JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Rapid transcriptional pulsing dynamics of high expressing retroviral transgenes in embryonic stem cells.
PLoS ONE
Single cell imaging studies suggest that transcription is not continuous and occurs as discrete pulses of gene activity. To study mechanisms by which retroviral transgenes can transcribe to high levels, we used the MS2 system to visualize transcriptional dynamics of high expressing proviral integration sites in embryonic stem (ES) cells. We established two ES cell lines each bearing a single copy, self-inactivating retroviral vector with a strong ubiquitous human EF1? gene promoter directing expression of mRFP fused to an MS2-stem-loop array. Transfection of MS2-EGFP generated EGFP focal dots bound to the mRFP-MS2 stem loop mRNA. These transcription foci colocalized with the transgene integration site detected by immunoFISH. Live tracking of single cells for 20 minutes detected EGFP focal dots that displayed frequent and rapid fluctuations in transcription over periods as short as 25 seconds. Similarly rapid fluctuations were detected from focal doublet signals that colocalized with replicated proviral integration sites by immunoFISH, consistent with transcriptional pulses from sister chromatids. We concluded that retroviral transgenes experience rapid transcriptional pulses in clonal ES cell lines that exhibit high level expression. These events are directed by a constitutive housekeeping gene promoter and may provide precedence for rapid transcriptional pulsing at endogenous genes in mammalian stem cells.
Authors: Yehuda Brody, Yaron Shav-Tal.
Published: 08-25-2011
ABSTRACT
The transcriptional activity of RNA polymerase II (Pol II) is a dynamic process and therefore measuring the kinetics of the transcriptional process in vivo is of importance. Pol II kinetics have been measured using biochemical or molecular methods.1-3 In recent years, with the development of new visualization methods, it has become possible to follow transcription as it occurs in real time in single living cells.4 Herein we describe how to perform analysis of Pol II elongation kinetics on a specific gene in living cells.5, 6 Using a cell line in which a specific gene locus (DNA), its mRNA product, and the final protein product can be fluorescently labeled and visualized in vivo, it is possible to detect the actual transcription of mRNAs on the gene of interest.7, 8 The mRNA is fluorescently tagged using the MS2 system for tagging mRNAs in vivo, where the 3'UTR of the mRNA transcripts contain 24 MS2 stem-loop repeats, which provide highly specific binding sites for the YFP-MS2 coat protein that labels the mRNA as it is transcribed.9 To monitor the kinetics of transcription we use the Fluorescence Recovery After Photobleaching (FRAP) method. By photobleaching the YFP-MS2-tagged nascent transcripts at the site of transcription and then following the recovery of this signal over time, we obtain the synthesis rate of the newly made mRNAs.5 In other words, YFP-MS2 fluorescence recovery reflects the generation of new MS2 stem-loops in the nascent transcripts and their binding by fluorescent free YFP-MS2 molecules entering from the surrounding nucleoplasm. The FRAP recovery curves are then analyzed using mathematical mechanistic models formalized by a series of differential equations, in order to retrieve the kinetic time parameters of transcription.
24 Related JoVE Articles!
Play Button
Profiling Individual Human Embryonic Stem Cells by Quantitative RT-PCR
Authors: HoTae Lim, In Young Choi, Gabsang Lee.
Institutions: Johns Hopkins University School of Medicine.
Heterogeneity of stem cell population hampers detailed understanding of stem cell biology, such as their differentiation propensity toward different lineages. A single cell transcriptome assay can be a new approach for dissecting individual variation. We have developed the single cell qRT-PCR method, and confirmed that this method works well in several gene expression profiles. In single cell level, each human embryonic stem cell, sorted by OCT4::EGFP positive cells, has high expression in OCT4, but a different level of NANOG expression. Our single cell gene expression assay should be useful to interrogate population heterogeneities.
Molecular Biology, Issue 87, Single cell, heterogeneity, Amplification, qRT-PCR, Reverse transcriptase, human Embryonic Stem cell, FACS
51408
Play Button
Oct4GiP Reporter Assay to Study Genes that Regulate Mouse Embryonic Stem Cell Maintenance and Self-renewal
Authors: Xiaofeng Zheng, Guang Hu.
Institutions: National Institute of Environmental Health Sciences.
Pluripotency and self-renewal are two defining characteristics of embryonic stem cells (ES cells). Understanding the underlying molecular mechanism will greatly facilitate the use of ES cells for developmental biology studies, disease modeling, drug discovery, and regenerative medicine (reviewed in 1,2). To expedite the identification and characterization of novel regulators of ES cell maintenance and self-renewal, we developed a fluorescence reporter-based assay to quantitatively measure the self-renewal status in mouse ES cells using the Oct4GiP cells 3. The Oct4GiP cells express the green fluorescent protein (GFP) under the control of the Oct4 gene promoter region 4,5. Oct4 is required for ES cell self-renewal, and is highly expressed in ES cells and quickly down-regulated during differentiation 6,7. As a result, GFP expression and fluorescence in the reporter cells correlates faithfully with the ES cell identity 5, and fluorescence-activated cell sorting (FACS) analysis can be used to closely monitor the self-renewal status of the cells at the single cell level 3,8. Coupled with RNAi, the Oct4GiP reporter assay can be used to quickly identify and study regulators of ES cell maintenance and self-renewal 3,8. Compared to other methods for assaying self-renewal, it is more convenient, sensitive, quantitative, and of lower cost. It can be carried out in 96- or 384-well plates for large-scale studies such as high-throughput screens or genetic epistasis analysis. Finally, by using other lineage-specific reporter ES cell lines, the assay we describe here can also be modified to study fate specification during ES cell differentiation.
Stem Cell Biology, Issue 63, Molecular Biology, Genetics, Embryonic stem cell, ESC, self-renewal, differentiation, Oct4, GFP, reporter assay, RNAi
3987
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
51763
Play Button
Retroviral Infection of Murine Embryonic Stem Cell Derived Embryoid Body Cells for Analysis of Hematopoietic Differentiation
Authors: Emmanuel Bikorimana, Danica Lapid, Hyewon Choi, Richard Dahl.
Institutions: Harper Cancer Research Institute, Indiana University School of Medicine, University of Notre Dame.
Embryonic stem cells (ESCs) are an outstanding model for elucidating the molecular mechanisms of cellular differentiation. They are especially useful for investigating the development of early hematopoietic progenitor cells (HPCs). Gene expression in ESCs can be manipulated by several techniques that allow the role for individual molecules in development to be determined. One difficulty is that expression of specific genes often has different phenotypic effects dependent on their temporal expression. This problem can be circumvented by the generation of ESCs that inducibly express a gene of interest using technology such as the doxycycline-inducible transgene system. However, generation of these inducible cell lines is costly and time consuming. Described here is a method for disaggregating ESC-derived embryoid bodies (EBs) into single cell suspensions, retrovirally infecting the cell suspensions, and then reforming the EBs by hanging drop. Downstream differentiation is then evaluated by flow cytometry. Using this protocol, it was demonstrated that exogenous expression of a microRNA gene at the beginning of ESC differentiation blocks HPC generation. However, when expressed in EB derived cells after nascent mesoderm is produced, the microRNA gene enhances hematopoietic differentiation. This method is useful for investigating the role of genes after specific germ layer tissue is derived.
Cellular Biology, Issue 92, Embryonic stem cell, Embryoid body, Hematopoietic Progenitor Cells, Retrovirus, Gene Expression, Temporal Gene Expression
52022
Play Button
Adult and Embryonic Skeletal Muscle Microexplant Culture and Isolation of Skeletal Muscle Stem Cells
Authors: Deborah Merrick, Hung-Chih Chen, Dean Larner, Janet Smith.
Institutions: University of Birmingham.
Cultured embryonic and adult skeletal muscle cells have a number of different uses. The micro-dissected explants technique described in this chapter is a robust and reliable method for isolating relatively large numbers of proliferative skeletal muscle cells from juvenile, adult or embryonic muscles as a source of skeletal muscle stem cells. The authors have used micro-dissected explant cultures to analyse the growth characteristics of skeletal muscle cells in wild-type and dystrophic muscles. Each of the components of tissue growth, namely cell survival, proliferation, senescence and differentiation can be analysed separately using the methods described here. The net effect of all components of growth can be established by means of measuring explant outgrowth rates. The micro-explant method can be used to establish primary cultures from a wide range of different muscle types and ages and, as described here, has been adapted by the authors to enable the isolation of embryonic skeletal muscle precursors. Uniquely, micro-explant cultures have been used to derive clonal (single cell origin) skeletal muscle stem cell (SMSc) lines which can be expanded and used for in vivo transplantation. In vivo transplanted SMSc behave as functional, tissue-specific, satellite cells which contribute to skeletal muscle fibre regeneration but which are also retained (in the satellite cell niche) as a small pool of undifferentiated stem cells which can be re-isolated into culture using the micro-explant method.
Cellular Biology, Issue 43, Skeletal muscle stem cell, embryonic tissue culture, apoptosis, growth factor, proliferation, myoblast, myogenesis, satellite cell, skeletal muscle differentiation, muscular dystrophy
2051
Play Button
Lineage-reprogramming of Pericyte-derived Cells of the Adult Human Brain into Induced Neurons
Authors: Marisa Karow, Christian Schichor, Ruth Beckervordersandforth, Benedikt Berninger.
Institutions: Ludwig Maximilians University Munich, Ludwig-Maximilians University Munich, Friedrich-Alexander-Universität Erlangen-Nürnberg, Johannes Gutenberg University Mainz.
Direct lineage-reprogramming of non-neuronal cells into induced neurons (iNs) may provide insights into the molecular mechanisms underlying neurogenesis and enable new strategies for in vitro modeling or repairing the diseased brain. Identifying brain-resident non-neuronal cell types amenable to direct conversion into iNs might allow for launching such an approach in situ, i.e. within the damaged brain tissue. Here we describe a protocol developed in the attempt of identifying cells derived from the adult human brain that fulfill this premise. This protocol involves: (1) the culturing of human cells from the cerebral cortex obtained from adult human brain biopsies; (2) the in vitro expansion (approximately requiring 2-4 weeks) and characterization of the culture by immunocytochemistry and flow cytometry; (3) the enrichment by fluorescence-activated cell sorting (FACS) using anti-PDGF receptor-β and anti-CD146 antibodies; (4) the retrovirus-mediated transduction with the neurogenic transcription factors sox2 and ascl1; (5) and finally the characterization of the resultant pericyte-derived induced neurons (PdiNs) by immunocytochemistry (14 days to 8 weeks following retroviral transduction). At this stage, iNs can be probed for their electrical properties by patch-clamp recording. This protocol provides a highly reproducible procedure for the in vitro lineage conversion of brain-resident pericytes into functional human iNs.
Neuroscience, Issue 87, Pericytes, lineage-reprogramming, induced neurons, cerebral cortex
51433
Play Button
Neonatal Pial Surface Electroporation
Authors: Rachelle Levy, Jessica Molina, Moise Danielpour, Joshua J. Breunig.
Institutions: Cedars-Sinai Medical Center, Cedars-Sinai Medical Center.
Over the past several years the pial surface has been identified as a germinal niche of importance during embryonic, perinatal and adult neuro- and gliogenesis, including after injury. However, methods for genetically interrogating these progenitor populations and tracking their lineages had been limited owing to a lack of specificity or time consuming production of viruses. Thus, progress in this region has been relatively slow with only a handful of investigations of this location. Electroporation has been used for over a decade to study neural stem cell properties in the embryo, and more recently in the postnatal brain. Here we describe an efficient, rapid, and simple technique for the genetic manipulation of pial surface progenitors based on an adapted electroporation approach. Pial surface electroporation allows for facile genetic labeling and manipulation of these progenitors, thus representing a time-saving and economical approach for studying these cells.
Neuroscience, Issue 87, Developmental Biology, neonatal, rodent, fate mapping, lineage tracing, genetic manipulation, plasmid DNA, piggyBac, tol2, transposon, TCHD, electroporation
51319
Play Button
Cell Labeling and Injection in Developing Embryonic Mouse Hearts
Authors: Emilye Hiriart, Patrick van Vliet, Ralf J. Dirschinger, Sylvia M. Evans, Michel Puceat.
Institutions: Aix-Marseille University, University of California, San Diego.
Testing the fate of embryonic or pluripotent stem cell-derivatives in in vitro protocols has led to controversial outcomes that do not necessarily reflect their in vivo potential. Preferably, these cells should be placed in a proper embryonic environment in order to acquire their definite phenotype. Furthermore, cell lineage tracing studies in the mouse after labeling cells with dyes or retroviral vectors has remained mostly limited to early stage mouse embryos with still poorly developed organs. To overcome these limitations, we designed standard and ultrasound-mediated microinjection protocols to inject various agents in targeted regions of the heart in mouse embryos at E9.5 and later stages of development.  Embryonic explant or embryos are then cultured or left to further develop in utero. These agents include fluorescent dyes, virus, shRNAs, or stem cell-derived progenitor cells. Our approaches allow for preservation of the function of the organ while monitoring migration and fate of labeled and/or injected cells. These technologies can be extended to other organs and will be very helpful to address key biological questions in biology of development.
Developmental Biology, Issue 86, Cell, DNA, dye injection, mouse embryo, embryo culture, ultrasound, mouse heart, stem cells
51356
Play Button
Ex vivo Culture of Drosophila Pupal Testis and Single Male Germ-line Cysts: Dissection, Imaging, and Pharmacological Treatment
Authors: Stefanie M. K. Gärtner, Christina Rathke, Renate Renkawitz-Pohl, Stephan Awe.
Institutions: Philipps-Universität Marburg, Philipps-Universität Marburg.
During spermatogenesis in mammals and in Drosophila melanogaster, male germ cells develop in a series of essential developmental processes. This includes differentiation from a stem cell population, mitotic amplification, and meiosis. In addition, post-meiotic germ cells undergo a dramatic morphological reshaping process as well as a global epigenetic reconfiguration of the germ line chromatin—the histone-to-protamine switch. Studying the role of a protein in post-meiotic spermatogenesis using mutagenesis or other genetic tools is often impeded by essential embryonic, pre-meiotic, or meiotic functions of the protein under investigation. The post-meiotic phenotype of a mutant of such a protein could be obscured through an earlier developmental block, or the interpretation of the phenotype could be complicated. The model organism Drosophila melanogaster offers a bypass to this problem: intact testes and even cysts of germ cells dissected from early pupae are able to develop ex vivo in culture medium. Making use of such cultures allows microscopic imaging of living germ cells in testes and of germ-line cysts. Importantly, the cultivated testes and germ cells also become accessible to pharmacological inhibitors, thereby permitting manipulation of enzymatic functions during spermatogenesis, including post-meiotic stages. The protocol presented describes how to dissect and cultivate pupal testes and germ-line cysts. Information on the development of pupal testes and culture conditions are provided alongside microscope imaging data of live testes and germ-line cysts in culture. We also describe a pharmacological assay to study post-meiotic spermatogenesis, exemplified by an assay targeting the histone-to-protamine switch using the histone acetyltransferase inhibitor anacardic acid. In principle, this cultivation method could be adapted to address many other research questions in pre- and post-meiotic spermatogenesis.
Developmental Biology, Issue 91, Ex vivo culture, testis, male germ-line cells, Drosophila, imaging, pharmacological assay
51868
Play Button
Affinity-based Isolation of Tagged Nuclei from Drosophila Tissues for Gene Expression Analysis
Authors: Jingqun Ma, Vikki Marie Weake.
Institutions: Purdue University.
Drosophila melanogaster embryonic and larval tissues often contain a highly heterogeneous mixture of cell types, which can complicate the analysis of gene expression in these tissues. Thus, to analyze cell-specific gene expression profiles from Drosophila tissues, it may be necessary to isolate specific cell types with high purity and at sufficient yields for downstream applications such as transcriptional profiling and chromatin immunoprecipitation. However, the irregular cellular morphology in tissues such as the central nervous system, coupled with the rare population of specific cell types in these tissues, can pose challenges for traditional methods of cell isolation such as laser microdissection and fluorescence-activated cell sorting (FACS). Here, an alternative approach to characterizing cell-specific gene expression profiles using affinity-based isolation of tagged nuclei, rather than whole cells, is described. Nuclei in the specific cell type of interest are genetically labeled with a nuclear envelope-localized EGFP tag using the Gal4/UAS binary expression system. These EGFP-tagged nuclei can be isolated using antibodies against GFP that are coupled to magnetic beads. The approach described in this protocol enables consistent isolation of nuclei from specific cell types in the Drosophila larval central nervous system at high purity and at sufficient levels for expression analysis, even when these cell types comprise less than 2% of the total cell population in the tissue. This approach can be used to isolate nuclei from a wide variety of Drosophila embryonic and larval cell types using specific Gal4 drivers, and may be useful for isolating nuclei from cell types that are not suitable for FACS or laser microdissection.
Biochemistry, Issue 85, Gene Expression, nuclei isolation, Drosophila, KASH, GFP, cell-type specific
51418
Play Button
High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry
Authors: Subarna Bhattacharya, Paul W. Burridge, Erin M. Kropp, Sandra L. Chuppa, Wai-Meng Kwok, Joseph C. Wu, Kenneth R. Boheler, Rebekah L. Gundry.
Institutions: Medical College of Wisconsin, Stanford University School of Medicine, Medical College of Wisconsin, Hong Kong University, Johns Hopkins University School of Medicine, Medical College of Wisconsin.
There is an urgent need to develop approaches for repairing the damaged heart, discovering new therapeutic drugs that do not have toxic effects on the heart, and improving strategies to accurately model heart disease. The potential of exploiting human induced pluripotent stem cell (hiPSC) technology to generate cardiac muscle “in a dish” for these applications continues to generate high enthusiasm. In recent years, the ability to efficiently generate cardiomyogenic cells from human pluripotent stem cells (hPSCs) has greatly improved, offering us new opportunities to model very early stages of human cardiac development not otherwise accessible. In contrast to many previous methods, the cardiomyocyte differentiation protocol described here does not require cell aggregation or the addition of Activin A or BMP4 and robustly generates cultures of cells that are highly positive for cardiac troponin I and T (TNNI3, TNNT2), iroquois-class homeodomain protein IRX-4 (IRX4), myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC2v) and myosin regulatory light chain 2, atrial isoform (MLC2a) by day 10 across all human embryonic stem cell (hESC) and hiPSC lines tested to date. Cells can be passaged and maintained for more than 90 days in culture. The strategy is technically simple to implement and cost-effective. Characterization of cardiomyocytes derived from pluripotent cells often includes the analysis of reference markers, both at the mRNA and protein level. For protein analysis, flow cytometry is a powerful analytical tool for assessing quality of cells in culture and determining subpopulation homogeneity. However, technical variation in sample preparation can significantly affect quality of flow cytometry data. Thus, standardization of staining protocols should facilitate comparisons among various differentiation strategies. Accordingly, optimized staining protocols for the analysis of IRX4, MLC2v, MLC2a, TNNI3, and TNNT2 by flow cytometry are described.
Cellular Biology, Issue 91, human induced pluripotent stem cell, flow cytometry, directed differentiation, cardiomyocyte, IRX4, TNNI3, TNNT2, MCL2v, MLC2a
52010
Play Button
Combined DNA-RNA Fluorescent In situ Hybridization (FISH) to Study X Chromosome Inactivation in Differentiated Female Mouse Embryonic Stem Cells
Authors: Tahsin Stefan Barakat, Joost Gribnau.
Institutions: Erasmus MC - University Medical Center.
Fluorescent in situ hybridization (FISH) is a molecular technique which enables the detection of nucleic acids in cells. DNA FISH is often used in cytogenetics and cancer diagnostics, and can detect aberrations of the genome, which often has important clinical implications. RNA FISH can be used to detect RNA molecules in cells and has provided important insights in regulation of gene expression. Combining DNA and RNA FISH within the same cell is technically challenging, as conditions suitable for DNA FISH might be too harsh for fragile, single stranded RNA molecules. We here present an easily applicable protocol which enables the combined, simultaneous detection of Xist RNA and DNA encoded by the X chromosomes. This combined DNA-RNA FISH protocol can likely be applied to other systems where both RNA and DNA need to be detected.
Biochemistry, Issue 88, Fluorescent in situ hybridization (FISH), combined DNA-RNA FISH, ES cell, cytogenetics, single cell analysis, X chromosome inactivation (XCI), Xist, Bacterial artificial chromosome (BAC), DNA-probe, Rnf12
51628
Play Button
Zinc-finger Nuclease Enhanced Gene Targeting in Human Embryonic Stem Cells
Authors: Brigham J. Hartley, Stewart A. Fabb, Ben A.L. Finnin, John M. Haynes, Colin W. Pouton.
Institutions: Monash University.
One major limitation with current human embryonic stem cell (ESC) differentiation protocols is the generation of heterogeneous cell populations. These cultures contain the cells of interest, but are also contaminated with undifferentiated ESCs, non-neural derivatives and other neuronal subtypes.  This limits their use in in vitro and in vivo applications, such as in vitro modeling for drug discovery or cell replacement therapy. To help overcome this, reporter cell lines, which offer a means to visualize, track and isolate cells of interest, can be engineered. However, to achieve this in human embryonic stem cells via conventional homologous recombination is extremely inefficient. This protocol describes targeting of the Pituitary homeobox 3 (PITX3) locus in human embryonic stem cells using custom designed zinc-finger nucleases, which introduce site-specific double-strand DNA breaks, together with a PITX3-EGFP-specific DNA donor vector. Following the generation of the PITX3 reporter cell line, it can then be differentiated using published protocols for use in studies such as in vitro Parkinson’s disease modeling or cell replacement therapy.
Molecular Biology, Issue 90, Electroporation, human embryonic stem cell, genome editing, reporter cell line, midbrain dopaminergic neurons
51764
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
51506
Play Button
Gene Trapping Using Gal4 in Zebrafish
Authors: Jorune Balciuniene, Darius Balciunas.
Institutions: Temple University .
Large clutch size and external development of optically transparent embryos make zebrafish an exceptional vertebrate model system for in vivo insertional mutagenesis using fluorescent reporters to tag expression of mutated genes. Several laboratories have constructed and tested enhancer- and gene-trap vectors in zebrafish, using fluorescent proteins, Gal4- and lexA- based transcriptional activators as reporters 1-7. These vectors had two potential drawbacks: suboptimal stringency (e.g. lack of ability to differentiate between enhancer- and gene-trap events) and low mutagenicity (e.g. integrations into genes rarely produced null alleles). Gene Breaking Transposon (GBTs) were developed to address these drawbacks 8-10. We have modified one of the first GBT vectors, GBT-R15, for use with Gal4-VP16 as the primary gene trap reporter and added UAS:eGFP as the secondary reporter for direct detection of gene trap events. Application of Gal4-VP16 as the primary gene trap reporter provides two main advantages. First, it increases sensitivity for genes expressed at low expression levels. Second, it enables researchers to use gene trap lines as Gal4 drivers to direct expression of other transgenes in very specific tissues. This is especially pertinent for genes with non-essential or redundant functions, where gene trap integration may not result in overt phenotypes. The disadvantage of using Gal4-VP16 as the primary gene trap reporter is that genes coding for proteins with N-terminal signal sequences are not amenable to trapping, as the resulting Gal4-VP16 fusion proteins are unlikely to be able to enter the nucleus and activate transcription. Importantly, the use of Gal4-VP16 does not pre-select for nuclear proteins: we recovered gene trap mutations in genes encoding proteins which function in the nucleus, the cytoplasm and the plasma membrane.
Developmental Biology, Issue 79, Zebrafish, Mutagenesis, Genetics, genetics (animal and plant), Gal4, transposon, gene trap, insertional mutagenesis
50113
Play Button
Monitoring Cell-autonomous Circadian Clock Rhythms of Gene Expression Using Luciferase Bioluminescence Reporters
Authors: Chidambaram Ramanathan, Sanjoy K. Khan, Nimish D. Kathale, Haiyan Xu, Andrew C. Liu.
Institutions: The University of Memphis.
In mammals, many aspects of behavior and physiology such as sleep-wake cycles and liver metabolism are regulated by endogenous circadian clocks (reviewed1,2). The circadian time-keeping system is a hierarchical multi-oscillator network, with the central clock located in the suprachiasmatic nucleus (SCN) synchronizing and coordinating extra-SCN and peripheral clocks elsewhere1,2. Individual cells are the functional units for generation and maintenance of circadian rhythms3,4, and these oscillators of different tissue types in the organism share a remarkably similar biochemical negative feedback mechanism. However, due to interactions at the neuronal network level in the SCN and through rhythmic, systemic cues at the organismal level, circadian rhythms at the organismal level are not necessarily cell-autonomous5-7. Compared to traditional studies of locomotor activity in vivo and SCN explants ex vivo, cell-based in vitro assays allow for discovery of cell-autonomous circadian defects5,8. Strategically, cell-based models are more experimentally tractable for phenotypic characterization and rapid discovery of basic clock mechanisms5,8-13. Because circadian rhythms are dynamic, longitudinal measurements with high temporal resolution are needed to assess clock function. In recent years, real-time bioluminescence recording using firefly luciferase as a reporter has become a common technique for studying circadian rhythms in mammals14,15, as it allows for examination of the persistence and dynamics of molecular rhythms. To monitor cell-autonomous circadian rhythms of gene expression, luciferase reporters can be introduced into cells via transient transfection13,16,17 or stable transduction5,10,18,19. Here we describe a stable transduction protocol using lentivirus-mediated gene delivery. The lentiviral vector system is superior to traditional methods such as transient transfection and germline transmission because of its efficiency and versatility: it permits efficient delivery and stable integration into the host genome of both dividing and non-dividing cells20. Once a reporter cell line is established, the dynamics of clock function can be examined through bioluminescence recording. We first describe the generation of P(Per2)-dLuc reporter lines, and then present data from this and other circadian reporters. In these assays, 3T3 mouse fibroblasts and U2OS human osteosarcoma cells are used as cellular models. We also discuss various ways of using these clock models in circadian studies. Methods described here can be applied to a great variety of cell types to study the cellular and molecular basis of circadian clocks, and may prove useful in tackling problems in other biological systems.
Genetics, Issue 67, Molecular Biology, Cellular Biology, Chemical Biology, Circadian clock, firefly luciferase, real-time bioluminescence technology, cell-autonomous model, lentiviral vector, RNA interference (RNAi), high-throughput screening (HTS)
4234
Play Button
Real-time Imaging of Single Engineered RNA Transcripts in Living Cells Using Ratiometric Bimolecular Beacons
Authors: Yang Song, Xuemei Zhang, Lingyan Huang, Mark A. Behlke, Andrew Tsourkas.
Institutions: University of Pennsylvania, Integrated DNA Technologies, Inc..
The growing realization that both the temporal and spatial regulation of gene expression can have important consequences on cell function has led to the development of diverse techniques to visualize individual RNA transcripts in single living cells. One promising technique that has recently been described utilizes an oligonucleotide-based optical probe, ratiometric bimolecular beacon (RBMB), to detect RNA transcripts that were engineered to contain at least four tandem repeats of the RBMB target sequence in the 3’-untranslated region. RBMBs are specifically designed to emit a bright fluorescent signal upon hybridization to complementary RNA, but otherwise remain quenched. The use of a synthetic probe in this approach allows photostable, red-shifted, and highly emissive organic dyes to be used for imaging. Binding of multiple RBMBs to the engineered RNA transcripts results in discrete fluorescence spots when viewed under a wide-field fluorescent microscope. Consequently, the movement of individual RNA transcripts can be readily visualized in real-time by taking a time series of fluorescent images. Here we describe the preparation and purification of RBMBs, delivery into cells by microporation and live-cell imaging of single RNA transcripts.
Genetics, Issue 90, RNA, imaging, single molecule, fluorescence, living cell
51544
Play Button
Reprogramming Human Somatic Cells into Induced Pluripotent Stem Cells (iPSCs) Using Retroviral Vector with GFP
Authors: Kun-Yong Kim, Eriona Hysolli, In-Hyun Park.
Institutions: Yale School of Medicine.
Human embryonic stem cells (hESCs) are pluripotent and an invaluable cellular sources for in vitro disease modeling and regenerative medicine1. It has been previously shown that human somatic cells can be reprogrammed to pluripotency by ectopic expression of four transcription factors (Oct4, Sox2, Klf4 and Myc) and become induced pluripotent stem cells (iPSCs)2-4 . Like hESCs, human iPSCs are pluripotent and a potential source for autologous cells. Here we describe the protocol to reprogram human fibroblast cells with the four reprogramming factors cloned into GFP-containing retroviral backbone4. Using the following protocol, we generate human iPSCs in 3-4 weeks under human ESC culture condition. Human iPSC colonies closely resemble hESCs in morphology and display the loss of GFP fluorescence as a result of retroviral transgene silencing. iPSC colonies isolated mechanically under a fluorescence microscope behave in a similar fashion as hESCs. In these cells, we detect the expression of multiple pluripotency genes and surface markers.
Stem Cell Biology, Issue 62, Human iPS cells, iPSCs, Reprogramming, Retroviral vectors and Pluripotency
3804
Play Button
Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney
Authors: Kristen K. McCampbell, Kristin N. Springer, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
Cellular Biology, Issue 90, zebrafish; kidney; nephron; nephrology; renal; regeneration; proximal tubule; distal tubule; segment; mesonephros; physiology; acute kidney injury (AKI)
51644
Play Button
Propagation of Human Embryonic Stem (ES) Cells
Authors: Laurence Daheron.
Institutions: MGH - Massachusetts General Hospital.
Cellular Biology, Issue 1, ES, embryonic stem cells, tissue culture
119
Play Button
Generating iPS Cells from MEFS through Forced Expression of Sox-2, Oct-4, c-Myc, and Klf4
Authors: G. Grant Welstead, Tobias Brambrink, Rudolf Jaenisch.
Institutions: Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology.
Pluripotency can be induced in differentiated murine by viral transduction of Oct4, Sox2, Klf4, and c-Myc (Takahashi and Yamanaka, 2006; Wernig, et al., 2007; Okita, et al., 2007; Maherali, et al., 2007). We have devised a reprogramming strategy in which these four transcription factors are expressed from doxycycline (dox)-inducible lentiviral vectors (Brambrink et al., 2008). Using these inducible constructs, we can derive induced pluripotent stem (iPS) cells from mouse embryonic fibroblasts (MEFs). In this video, we demonstrate the procedure for the generation of inducible lentiviruses that express the four transcription factors and show how to infect MEFs with these viruses in order to produce iPS cells. By using inducible lentiviruses, the expression of the four factors in controlled by the addition of doxycyline to the culture medium. The advantage of this system over the traditional retroviral infection is the ability to turn the genes on and off so that the kinetics of reprogramming and gene expression requirements can be analyzed in detail.
Cell Biology, Issue 14, Reprogramming, inducible lentiviruses, iPS cells, MEFs, ES cells, virus transduction, doxycycline
734
Play Button
Time-lapse Live Imaging of Clonally Related Neural Progenitor Cells in the Developing Zebrafish Forebrain
Authors: Zhiqiang Dong, Mahendra Wagle, Su Guo.
Institutions: University of California San Francisco .
Precise patterns of division, migration and differentiation of neural progenitor cells are crucial for proper brain development and function1,2. To understand the behavior of neural progenitor cells in the complex in vivo environment, time-lapse live imaging of neural progenitor cells in an intact brain is critically required. In this video, we exploit the unique features of zebrafish embryos to visualize the development of forebrain neural progenitor cells in vivo. We use electroporation to genetically and sparsely label individual neural progenitor cells. Briefly, DNA constructs coding for fluorescent markers were injected into the forebrain ventricle of 22 hours post fertilization (hpf) zebrafish embryos and electric pulses were delivered immediately. Six hours later, the electroporated zebrafish embryos were mounted with low melting point agarose in glass bottom culture dishes. Fluorescently labeled neural progenitor cells were then imaged for 36hours with fixed intervals under a confocal microscope using water dipping objective lens. The present method provides a way to gain insights into the in vivo development of forebrain neural progenitor cells and can be applied to other parts of the central nervous system of the zebrafish embryo.
Neuroscience, Issue 50, Live imaging, electroporation, confocal microscopy, neural progenitor cells, forebrain, zebrafish
2594
Play Button
In vitro and in vivo Bioluminescence Reporter Gene Imaging of Human Embryonic Stem Cells
Authors: Kitchener Wilson, Jin Yu, Andrew Lee, Joseph C. Wu.
Institutions: Stanford University School of Medicine.
The discovery of human embryonic stem cells (hESCs) has dramatically increased the tools available to medical scientists interested in regenerative medicine. However, direct injection of hESCs, and cells differentiated from hESCs, into living organisms has thus far been hampered by significant cell death, teratoma formation, and host immune rejection. Understanding the in vivo hESC behavior after transplantation requires novel imaging techniques to longitudinally monitor hESC localization, proliferation, and viability. Molecular imaging has given investigators a high-throughput, inexpensive, and sensitive means for tracking in vivo cell proliferation over days, weeks, and even months. This advancement has significantly increased the understanding of the spatio-temporal kinetics of hESC engraftment, proliferation, and teratoma-formation in living subjects. A major advance in molecular imaging has been the extension of noninvasive reporter gene assays from molecular and cellular biology into in vivo multi-modality imaging platforms. These reporter genes, under control of engineered promoters and enhancers that take advantage of the host cell s transcriptional machinery, are introduced into cells using a variety of vector and non-vector methods. Once in the cell, reporter genes can be transcribed either constitutively or only under specific biological or cellular conditions, depending on the type of promoter used. Transcription and translation of reporter genes into bioactive proteins is then detected with sensitive, noninvasive instrumentation (e.g., CCD cameras) using signal-generating probes such as D-luciferin. To avoid the need for excitatory light to track stem cells in vivo as is required for fluorescence imaging, bioluminescence reporter gene imaging systems require only an exogenously administered probe to induce light emission. Firefly luciferase, derived from the firefly Photinus pyralis, encodes an enzyme that catalyzes D-luciferin to the optically active metabolite, oxyluciferin. Optical activity can then be monitored with an external CCD camera. Stably transduced cells that carry the reporter construct within their chromosomal DNA will pass the reporter construct DNA to daughter cells, allowing for longitudinal monitoring of hESC survival and proliferation in vivo. Furthermore, because expression of the reporter gene product is required for signal generation, only viable parent and daughter cells will create bioluminescence signal; apoptotic or dead cells will not. In this video, the specific materials and methods needed for tracking stem cell proliferation and teratoma formation with bioluminescence imaging will be described.
Cell Biology, Issue 14, molecular imaging, firefly luciferase, bioluminescence, reporter gene, human embryonic stem cells, teratoma, stem cell transplantation.
740
Play Button
Transfecting and Nucleofecting Human Induced Pluripotent Stem Cells
Authors: Papri Chatterjee, Yuri Cheung, Chee Liew.
Institutions: University of California Riverside.
Genetic modification is continuing to be an essential tool in studying stem cell biology and in setting forth potential clinical applications of human embryonic stem cells (HESCs)1. While improvements in several gene delivery methods have been described2-9, transfection remains a capricious process for HESCs, and has not yet been reported in human induced pluripotent stem cells (iPSCs). In this video, we demonstrate how our lab routinely transfects and nucleofects human iPSCs using plasmid with an enhanced green fluorescence protein (eGFP) reporter. Human iPSCs are adapted and maintained as feeder-free cultures to eliminate the possibility of feeder cell transfection and to allow efficient selection of stable transgenic iPSC clones following transfection. For nucleofection, human iPSCs are pre-treated with ROCK inhibitor11, trypsinized into small clumps of cells, nucleofected and replated on feeders in feeder cell-conditioned medium to enhance cell recovery. Transgene-expressing human iPSCs can be obtained after 6 hours. Antibiotic selection is applied after 24 hours and stable transgenic lines appear within 1 week. Our protocol is robust and reproducible for human iPSC lines without altering pluripotency of these cells.
Medicine, Issue 56, Developmental Biology, Transfection, iPS cells, IPSCs, ES cells, HESCs, Nucleofection
3110
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.