JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
A primary survey on bryophyte species reveals two novel classes of nucleotide-binding site (NBS) genes.
PLoS ONE
Due to their potential roles in pathogen defense, genes encoding nucleotide-binding site (NBS) domain have been particularly surveyed in many angiosperm genomes. Two typical classes were found: one is the TIR-NBS-LRR (TNL) class and the other is the CC-NBS-LRR (CNL) class. It is seldom known, however, what kind of NBS-encoding genes are mainly present in other plant groups, especially the most ancient groups of land plants, that is, bryophytes. To fill this gap of knowledge, in this study, we mainly focused on two bryophyte species: the moss Physcomitrella patens and the liverwort Marchantia polymorpha, to survey their NBS-encoding genes. Surprisingly, two novel classes of NBS-encoding genes were discovered. The first novel class is identified from the P. patens genome and a typical member of this class has a protein kinase (PK) domain at the N-terminus and a LRR domain at the C-terminus, forming a complete structure of PK-NBS-LRR (PNL), reminiscent of TNL and CNL classes in angiosperms. The second class is found from the liverwort genome and a typical member of this class possesses an ?/?-hydrolase domain at the N-terminus and also a LRR domain at the C-terminus (Hydrolase-NBS-LRR, HNL). Analysis on intron positions and phases also confirmed the novelty of HNL and PNL classes, as reflected by their specific intron locations or phase characteristics. Phylogenetic analysis covering all four classes of NBS-encoding genes revealed a closer relationship among the HNL, PNL and TNL classes, suggesting the CNL class having a more divergent status from the others. The presence of specific introns highlights the chimerical structures of HNL, PNL and TNL genes, and implies their possible origin via exon-shuffling during the quick lineage separation processes of early land plants.
Authors: Dorothy A. Lerit, Karen M. Plevock, Nasser M. Rusan.
Published: 07-07-2014
ABSTRACT
Stem cells divide asymmetrically to generate two progeny cells with unequal fate potential: a self-renewing stem cell and a differentiating cell. Given their relevance to development and disease, understanding the mechanisms that govern asymmetric stem cell division has been a robust area of study. Because they are genetically tractable and undergo successive rounds of cell division about once every hour, the stem cells of the Drosophila central nervous system, or neuroblasts, are indispensable models for the study of stem cell division. About 100 neural stem cells are located near the surface of each of the two larval brain lobes, making this model system particularly useful for live imaging microscopy studies. In this work, we review several approaches widely used to visualize stem cell divisions, and we address the relative advantages and disadvantages of those techniques that employ dissociated versus intact brain tissues. We also detail our simplified protocol used to explant whole brains from third instar larvae for live cell imaging and fixed analysis applications.
25 Related JoVE Articles!
Play Button
Environmentally Induced Heritable Changes in Flax
Authors: Cory Johnson, Tiffanie Moss, Christopher Cullis.
Institutions: Case Western Reserve University.
Some flax varieties respond to nutrient stress by modifying their genome and these modifications can be inherited through many generations. Also associated with these genomic changes are heritable phenotypic variations 1,2. The flax variety Stormont Cirrus (Pl) when grown under three different nutrient conditions can either remain inducible (under the control conditions), or become stably modified to either the large or small genotroph by growth under high or low nutrient conditions respectively. The lines resulting from the initial growth under each of these conditions appear to grow better when grown under the same conditions in subsequent generations, notably the Pl line grows best under the control treatment indicating that the plants growing under both the high and low nutrients are under stress. One of the genomic changes that are associated with the induction of heritable changes is the appearance of an insertion element (LIS-1) 3, 4 while the plants are growing under the nutrient stress. With respect to this insertion event, the flax variety Stormont Cirrus (Pl) when grown under three different nutrient conditions can either remain unchanged (under the control conditions), have the insertion appear in all the plants (under low nutrients) and have this transmitted to the next generation, or have the insertion (or parts of it) appear but not be transmitted through generations (under high nutrients) 4. The frequency of the appearance of this insertion indicates that it is under positive selection, which is also consistent with the growth response in subsequent generations. Leaves or meristems harvested at various stages of growth are used for DNA and RNA isolation. The RNA is used to identify variation in expression associated with the various growth environments and/or t he presence/absence of LIS-1. The isolated DNA is used to identify those plants in which the insertion has occurred.
Plant Biology, Issue 47, Flax, genome variation, environmental stress, small RNAs, altered gene expression
2332
Play Button
Vaccinia Virus Infection & Temporal Analysis of Virus Gene Expression: Part 2
Authors: Judy Yen, Ron Golan, Kathleen Rubins.
Institutions: MIT - Massachusetts Institute of Technology.
The family Poxviridae consists of large double-stranded DNA containing viruses that replicate exclusively in the cytoplasm of infected cells. Members of the orthopox genus include variola, the causative agent of human small pox, monkeypox, and vaccinia (VAC), the prototypic member of the virus family. Within the relatively large (~ 200 kb) vaccinia genome, three classes of genes are encoded: early, intermediate, and late. While all three classes are transcribed by virally-encoded RNA polymerases, each class serves a different function in the life cycle of the virus. Poxviruses utilize multiple strategies for modulation of the host cellular environment during infection. In order to understand regulation of both host and virus gene expression, we have utilized genome-wide approaches to analyze transcript abundance from both virus and host cells. Here, we demonstrate time course infections of HeLa cells with Vaccinia virus and sampling RNA at several time points post-infection. Both host and viral total RNA is isolated and amplified for hybridization to microarrays for analysis of gene expression.
Cellular Biology, Immunology, Microbiology, Issue 26, Vaccinia, virus, infection, HeLa, TRIzol reagent, total RNA, Microarray, amplification, amino allyl, RNA, Ambion Amino Allyl MessageAmpII, gene expression
1169
Play Button
Use of Stopped-Flow Fluorescence and Labeled Nucleotides to Analyze the ATP Turnover Cycle of Kinesins
Authors: Jennifer T. Patel, Hannah R. Belsham, Alexandra J. Rathbone, Claire T. Friel.
Institutions: University of Nottingham.
The kinesin superfamily of microtubule associated motor proteins share a characteristic motor domain which both hydrolyses ATP and binds microtubules. Kinesins display differences across the superfamily both in ATP turnover and in microtubule interaction. These differences tailor specific kinesins to various functions such as cargo transport, microtubule sliding, microtubule depolymerization and microtubule stabilization. To understand the mechanism of action of a kinesin it is important to understand how the chemical cycle of ATP turnover is coupled to the mechanical cycle of microtubule interaction. To dissect the ATP turnover cycle, one approach is to utilize fluorescently labeled nucleotides to visualize individual steps in the cycle. Determining the kinetics of each nucleotide transition in the ATP turnover cycle allows the rate-limiting step or steps for the complete cycle to be identified. For a kinesin, it is important to know the rate-limiting step, in the absence of microtubules, as this step is generally accelerated several thousand fold when the kinesin interacts with microtubules. The cycle in the absence of microtubules is then compared to that in the presence of microtubules to fully understand a kinesin’s ATP turnover cycle. The kinetics of individual nucleotide transitions are generally too fast to observe by manually mixing reactants, particularly in the presence of microtubules. A rapid mixing device, such as a stopped-flow fluorimeter, which allows kinetics to be observed on timescales of as little as a few milliseconds, can be used to monitor such transitions. Here, we describe protocols in which rapid mixing of reagents by stopped-flow is used in conjunction with fluorescently labeled nucleotides to dissect the ATP turnover cycle of a kinesin.
Chemistry, Issue 92, Kinesin, ATP turnover, mantATP, mantADP, stopped-flow fluorescence, microtubules, enzyme kinetics, nucleotide
52142
Play Button
DNA-affinity-purified Chip (DAP-chip) Method to Determine Gene Targets for Bacterial Two component Regulatory Systems
Authors: Lara Rajeev, Eric G. Luning, Aindrila Mukhopadhyay.
Institutions: Lawrence Berkeley National Laboratory.
In vivo methods such as ChIP-chip are well-established techniques used to determine global gene targets for transcription factors. However, they are of limited use in exploring bacterial two component regulatory systems with uncharacterized activation conditions. Such systems regulate transcription only when activated in the presence of unique signals. Since these signals are often unknown, the in vitro microarray based method described in this video article can be used to determine gene targets and binding sites for response regulators. This DNA-affinity-purified-chip method may be used for any purified regulator in any organism with a sequenced genome. The protocol involves allowing the purified tagged protein to bind to sheared genomic DNA and then affinity purifying the protein-bound DNA, followed by fluorescent labeling of the DNA and hybridization to a custom tiling array. Preceding steps that may be used to optimize the assay for specific regulators are also described. The peaks generated by the array data analysis are used to predict binding site motifs, which are then experimentally validated. The motif predictions can be further used to determine gene targets of orthologous response regulators in closely related species. We demonstrate the applicability of this method by determining the gene targets and binding site motifs and thus predicting the function for a sigma54-dependent response regulator DVU3023 in the environmental bacterium Desulfovibrio vulgaris Hildenborough.
Genetics, Issue 89, DNA-Affinity-Purified-chip, response regulator, transcription factor binding site, two component system, signal transduction, Desulfovibrio, lactate utilization regulator, ChIP-chip
51715
Play Button
Mouse Genome Engineering Using Designer Nucleases
Authors: Mario Hermann, Tomas Cermak, Daniel F. Voytas, Pawel Pelczar.
Institutions: University of Zurich, University of Minnesota.
Transgenic mice carrying site-specific genome modifications (knockout, knock-in) are of vital importance for dissecting complex biological systems as well as for modeling human diseases and testing therapeutic strategies. Recent advances in the use of designer nucleases such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 system for site-specific genome engineering open the possibility to perform rapid targeted genome modification in virtually any laboratory species without the need to rely on embryonic stem (ES) cell technology. A genome editing experiment typically starts with identification of designer nuclease target sites within a gene of interest followed by construction of custom DNA-binding domains to direct nuclease activity to the investigator-defined genomic locus. Designer nuclease plasmids are in vitro transcribed to generate mRNA for microinjection of fertilized mouse oocytes. Here, we provide a protocol for achieving targeted genome modification by direct injection of TALEN mRNA into fertilized mouse oocytes.
Genetics, Issue 86, Oocyte microinjection, Designer nucleases, ZFN, TALEN, Genome Engineering
50930
Play Button
Identification of Key Factors Regulating Self-renewal and Differentiation in EML Hematopoietic Precursor Cells by RNA-sequencing Analysis
Authors: Shan Zong, Shuyun Deng, Kenian Chen, Jia Qian Wu.
Institutions: The University of Texas Graduate School of Biomedical Sciences at Houston.
Hematopoietic stem cells (HSCs) are used clinically for transplantation treatment to rebuild a patient's hematopoietic system in many diseases such as leukemia and lymphoma. Elucidating the mechanisms controlling HSCs self-renewal and differentiation is important for application of HSCs for research and clinical uses. However, it is not possible to obtain large quantity of HSCs due to their inability to proliferate in vitro. To overcome this hurdle, we used a mouse bone marrow derived cell line, the EML (Erythroid, Myeloid, and Lymphocytic) cell line, as a model system for this study. RNA-sequencing (RNA-Seq) has been increasingly used to replace microarray for gene expression studies. We report here a detailed method of using RNA-Seq technology to investigate the potential key factors in regulation of EML cell self-renewal and differentiation. The protocol provided in this paper is divided into three parts. The first part explains how to culture EML cells and separate Lin-CD34+ and Lin-CD34- cells. The second part of the protocol offers detailed procedures for total RNA preparation and the subsequent library construction for high-throughput sequencing. The last part describes the method for RNA-Seq data analysis and explains how to use the data to identify differentially expressed transcription factors between Lin-CD34+ and Lin-CD34- cells. The most significantly differentially expressed transcription factors were identified to be the potential key regulators controlling EML cell self-renewal and differentiation. In the discussion section of this paper, we highlight the key steps for successful performance of this experiment. In summary, this paper offers a method of using RNA-Seq technology to identify potential regulators of self-renewal and differentiation in EML cells. The key factors identified are subjected to downstream functional analysis in vitro and in vivo.
Genetics, Issue 93, EML Cells, Self-renewal, Differentiation, Hematopoietic precursor cell, RNA-Sequencing, Data analysis
52104
Play Button
A Quantitative Assay to Study Protein:DNA Interactions, Discover Transcriptional Regulators of Gene Expression, and Identify Novel Anti-tumor Agents
Authors: Karen F. Underwood, Maria T. Mochin, Jessica L. Brusgard, Moran Choe, Avi Gnatt, Antonino Passaniti.
Institutions: University of Maryland School of Medicine, University of Maryland School of Medicine, University of Maryland School of Medicine, University of Maryland School of Medicine, University of Maryland School of Medicine.
Many DNA-binding assays such as electrophoretic mobility shift assays (EMSA), chemiluminescent assays, chromatin immunoprecipitation (ChIP)-based assays, and multiwell-based assays are used to measure transcription factor activity. However, these assays are nonquantitative, lack specificity, may involve the use of radiolabeled oligonucleotides, and may not be adaptable for the screening of inhibitors of DNA binding. On the other hand, using a quantitative DNA-binding enzyme-linked immunosorbent assay (D-ELISA) assay, we demonstrate nuclear protein interactions with DNA using the RUNX2 transcription factor that depend on specific association with consensus DNA-binding sequences present on biotin-labeled oligonucleotides. Preparation of cells, extraction of nuclear protein, and design of double stranded oligonucleotides are described. Avidin-coated 96-well plates are fixed with alkaline buffer and incubated with nuclear proteins in nucleotide blocking buffer. Following extensive washing of the plates, specific primary antibody and secondary antibody incubations are followed by the addition of horseradish peroxidase substrate and development of the colorimetric reaction. Stop reaction mode or continuous kinetic monitoring were used to quantitatively measure protein interaction with DNA. We discuss appropriate specificity controls, including treatment with non-specific IgG or without protein or primary antibody. Applications of the assay are described including its utility in drug screening and representative positive and negative results are discussed.
Cellular Biology, Issue 78, Transcription Factors, Vitamin D, Drug Discovery, Enzyme-Linked Immunosorbent Assay (ELISA), DNA-binding, transcription factor, drug screening, antibody
50512
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
51506
Play Button
Isothermal Titration Calorimetry for Measuring Macromolecule-Ligand Affinity
Authors: Michael R. Duff, Jr., Jordan Grubbs, Elizabeth E. Howell.
Institutions: University of Tennessee .
Isothermal titration calorimetry (ITC) is a useful tool for understanding the complete thermodynamic picture of a binding reaction. In biological sciences, macromolecular interactions are essential in understanding the machinery of the cell. Experimental conditions, such as buffer and temperature, can be tailored to the particular binding system being studied. However, careful planning is needed since certain ligand and macromolecule concentration ranges are necessary to obtain useful data. Concentrations of the macromolecule and ligand need to be accurately determined for reliable results. Care also needs to be taken when preparing the samples as impurities can significantly affect the experiment. When ITC experiments, along with controls, are performed properly, useful binding information, such as the stoichiometry, affinity and enthalpy, are obtained. By running additional experiments under different buffer or temperature conditions, more detailed information can be obtained about the system. A protocol for the basic setup of an ITC experiment is given.
Molecular Biology, Issue 55, Isothermal titration calorimetry, thermodynamics, binding affinity, enthalpy, entropy, free energy
2796
Play Button
Analyzing Protein Dynamics Using Hydrogen Exchange Mass Spectrometry
Authors: Nikolai Hentze, Matthias P. Mayer.
Institutions: University of Heidelberg.
All cellular processes depend on the functionality of proteins. Although the functionality of a given protein is the direct consequence of its unique amino acid sequence, it is only realized by the folding of the polypeptide chain into a single defined three-dimensional arrangement or more commonly into an ensemble of interconverting conformations. Investigating the connection between protein conformation and its function is therefore essential for a complete understanding of how proteins are able to fulfill their great variety of tasks. One possibility to study conformational changes a protein undergoes while progressing through its functional cycle is hydrogen-1H/2H-exchange in combination with high-resolution mass spectrometry (HX-MS). HX-MS is a versatile and robust method that adds a new dimension to structural information obtained by e.g. crystallography. It is used to study protein folding and unfolding, binding of small molecule ligands, protein-protein interactions, conformational changes linked to enzyme catalysis, and allostery. In addition, HX-MS is often used when the amount of protein is very limited or crystallization of the protein is not feasible. Here we provide a general protocol for studying protein dynamics with HX-MS and describe as an example how to reveal the interaction interface of two proteins in a complex.   
Chemistry, Issue 81, Molecular Chaperones, mass spectrometers, Amino Acids, Peptides, Proteins, Enzymes, Coenzymes, Protein dynamics, conformational changes, allostery, protein folding, secondary structure, mass spectrometry
50839
Play Button
Detection of the Genome and Transcripts of a Persistent DNA Virus in Neuronal Tissues by Fluorescent In situ Hybridization Combined with Immunostaining
Authors: Frédéric Catez, Antoine Rousseau, Marc Labetoulle, Patrick Lomonte.
Institutions: CNRS UMR 5534, Université de Lyon 1, LabEX DEVweCAN, CNRS UPR 3296, CNRS UMR 5286.
Single cell codetection of a gene, its RNA product and cellular regulatory proteins is critical to study gene expression regulation. This is a challenge in the field of virology; in particular for nuclear-replicating persistent DNA viruses that involve animal models for their study. Herpes simplex virus type 1 (HSV-1) establishes a life-long latent infection in peripheral neurons. Latent virus serves as reservoir, from which it reactivates and induces a new herpetic episode. The cell biology of HSV-1 latency remains poorly understood, in part due to the lack of methods to detect HSV-1 genomes in situ in animal models. We describe a DNA-fluorescent in situ hybridization (FISH) approach efficiently detecting low-copy viral genomes within sections of neuronal tissues from infected animal models. The method relies on heat-based antigen unmasking, and directly labeled home-made DNA probes, or commercially available probes. We developed a triple staining approach, combining DNA-FISH with RNA-FISH and immunofluorescence, using peroxidase based signal amplification to accommodate each staining requirement. A major improvement is the ability to obtain, within 10 µm tissue sections, low-background signals that can be imaged at high resolution by confocal microscopy and wide-field conventional epifluorescence. Additionally, the triple staining worked with a wide range of antibodies directed against cellular and viral proteins. The complete protocol takes 2.5 days to accommodate antibody and probe penetration within the tissue.
Neuroscience, Issue 83, Life Sciences (General), Virology, Herpes Simplex Virus (HSV), Latency, In situ hybridization, Nuclear organization, Gene expression, Microscopy
51091
Play Button
In Vivo Modeling of the Morbid Human Genome using Danio rerio
Authors: Adrienne R. Niederriter, Erica E. Davis, Christelle Golzio, Edwin C. Oh, I-Chun Tsai, Nicholas Katsanis.
Institutions: Duke University Medical Center, Duke University, Duke University Medical Center.
Here, we present methods for the development of assays to query potentially clinically significant nonsynonymous changes using in vivo complementation in zebrafish. Zebrafish (Danio rerio) are a useful animal system due to their experimental tractability; embryos are transparent to enable facile viewing, undergo rapid development ex vivo, and can be genetically manipulated.1 These aspects have allowed for significant advances in the analysis of embryogenesis, molecular processes, and morphogenetic signaling. Taken together, the advantages of this vertebrate model make zebrafish highly amenable to modeling the developmental defects in pediatric disease, and in some cases, adult-onset disorders. Because the zebrafish genome is highly conserved with that of humans (~70% orthologous), it is possible to recapitulate human disease states in zebrafish. This is accomplished either through the injection of mutant human mRNA to induce dominant negative or gain of function alleles, or utilization of morpholino (MO) antisense oligonucleotides to suppress genes to mimic loss of function variants. Through complementation of MO-induced phenotypes with capped human mRNA, our approach enables the interpretation of the deleterious effect of mutations on human protein sequence based on the ability of mutant mRNA to rescue a measurable, physiologically relevant phenotype. Modeling of the human disease alleles occurs through microinjection of zebrafish embryos with MO and/or human mRNA at the 1-4 cell stage, and phenotyping up to seven days post fertilization (dpf). This general strategy can be extended to a wide range of disease phenotypes, as demonstrated in the following protocol. We present our established models for morphogenetic signaling, craniofacial, cardiac, vascular integrity, renal function, and skeletal muscle disorder phenotypes, as well as others.
Molecular Biology, Issue 78, Genetics, Biomedical Engineering, Medicine, Developmental Biology, Biochemistry, Anatomy, Physiology, Bioengineering, Genomics, Medical, zebrafish, in vivo, morpholino, human disease modeling, transcription, PCR, mRNA, DNA, Danio rerio, animal model
50338
Play Button
Metabolic Labeling of Leucine Rich Repeat Kinases 1 and 2 with Radioactive Phosphate
Authors: Jean-Marc Taymans, Fangye Gao, Veerle Baekelandt.
Institutions: KU Leuven and Leuven Institute for Neuroscience and Disease (LIND).
Leucine rich repeat kinases 1 and 2 (LRRK1 and LRRK2) are paralogs which share a similar domain organization, including a serine-threonine kinase domain, a Ras of complex proteins domain (ROC), a C-terminal of ROC domain (COR), and leucine-rich and ankyrin-like repeats at the N-terminus. The precise cellular roles of LRRK1 and LRRK2 have yet to be elucidated, however LRRK1 has been implicated in tyrosine kinase receptor signaling1,2, while LRRK2 is implicated in the pathogenesis of Parkinson's disease3,4. In this report, we present a protocol to label the LRRK1 and LRRK2 proteins in cells with 32P orthophosphate, thereby providing a means to measure the overall phosphorylation levels of these 2 proteins in cells. In brief, affinity tagged LRRK proteins are expressed in HEK293T cells which are exposed to medium containing 32P-orthophosphate. The 32P-orthophosphate is assimilated by the cells after only a few hours of incubation and all molecules in the cell containing phosphates are thereby radioactively labeled. Via the affinity tag (3xflag) the LRRK proteins are isolated from other cellular components by immunoprecipitation. Immunoprecipitates are then separated via SDS-PAGE, blotted to PVDF membranes and analysis of the incorporated phosphates is performed by autoradiography (32P signal) and western detection (protein signal) of the proteins on the blots. The protocol can readily be adapted to monitor phosphorylation of any other protein that can be expressed in cells and isolated by immunoprecipitation.
Cellular Biology, Issue 79, biology (general), biochemistry, bioengineering (general), LRRK1, LRRK2, metabolic labeling, 32P orthophosphate, immunoprecipitation, autoradiography
50523
Play Button
Transient Gene Expression in Tobacco using Gibson Assembly and the Gene Gun
Authors: Matthew D. Mattozzi, Mathias J. Voges, Pamela A. Silver, Jeffrey C. Way.
Institutions: Harvard University, Harvard Medical School, Delft University of Technology.
In order to target a single protein to multiple subcellular organelles, plants typically duplicate the relevant genes, and express each gene separately using complex regulatory strategies including differential promoters and/or signal sequences. Metabolic engineers and synthetic biologists interested in targeting enzymes to a particular organelle are faced with a challenge: For a protein that is to be localized to more than one organelle, the engineer must clone the same gene multiple times. This work presents a solution to this strategy: harnessing alternative splicing of mRNA. This technology takes advantage of established chloroplast and peroxisome targeting sequences and combines them into a single mRNA that is alternatively spliced. Some splice variants are sent to the chloroplast, some to the peroxisome, and some to the cytosol. Here the system is designed for multiple-organelle targeting with alternative splicing. In this work, GFP was expected to be expressed in the chloroplast, cytosol, and peroxisome by a series of rationally designed 5’ mRNA tags. These tags have the potential to reduce the amount of cloning required when heterologous genes need to be expressed in multiple subcellular organelles. The constructs were designed in previous work11, and were cloned using Gibson assembly, a ligation independent cloning method that does not require restriction enzymes. The resultant plasmids were introduced into Nicotiana benthamiana epidermal leaf cells with a modified Gene Gun protocol. Finally, transformed leaves were observed with confocal microscopy.
Environmental Sciences, Issue 86, Plant Leaves, Synthetic Biology, Plants, Genetically Modified, DNA, Plant, RNA, Gene Targeting, Plant Physiological Processes, Genes, Gene gun, Gibson assembly, Nicotiana benthamiana, Alternative splicing, confocal microscopy, chloroplast, peroxisome
51234
Play Button
Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney
Authors: Kristen K. McCampbell, Kristin N. Springer, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
Cellular Biology, Issue 90, zebrafish; kidney; nephron; nephrology; renal; regeneration; proximal tubule; distal tubule; segment; mesonephros; physiology; acute kidney injury (AKI)
51644
Play Button
Sonication-facilitated Immunofluorescence Staining of Late-stage Embryonic and Larval Drosophila Tissues In Situ
Authors: Ashley Fidler, Lauren Boulay, Matthew Wawersik.
Institutions: College of William & Mary.
Studies performed in Drosophila melanogaster embryos and larvae provide crucial insight into developmental processes such as cell fate specification and organogenesis. Immunostaining allows for the visualization of developing tissues and organs. However, a protective cuticle that forms at the end of embryogenesis prevents permeation of antibodies into late-stage embryos and larvae. While dissection prior to immunostaining is regularly used to analyze Drosophila larval tissues, it proves inefficient for some analyses because small tissues may be difficult to locate and isolate. Sonication provides an alternative to dissection in larval Drosophila immunostaining protocols. It allows for quick, simultaneous processing of large numbers of late-stage embryos and larvae and maintains in situ morphology. After fixation in formaldehyde, a sample is sonicated. Sample is then subjected to immunostaining with antigen-specific primary antibodies and fluorescently labeled secondary antibodies to visualize target cell types and specific proteins via fluorescence microscopy. During the process of sonication, proper placement of a sonicating probe above the sample, as well as the duration and intensity of sonication, is critical. Additonal minor modifications to standard immunostaining protocols may be required for high quality stains. For antibodies with low signal to noise ratio, longer incubation times are typically necessary. As a proof of concept for this sonication-facilitated protocol, we show immunostains of three tissue types (testes, ovaries, and neural tissues) at a range of developmental stages.
Molecular Biology, Issue 90, Drosophila, embryo, larvae, sonication, fixation, immunostain, immunofluorescence, organogenesis, development
51528
Play Button
Lignin Down-regulation of Zea mays via dsRNAi and Klason Lignin Analysis
Authors: Sang-Hyuck Park, Rebecca Garlock Ong, Chuansheng Mei, Mariam Sticklen.
Institutions: University of Arizona, Michigan State University, The Institute for Advanced Learning and Research, Michigan State University.
To facilitate the use of lignocellulosic biomass as an alternative bioenergy resource, during biological conversion processes, a pretreatment step is needed to open up the structure of the plant cell wall, increasing the accessibility of the cell wall carbohydrates. Lignin, a polyphenolic material present in many cell wall types, is known to be a significant hindrance to enzyme access. Reduction in lignin content to a level that does not interfere with the structural integrity and defense system of the plant might be a valuable step to reduce the costs of bioethanol production. In this study, we have genetically down-regulated one of the lignin biosynthesis-related genes, cinnamoyl-CoA reductase (ZmCCR1) via a double stranded RNA interference technique. The ZmCCR1_RNAi construct was integrated into the maize genome using the particle bombardment method. Transgenic maize plants grew normally as compared to the wild-type control plants without interfering with biomass growth or defense mechanisms, with the exception of displaying of brown-coloration in transgenic plants leaf mid-ribs, husks, and stems. The microscopic analyses, in conjunction with the histological assay, revealed that the leaf sclerenchyma fibers were thinned but the structure and size of other major vascular system components was not altered. The lignin content in the transgenic maize was reduced by 7-8.7%, the crystalline cellulose content was increased in response to lignin reduction, and hemicelluloses remained unchanged. The analyses may indicate that carbon flow might have been shifted from lignin biosynthesis to cellulose biosynthesis. This article delineates the procedures used to down-regulate the lignin content in maize via RNAi technology, and the cell wall compositional analyses used to verify the effect of the modifications on the cell wall structure.
Bioengineering, Issue 89, Zea mays, cinnamoyl-CoA reductase (CCR), dsRNAi, Klason lignin measurement, cell wall carbohydrate analysis, gas chromatography (GC)
51340
Play Button
Efficient Polyethylene Glycol (PEG) Mediated Transformation of the Moss Physcomitrella patens
Authors: Yen-Chun Liu, Luis Vidali.
Institutions: Worcester Polytechnic Institute- WPI.
A simple and efficient method to transform Physcomitrella pantens protoplasts is described. This method is adapted from protocols for Physocmitrella protonemal protoplast and Arabidopsis mesophyll protoplast transformation1. Due to its capacity to undergo efficient mitotic homologous recombination, Physcomitrella patens has emerged as an important model system in recent years2. This capacity allows high frequencies of gene targeting3-9, which is not seen in other model plants such as Arabidopsis. To take full advantage of this system, we need an effective and easy method to deliver DNA into moss cells. The most common ways to transform this moss are particle bombardment10 and PEG-mediated DNA uptake11. Although particle bombardment can produce a high transformation efficiency12, gene guns are not readily available to many laboratories and the protocol is difficult to standardize. On the other hand, PEG mediated transformation does not require specialized equipments, and can be performed in any laboratory with a sterile hood. Here, we show a simple and highly efficient method for transformation of moss protoplasts. This method can generate more than 120 transient transformants per microgram of DNA, which is an improvement from the most efficient protocol previously reported13. Because of its simplicity, efficiency, and reproducibility, this method can be applied to projects requiring large number of transformants as well as for routine transformation.
Plant Biology, Issue 50, Transformation, Physcomitrella patens, polyethylene glycol, protoplasts
2560
Play Button
Identification of Post-translational Modifications of Plant Protein Complexes
Authors: Sophie J. M. Piquerez, Alexi L. Balmuth, Jan Sklenář, Alexandra M.E. Jones, John P. Rathjen, Vardis Ntoukakis.
Institutions: University of Warwick, Norwich Research Park, The Australian National University.
Plants adapt quickly to changing environments due to elaborate perception and signaling systems. During pathogen attack, plants rapidly respond to infection via the recruitment and activation of immune complexes. Activation of immune complexes is associated with post-translational modifications (PTMs) of proteins, such as phosphorylation, glycosylation, or ubiquitination. Understanding how these PTMs are choreographed will lead to a better understanding of how resistance is achieved. Here we describe a protein purification method for nucleotide-binding leucine-rich repeat (NB-LRR)-interacting proteins and the subsequent identification of their post-translational modifications (PTMs). With small modifications, the protocol can be applied for the purification of other plant protein complexes. The method is based on the expression of an epitope-tagged version of the protein of interest, which is subsequently partially purified by immunoprecipitation and subjected to mass spectrometry for identification of interacting proteins and PTMs. This protocol demonstrates that: i). Dynamic changes in PTMs such as phosphorylation can be detected by mass spectrometry; ii). It is important to have sufficient quantities of the protein of interest, and this can compensate for the lack of purity of the immunoprecipitate; iii). In order to detect PTMs of a protein of interest, this protein has to be immunoprecipitated to get a sufficient quantity of protein.
Plant Biology, Issue 84, plant-microbe interactions, protein complex purification, mass spectrometry, protein phosphorylation, Prf, Pto, AvrPto, AvrPtoB
51095
Play Button
Non-radioactive in situ Hybridization Protocol Applicable for Norway Spruce and a Range of Plant Species
Authors: Anna Karlgren, Jenny Carlsson, Niclas Gyllenstrand, Ulf Lagercrantz, Jens F. Sundström.
Institutions: Uppsala University, Swedish University of Agricultural Sciences.
The high-throughput expression analysis technologies available today give scientists an overflow of expression profiles but their resolution in terms of tissue specific expression is limited because of problems in dissecting individual tissues. Expression data needs to be confirmed and complemented with expression patterns using e.g. in situ hybridization, a technique used to localize cell specific mRNA expression. The in situ hybridization method is laborious, time-consuming and often requires extensive optimization depending on species and tissue. In situ experiments are relatively more difficult to perform in woody species such as the conifer Norway spruce (Picea abies). Here we present a modified DIG in situ hybridization protocol, which is fast and applicable on a wide range of plant species including P. abies. With just a few adjustments, including altered RNase treatment and proteinase K concentration, we could use the protocol to study tissue specific expression of homologous genes in male reproductive organs of one gymnosperm and two angiosperm species; P. abies, Arabidopsis thaliana and Brassica napus. The protocol worked equally well for the species and genes studied. AtAP3 and BnAP3 were observed in second and third whorl floral organs in A. thaliana and B. napus and DAL13 in microsporophylls of male cones from P. abies. For P. abies the proteinase K concentration, used to permeablize the tissues, had to be increased to 3 g/ml instead of 1 g/ml, possibly due to more compact tissues and higher levels of phenolics and polysaccharides. For all species the RNase treatment was removed due to reduced signal strength without a corresponding increase in specificity. By comparing tissue specific expression patterns of homologous genes from both flowering plants and a coniferous tree we demonstrate that the DIG in situ protocol presented here, with only minute adjustments, can be applied to a wide range of plant species. Hence, the protocol avoids both extensive species specific optimization and the laborious use of radioactively labeled probes in favor of DIG labeled probes. We have chosen to illustrate the technically demanding steps of the protocol in our film. Anna Karlgren and Jenny Carlsson contributed equally to this study. Corresponding authors: Anna Karlgren at Anna.Karlgren@ebc.uu.se and Jens F. Sundström at Jens.Sundstrom@vbsg.slu.se
Plant Biology, Issue 26, RNA, expression analysis, Norway spruce, Arabidopsis, rapeseed, conifers
1205
Play Button
Building a Better Mosquito: Identifying the Genes Enabling Malaria and Dengue Fever Resistance in A. gambiae and A. aegypti Mosquitoes
Authors: George Dimopoulos.
Institutions: Johns Hopkins University.
In this interview, George Dimopoulos focuses on the physiological mechanisms used by mosquitoes to combat Plasmodium falciparum and dengue virus infections. Explanation is given for how key refractory genes, those genes conferring resistance to vector pathogens, are identified in the mosquito and how this knowledge can be used to generate transgenic mosquitoes that are unable to carry the malaria parasite or dengue virus.
Cellular Biology, Issue 5, Translational Research, mosquito, malaria, virus, dengue, genetics, injection, RNAi, transgenesis, transgenic
233
Play Button
Virus-induced Gene Silencing (VIGS) in Nicotiana benthamiana and Tomato
Authors: Andrá C. Velásquez, Suma Chakravarthy, Gregory B. Martin.
Institutions: Cornell University, Boyce Thompson Institute for Plant Research.
RNA interference (RNAi) is a highly specific gene-silencing phenomenon triggered by dsRNA1. This silencing mechanism uses two major classes of RNA regulators: microRNAs, which are produced from non-protein coding genes and short interfering RNAs (siRNAs). Plants use RNAi to control transposons and to exert tight control over developmental processes such as flower organ formation and leaf development2,3,4. Plants also use RNAi to defend themselves against infection by viruses. Consequently, many viruses have evolved suppressors of gene silencing to allow their successful colonization of their host5. Virus-induced gene silencing (VIGS) is a method that takes advantage of the plant RNAi-mediated antiviral defense mechanism. In plants infected with unmodified viruses the mechanism is specifically targeted against the viral genome. However, with virus vectors carrying sequences derived from host genes, the process can be additionally targeted against the corresponding host mRNAs. VIGS has been adapted for high-throughput functional genomics in plants by using the plant pathogen Agrobacterium tumefaciens to deliver, via its Ti plasmid, a recombinant virus carrying the entire or part of the gene sequence targeted for silencing. Systemic virus spread and the endogenous plant RNAi machinery take care of the rest. dsRNAs corresponding to the target gene are produced and then cleaved by the ribonuclease Dicer into siRNAs of 21 to 24 nucleotides in length. These siRNAs ultimately guide the RNA-induced silencing complex (RISC) to degrade the target transcript2. Different vectors have been employed in VIGS and one of the most frequently used is based on tobacco rattle virus (TRV). TRV is a bipartite virus and, as such, two different A. tumefaciens strains are used for VIGS. One carries pTRV1, which encodes the replication and movement viral functions while the other, pTRV2, harbors the coat protein and the sequence used for VIGS6,7. Inoculation of Nicotiana benthamiana and tomato seedlings with a mixture of both strains results in gene silencing. Silencing of the endogenous phytoene desaturase (PDS) gene, which causes photobleaching, is used as a control for VIGS efficiency. It should be noted, however, that silencing in tomato is usually less efficient than in N. benthamiana. RNA transcript abundance of the gene of interest should always be measured to ensure that the target gene has efficiently been down-regulated. Nevertheless, heterologous gene sequences from N. benthamiana can be used to silence their respective orthologs in tomato and vice versa8.
Plant Biology, Issue 28, Virus-induced gene silencing (VIGS), RNA interference (RNAi), Tobacco Rattle Virus (TRV) vectors, Nicotiana benthamiana, tomato
1292
Play Button
Use of Arabidopsis eceriferum Mutants to Explore Plant Cuticle Biosynthesis
Authors: Lacey Samuels, Allan DeBono, Patricia Lam, Miao Wen, Reinhard Jetter, Ljerka Kunst.
Institutions: University of British Columbia - UBC, University of British Columbia - UBC.
The plant cuticle is a waxy outer covering on plants that has a primary role in water conservation, but is also an important barrier against the entry of pathogenic microorganisms. The cuticle is made up of a tough crosslinked polymer called "cutin" and a protective wax layer that seals the plant surface. The waxy layer of the cuticle is obvious on many plants, appearing as a shiny film on the ivy leaf or as a dusty outer covering on the surface of a grape or a cabbage leaf thanks to light scattering crystals present in the wax. Because the cuticle is an essential adaptation of plants to a terrestrial environment, understanding the genes involved in plant cuticle formation has applications in both agriculture and forestry. Today, we'll show the analysis of plant cuticle mutants identified by forward and reverse genetics approaches.
Plant Biology, Issue 16, Annual Review, Cuticle, Arabidopsis, Eceriferum Mutants, Cryso-SEM, Gas Chromatography
709
Play Button
Vaccinia Virus Infection & Temporal Analysis of Virus Gene Expression: Part 3
Authors: Judy Yen, Ron Golan, Kathleen Rubins.
Institutions: MIT - Massachusetts Institute of Technology.
The family Poxviridae consists of large double-stranded DNA containing viruses that replicate exclusively in the cytoplasm of infected cells. Members of the orthopox genus include variola, the causative agent of human small pox, monkeypox, and vaccinia (VAC), the prototypic member of the virus family. Within the relatively large (~ 200 kb) vaccinia genome, three classes of genes are encoded: early, intermediate, and late. While all three classes are transcribed by virally-encoded RNA polymerases, each class serves a different function in the life cycle of the virus. Poxviruses utilize multiple strategies for modulation of the host cellular environment during infection. In order to understand regulation of both host and virus gene expression, we have utilized genome-wide approaches to analyze transcript abundance from both virus and host cells. Here, we demonstrate time course infections of HeLa cells with Vaccinia virus and sampling RNA at several time points post-infection. Both host and viral total RNA is isolated and amplified for hybridization to microarrays for analysis of gene expression.
Microbiology, Issue 26, Vaccinia, virus, infection, HeLa, Microarray, amplified RNA, amino allyl, RNA, Ambion Amino Allyl MessageAmpII, gene expression
1170
Play Button
Actin Co-Sedimentation Assay; for the Analysis of Protein Binding to F-Actin
Authors: Jyoti Srivastava, Diane Barber.
Institutions: University of California, San Francisco - UCSF.
The actin cytoskeleton within the cell is a network of actin filaments that allows the movement of cells and cellular processes, and that generates tension and helps maintains cellular shape. Although the actin cytoskeleton is a rigid structure, it is a dynamic structure that is constantly remodeling. A number of proteins can bind to the actin cytoskeleton. The binding of a particular protein to F-actin is often desired to support cell biological observations or to further understand dynamic processes due to remodeling of the actin cytoskeleton. The actin co-sedimentation assay is an in vitro assay routinely used to analyze the binding of specific proteins or protein domains with F-actin. The basic principles of the assay involve an incubation of the protein of interest (full length or domain of) with F-actin, ultracentrifugation step to pellet F-actin and analysis of the protein co-sedimenting with F-actin. Actin co-sedimentation assays can be designed accordingly to measure actin binding affinities and in competition assays.
Biochemistry, Issue 13, F-actin, protein, in vitro binding, ultracentrifugation
690
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.