acid on dishes coated with poly-L-lysine and mouse laminin to obtain neuron-rich cultures. NPCs were also differentiated in the absence of neurotrophins, DBC and retinoic acid and in the presence of ciliary neurotrophic factor (CNTF) to yield astrocyte-rich cultures. Differentiated NPCs were characterized by immunofluorescence staining for a panel of neuronal markers including NeuN, synapsin, acetylcholinesterase, synaptophysin and GAP43. Glial fibrillary acidic protein (GFAP) and STAT3, astrocyte markers, were detected in 10-15% of differentiated NPCs. To facilitate cell-type specific molecular characterization, laser capture microdissection was performed to isolate neurons cultured on polyethylene naphthalate (PEN) membrane slides. The methods described in this study provide valuable tools to advance our understanding of the molecular mechanism of neurodegeneration.
Neuroscience, Issue 79, Neurobiology, Cellular Biology, Cells, Cultured, Neurons, Central Nervous System, Neurodegenerative Diseases, Human neuroprogenitor cells, neuronal differentiation, neuronal markers, astrocytes, laser capture microdissection, PEN membrane slides, cell culture
50487
Play Button
Growing Neural Stem Cells from Conventional and Nonconventional Regions of the Adult Rodent Brain
Authors: Steven W. Poser, Andreas Androutsellis-Theotokis.
Institutions: University of Dresden, Center for Regerative Therapies Dresden.
Recent work demonstrates that central nervous system (CNS) regeneration and tumorigenesis involves populations of stem cells (SCs) resident within the adult brain. However, the mechanisms these normally quiescent cells employ to ensure proper functioning of neural networks, as well as their role in recovery from injury and mitigation of neurodegenerative processes are little understood. These cells reside in regions referred to as "niches" that provide a sustaining environment involving modulatory signals from both the vascular and immune systems. The isolation, maintenance, and differentiation of CNS SCs under defined culture conditions which exclude unknown factors, makes them accessible to treatment by pharmacological or genetic means, thus providing insight into their in vivo behavior. Here we offer detailed information on the methods for generating cultures of CNS SCs from distinct regions of the adult brain and approaches to assess their differentiation potential into neurons, astrocytes, and oligodendrocytes in vitro. This technique yields a homogeneous cell population as a monolayer culture that can be visualized to study individual SCs and their progeny. Furthermore, it can be applied across different animal model systems and clinical samples, being used previously to predict regenerative responses in the damaged adult nervous system.
Neuroscience, Issue 81, adult neural stem cells, proliferation, differentiation, cell culture, growth factors
50880
Play Button
Inhibitory Synapse Formation in a Co-culture Model Incorporating GABAergic Medium Spiny Neurons and HEK293 Cells Stably Expressing GABAA Receptors
Authors: Laura E. Brown, Celine Fuchs, Martin W. Nicholson, F. Anne Stephenson, Alex M. Thomson, Jasmina N. Jovanovic.
Institutions: University College London.
Inhibitory neurons act in the central nervous system to regulate the dynamics and spatio-temporal co-ordination of neuronal networks. GABA (γ-aminobutyric acid) is the predominant inhibitory neurotransmitter in the brain. It is released from the presynaptic terminals of inhibitory neurons within highly specialized intercellular junctions known as synapses, where it binds to GABAA receptors (GABAARs) present at the plasma membrane of the synapse-receiving, postsynaptic neurons. Activation of these GABA-gated ion channels leads to influx of chloride resulting in postsynaptic potential changes that decrease the probability that these neurons will generate action potentials. During development, diverse types of inhibitory neurons with distinct morphological, electrophysiological and neurochemical characteristics have the ability to recognize their target neurons and form synapses which incorporate specific GABAARs subtypes. This principle of selective innervation of neuronal targets raises the question as to how the appropriate synaptic partners identify each other. To elucidate the underlying molecular mechanisms, a novel in vitro co-culture model system was established, in which medium spiny GABAergic neurons, a highly homogenous population of neurons isolated from the embryonic striatum, were cultured with stably transfected HEK293 cell lines that express different GABAAR subtypes. Synapses form rapidly, efficiently and selectively in this system, and are easily accessible for quantification. Our results indicate that various GABAAR subtypes differ in their ability to promote synapse formation, suggesting that this reduced in vitro model system can be used to reproduce, at least in part, the in vivo conditions required for the recognition of the appropriate synaptic partners and formation of specific synapses. Here the protocols for culturing the medium spiny neurons and generating HEK293 cells lines expressing GABAARs are first described, followed by detailed instructions on how to combine these two cell types in co-culture and analyze the formation of synaptic contacts.
Neuroscience, Issue 93, Developmental neuroscience, synaptogenesis, synaptic inhibition, co-culture, stable cell lines, GABAergic, medium spiny neurons, HEK 293 cell line
52115
Play Button
Zinc-finger Nuclease Enhanced Gene Targeting in Human Embryonic Stem Cells
Authors: Brigham J. Hartley, Stewart A. Fabb, Ben A.L. Finnin, John M. Haynes, Colin W. Pouton.
Institutions: Monash University.
One major limitation with current human embryonic stem cell (ESC) differentiation protocols is the generation of heterogeneous cell populations. These cultures contain the cells of interest, but are also contaminated with undifferentiated ESCs, non-neural derivatives and other neuronal subtypes.  This limits their use in in vitro and in vivo applications, such as in vitro modeling for drug discovery or cell replacement therapy. To help overcome this, reporter cell lines, which offer a means to visualize, track and isolate cells of interest, can be engineered. However, to achieve this in human embryonic stem cells via conventional homologous recombination is extremely inefficient. This protocol describes targeting of the Pituitary homeobox 3 (PITX3) locus in human embryonic stem cells using custom designed zinc-finger nucleases, which introduce site-specific double-strand DNA breaks, together with a PITX3-EGFP-specific DNA donor vector. Following the generation of the PITX3 reporter cell line, it can then be differentiated using published protocols for use in studies such as in vitro Parkinson’s disease modeling or cell replacement therapy.
Molecular Biology, Issue 90, Electroporation, human embryonic stem cell, genome editing, reporter cell line, midbrain dopaminergic neurons
51764
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
51278
Play Button
Functional Interrogation of Adult Hypothalamic Neurogenesis with Focal Radiological Inhibition
Authors: Daniel A. Lee, Juan Salvatierra, Esteban Velarde, John Wong, Eric C. Ford, Seth Blackshaw.
Institutions: California Institute of Technology, Johns Hopkins University School of Medicine, Johns Hopkins University School of Medicine, University Of Washington Medical Center, Johns Hopkins University School of Medicine.
The functional characterization of adult-born neurons remains a significant challenge. Approaches to inhibit adult neurogenesis via invasive viral delivery or transgenic animals have potential confounds that make interpretation of results from these studies difficult. New radiological tools are emerging, however, that allow one to noninvasively investigate the function of select groups of adult-born neurons through accurate and precise anatomical targeting in small animals. Focal ionizing radiation inhibits the birth and differentiation of new neurons, and allows targeting of specific neural progenitor regions. In order to illuminate the potential functional role that adult hypothalamic neurogenesis plays in the regulation of physiological processes, we developed a noninvasive focal irradiation technique to selectively inhibit the birth of adult-born neurons in the hypothalamic median eminence. We describe a method for Computer tomography-guided focal irradiation (CFIR) delivery to enable precise and accurate anatomical targeting in small animals. CFIR uses three-dimensional volumetric image guidance for localization and targeting of the radiation dose, minimizes radiation exposure to nontargeted brain regions, and allows for conformal dose distribution with sharp beam boundaries. This protocol allows one to ask questions regarding the function of adult-born neurons, but also opens areas to questions in areas of radiobiology, tumor biology, and immunology. These radiological tools will facilitate the translation of discoveries at the bench to the bedside.
Neuroscience, Issue 81, Neural Stem Cells (NSCs), Body Weight, Radiotherapy, Image-Guided, Metabolism, Energy Metabolism, Neurogenesis, Cell Proliferation, Neurosciences, Irradiation, Radiological treatment, Computer-tomography (CT) imaging, Hypothalamus, Hypothalamic Proliferative Zone (HPZ), Median Eminence (ME), Small Animal Radiation Research Platform (SARRP)
50716
Play Button
A cGMP-applicable Expansion Method for Aggregates of Human Neural Stem and Progenitor Cells Derived From Pluripotent Stem Cells or Fetal Brain Tissue
Authors: Brandon C. Shelley, Geneviève Gowing, Clive N. Svendsen.
Institutions: Cedars-Sinai Medical Center.
A cell expansion technique to amass large numbers of cells from a single specimen for research experiments and clinical trials would greatly benefit the stem cell community. Many current expansion methods are laborious and costly, and those involving complete dissociation may cause several stem and progenitor cell types to undergo differentiation or early senescence. To overcome these problems, we have developed an automated mechanical passaging method referred to as “chopping” that is simple and inexpensive. This technique avoids chemical or enzymatic dissociation into single cells and instead allows for the large-scale expansion of suspended, spheroid cultures that maintain constant cell/cell contact. The chopping method has primarily been used for fetal brain-derived neural progenitor cells or neurospheres, and has recently been published for use with neural stem cells derived from embryonic and induced pluripotent stem cells. The procedure involves seeding neurospheres onto a tissue culture Petri dish and subsequently passing a sharp, sterile blade through the cells effectively automating the tedious process of manually mechanically dissociating each sphere. Suspending cells in culture provides a favorable surface area-to-volume ratio; as over 500,000 cells can be grown within a single neurosphere of less than 0.5 mm in diameter. In one T175 flask, over 50 million cells can grow in suspension cultures compared to only 15 million in adherent cultures. Importantly, the chopping procedure has been used under current good manufacturing practice (cGMP), permitting mass quantity production of clinical-grade cell products.
Neuroscience, Issue 88, neural progenitor cell, neural precursor cell, neural stem cell, passaging, neurosphere, chopping, stem cell, neuroscience, suspension culture, good manufacturing practice, GMP
51219
Play Button
Systemic Injection of Neural Stem/Progenitor Cells in Mice with Chronic EAE
Authors: Matteo Donegà, Elena Giusto, Chiara Cossetti, Julia Schaeffer, Stefano Pluchino.
Institutions: University of Cambridge, UK, University of Cambridge, UK.
Neural stem/precursor cells (NPCs) are a promising stem cell source for transplantation approaches aiming at brain repair or restoration in regenerative neurology. This directive has arisen from the extensive evidence that brain repair is achieved after focal or systemic NPC transplantation in several preclinical models of neurological diseases. These experimental data have identified the cell delivery route as one of the main hurdles of restorative stem cell therapies for brain diseases that requires urgent assessment. Intraparenchymal stem cell grafting represents a logical approach to those pathologies characterized by isolated and accessible brain lesions such as spinal cord injuries and Parkinson's disease. Unfortunately, this principle is poorly applicable to conditions characterized by a multifocal, inflammatory and disseminated (both in time and space) nature, including multiple sclerosis (MS). As such, brain targeting by systemic NPC delivery has become a low invasive and therapeutically efficacious protocol to deliver cells to the brain and spinal cord of rodents and nonhuman primates affected by experimental chronic inflammatory damage of the central nervous system (CNS). This alternative method of cell delivery relies on the NPC pathotropism, specifically their innate capacity to (i) sense the environment via functional cell adhesion molecules and inflammatory cytokine and chemokine receptors; (ii) cross the leaking anatomical barriers after intravenous (i.v.) or intracerebroventricular (i.c.v.) injection; (iii) accumulate at the level of multiple perivascular site(s) of inflammatory brain and spinal cord damage; and (i.v.) exert remarkable tissue trophic and immune regulatory effects onto different host target cells in vivo. Here we describe the methods that we have developed for the i.v. and i.c.v. delivery of syngeneic NPCs in mice with experimental autoimmune encephalomyelitis (EAE), as model of chronic CNS inflammatory demyelination, and envisage the systemic stem cell delivery as a valuable technique for the selective targeting of the inflamed brain in regenerative neurology.
Immunology, Issue 86, Somatic neural stem/precursor cells, neurodegenerative disorders, regenerative medicine, multiple sclerosis, experimental autoimmune encephalomyelitis, systemic delivery, intravenous, intracerebroventricular
51154
Play Button
Propagation of Human Embryonic Stem (ES) Cells
Authors: Laurence Daheron.
Institutions: MGH - Massachusetts General Hospital.
Cellular Biology, Issue 1, ES, embryonic stem cells, tissue culture
119
Play Button
Application of a NMDA Receptor Conductance in Rat Midbrain Dopaminergic Neurons Using the Dynamic Clamp Technique
Authors: Collin J Lobb, Carlos A Paladini.
Institutions: University of Texas San Antonio - UTSA.
Neuroscientists study the function of the brain by investigating how neurons in the brain communicate. Many investigators look at changes in the electrical activity of one or more neurons in response to an experimentally-controlled input. The electrical activity of neurons can be recorded in isolated brain slices using patch clamp techniques with glass micropipettes. Traditionally, experimenters can mimic neuronal input by direct injection of current through the pipette, electrical stimulation of the other cells or remaining axonal connections in the slice, or pharmacological manipulation by receptors located on the neuronal membrane of the recorded cell. Direct current injection has the advantages of passing a predetermined current waveform with high temporal precision at the site of the recording (usually the soma). However, it does not change the resistance of the neuronal membrane as no ion channels are physically opened. Current injection usually employs rectangular pulses and thus does not model the kinetics of ion channels. Finally, current injection cannot mimic the chemical changes in the cell that occurs with the opening of ion channels. Receptors can be physically activated by electrical or pharmacological stimulation. The experimenter has good temporal precision of receptor activation with electrical stimulation of the slice. However, there is limited spatial precision of receptor activation and the exact nature of what is activated upon stimulation is unknown. This latter problem can be partially alleviated by specific pharmacological agents. Unfortunately, the time course of activation of pharmacological agents is typically slow and the spatial precision of inputs onto the recorded cell is unknown. The dynamic clamp technique allows an experimenter to change the current passed directly into the cell based on real-time feedback of the membrane potential of the cell (Robinson and Kawai 1993, Sharp et al., 1993a,b; for review, see Prinz et al. 2004). This allows an experimenter to mimic the electrical changes that occur at the site of the recording in response to activation of a receptor. Real-time changes in applied current are determined by a mathematical equation implemented in hardware. We have recently used the dynamic clamp technique to investigate the generation of bursts of action potentials by phasic activation of NMDA receptors in dopaminergic neurons of the substantia nigra pars compacta (Deister et al., 2009; Lobb et al., 2010). In this video, we demonstrate the procedures needed to apply a NMDA receptor conductance into a dopaminergic neuron.
Neuroscience, Issue 46, electrophysiology, dynamic clamp, rat, dopamine, burst, RTXI
2275
Play Button
ES Cell-derived Neuroepithelial Cell Cultures
Authors: Shreeya Karki, Jan Pruszak, Ole Isacson, Kai C Sonntag.
Institutions: Harvard Medical School.
ES cells have the potential to differentiate into cells from all germ layers, which makes them an attractive tool for the development of new therapies. In general, the differentiation of ES cells follows the concept to first generate immature progenitor cells, which then can be propagated and differentiated into mature cellular phenotypes. This also applies for ES cell-derived neurogenesis, in which the development of neural cells follows two major steps: First, the derivation and expansion of immature neuroepithelial precursors and second, their differentiation into mature neural cells. A common method to produce neural progenitors from ES cells is based on embryoid body (EB) formation, which reveals the differentiation of cells from all germ layers including neuroectoderm. An alternative and more efficient method to induce neuroepithelial cell development uses stromal cell-derived inducing activity (SDIA), which can be achieved by co-culturing ES cells with skull bone marrow-derived stromal cells (1). Both, EB formation and SDIA, reveal the development of rosette-like structures, which are thought to resemble neural tube- and/or neural crest-like progenitors. The neural precursors can be isolated, expanded and further differentiated into specific neurons and glia cells using defined culture conditions. Here, we describe the generation and isolation of such rosettes in co-culture experiments with the stromal cell line MS5 (2-5).
Cellular Biology, issue 1, embryonic stem (ES) cells, rosettes, neuroepithelial precursors, stromal cells, differentiation
118
Play Button
Ole Isacson: Development of New Therapies for Parkinson's Disease
Authors: Ole Isacson.
Institutions: Harvard Medical School.
Medicine, Issue 3, Parkinson' disease, Neuroscience, dopamine, neuron, L-DOPA, stem cell, transplantation
189
Play Button
Cortical Neurogenesis: Transitioning from Advances in the Laboratory to Cell-Based Therapies
Authors: Arnold R. Kriegstein.
Institutions: University of California, San Francisco - UCSF.
Neuroscience, Issue 6, neurogenesis, cortex, electroporation, injection, stem cells, brain, Translational Research
241
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.