JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Generalized DNA barcode design based on Hamming codes.
The diversity and scope of multiplex parallel sequencing applications is steadily increasing. Critically, multiplex parallel sequencing applications methods rely on the use of barcoded primers for sample identification, and the quality of the barcodes directly impacts the quality of the resulting sequence data. Inspection of the recent publications reveals a surprisingly variable quality of the barcodes employed. Some barcodes are made in a semi empirical fashion, without quantitative consideration of error correction or minimal distance properties. After systematic comparison of published barcode sets, including commercially distributed barcoded primers from Illumina and Epicentre, methods for improved, Hamming code-based sequences are suggested and illustrated. Hamming barcodes can be employed for DNA tag designs in many different ways while preserving minimal distance and error-correcting properties. In addition, Hamming barcodes remain flexible with regard to essential biological parameters such as sequence redundancy and GC content. Wider adoption of improved Hamming barcodes is encouraged in multiplex parallel sequencing applications.
Authors: Andrew M. Smith, Tanja Durbic, Julia Oh, Malene Urbanus, Michael Proctor, Lawrence E. Heisler, Guri Giaever, Corey Nislow.
Published: 08-11-2011
By virtue of advances in next generation sequencing technologies, we have access to new genome sequences almost daily. The tempo of these advances is accelerating, promising greater depth and breadth. In light of these extraordinary advances, the need for fast, parallel methods to define gene function becomes ever more important. Collections of genome-wide deletion mutants in yeasts and E. coli have served as workhorses for functional characterization of gene function, but this approach is not scalable, current gene-deletion approaches require each of the thousands of genes that comprise a genome to be deleted and verified. Only after this work is complete can we pursue high-throughput phenotyping. Over the past decade, our laboratory has refined a portfolio of competitive, miniaturized, high-throughput genome-wide assays that can be performed in parallel. This parallelization is possible because of the inclusion of DNA 'tags', or 'barcodes,' into each mutant, with the barcode serving as a proxy for the mutation and one can measure the barcode abundance to assess mutant fitness. In this study, we seek to fill the gap between DNA sequence and barcoded mutant collections. To accomplish this we introduce a combined transposon disruption-barcoding approach that opens up parallel barcode assays to newly sequenced, but poorly characterized microbes. To illustrate this approach we present a new Candida albicans barcoded disruption collection and describe how both microarray-based and next generation sequencing-based platforms can be used to collect 10,000 - 1,000,000 gene-gene and drug-gene interactions in a single experiment.
19 Related JoVE Articles!
Play Button
Next-generation Sequencing of 16S Ribosomal RNA Gene Amplicons
Authors: Sylvie Sanschagrin, Etienne Yergeau.
Institutions: National Research Council Canada.
One of the major questions in microbial ecology is “who is there?” This question can be answered using various tools, but one of the long-lasting gold standards is to sequence 16S ribosomal RNA (rRNA) gene amplicons generated by domain-level PCR reactions amplifying from genomic DNA. Traditionally, this was performed by cloning and Sanger (capillary electrophoresis) sequencing of PCR amplicons. The advent of next-generation sequencing has tremendously simplified and increased the sequencing depth for 16S rRNA gene sequencing. The introduction of benchtop sequencers now allows small labs to perform their 16S rRNA sequencing in-house in a matter of days. Here, an approach for 16S rRNA gene amplicon sequencing using a benchtop next-generation sequencer is detailed. The environmental DNA is first amplified by PCR using primers that contain sequencing adapters and barcodes. They are then coupled to spherical particles via emulsion PCR. The particles are loaded on a disposable chip and the chip is inserted in the sequencing machine after which the sequencing is performed. The sequences are retrieved in fastq format, filtered and the barcodes are used to establish the sample membership of the reads. The filtered and binned reads are then further analyzed using publically available tools. An example analysis where the reads were classified with a taxonomy-finding algorithm within the software package Mothur is given. The method outlined here is simple, inexpensive and straightforward and should help smaller labs to take advantage from the ongoing genomic revolution.
Molecular Biology, Issue 90, Metagenomics, Bacteria, 16S ribosomal RNA gene, Amplicon sequencing, Next-generation sequencing, benchtop sequencers
Play Button
Chromatin Interaction Analysis with Paired-End Tag Sequencing (ChIA-PET) for Mapping Chromatin Interactions and Understanding Transcription Regulation
Authors: Yufen Goh, Melissa J. Fullwood, Huay Mei Poh, Su Qin Peh, Chin Thing Ong, Jingyao Zhang, Xiaoan Ruan, Yijun Ruan.
Institutions: Agency for Science, Technology and Research, Singapore, A*STAR-Duke-NUS Neuroscience Research Partnership, Singapore, National University of Singapore, Singapore.
Genomes are organized into three-dimensional structures, adopting higher-order conformations inside the micron-sized nuclear spaces 7, 2, 12. Such architectures are not random and involve interactions between gene promoters and regulatory elements 13. The binding of transcription factors to specific regulatory sequences brings about a network of transcription regulation and coordination 1, 14. Chromatin Interaction Analysis by Paired-End Tag Sequencing (ChIA-PET) was developed to identify these higher-order chromatin structures 5,6. Cells are fixed and interacting loci are captured by covalent DNA-protein cross-links. To minimize non-specific noise and reduce complexity, as well as to increase the specificity of the chromatin interaction analysis, chromatin immunoprecipitation (ChIP) is used against specific protein factors to enrich chromatin fragments of interest before proximity ligation. Ligation involving half-linkers subsequently forms covalent links between pairs of DNA fragments tethered together within individual chromatin complexes. The flanking MmeI restriction enzyme sites in the half-linkers allow extraction of paired end tag-linker-tag constructs (PETs) upon MmeI digestion. As the half-linkers are biotinylated, these PET constructs are purified using streptavidin-magnetic beads. The purified PETs are ligated with next-generation sequencing adaptors and a catalog of interacting fragments is generated via next-generation sequencers such as the Illumina Genome Analyzer. Mapping and bioinformatics analysis is then performed to identify ChIP-enriched binding sites and ChIP-enriched chromatin interactions 8. We have produced a video to demonstrate critical aspects of the ChIA-PET protocol, especially the preparation of ChIP as the quality of ChIP plays a major role in the outcome of a ChIA-PET library. As the protocols are very long, only the critical steps are shown in the video.
Genetics, Issue 62, ChIP, ChIA-PET, Chromatin Interactions, Genomics, Next-Generation Sequencing
Play Button
A PCR-based Genotyping Method to Distinguish Between Wild-type and Ornamental Varieties of Imperata cylindrica
Authors: Leland J. Cseke, Sharon M. Talley.
Institutions: The University of Alabama, Huntsville, Center for Plant Health Science and Technology.
Wild-type I. cylindrica (cogongrass) is one of the top ten worst invasive plants in the world, negatively impacting agricultural and natural resources in 73 different countries throughout Africa, Asia, Europe, New Zealand, Oceania and the Americas1-2. Cogongrass forms rapidly-spreading, monodominant stands that displace a large variety of native plant species and in turn threaten the native animals that depend on the displaced native plant species for forage and shelter. To add to the problem, an ornamental variety [I. cylindrica var. koenigii (Retzius)] is widely marketed under the names of Imperata cylindrica 'Rubra', Red Baron, and Japanese blood grass (JBG). This variety is putatively sterile and noninvasive and is considered a desirable ornamental for its red-colored leaves. However, under the correct conditions, JBG can produce viable seed (Carol Holko, 2009 personal communication) and can revert to a green invasive form that is often indistinguishable from cogongrass as it takes on the distinguishing characteristics of the wild-type invasive variety4 (Figure 1). This makes identification using morphology a difficult task even for well-trained plant taxonomists. Reversion of JBG to an aggressive green phenotype is also not a rare occurrence. Using sequence comparisons of coding and variable regions in both nuclear and chloroplast DNA, we have confirmed that JBG has reverted to the green invasive within the states of Maryland, South Carolina, and Missouri. JBG has been sold and planted in just about every state in the continental U.S. where there is not an active cogongrass infestation. The extent of the revert problem in not well understood because reverted plants are undocumented and often destroyed. Application of this molecular protocol provides a method to identify JBG reverts and can help keep these varieties from co-occurring and possibly hybridizing. Cogongrass is an obligate outcrosser and, when crossed with a different genotype, can produce viable wind-dispersed seeds that spread cogongrass over wide distances5-7. JBG has a slightly different genotype than cogongrass and may be able to form viable hybrids with cogongrass. To add to the problem, JBG is more cold and shade tolerant than cogongrass8-10, and gene flow between these two varieties is likely to generate hybrids that are more aggressive, shade tolerant, and cold hardy than wild-type cogongrass. While wild-type cogongrass currently infests over 490 million hectares worldwide, in the Southeast U.S. it infests over 500,000 hectares and is capable of occupying most of the U.S. as it rapidly spreads northward due to its broad niche and geographic potential3,7,11. The potential of a genetic crossing is a serious concern for the USDA-APHIS Federal Noxious Week Program. Currently, the USDA-APHIS prohibits JBG in states where there are major cogongrass infestations (e.g., Florida, Alabama, Mississippi). However, preventing the two varieties from combining can prove more difficult as cogongrass and JBG expand their distributions. Furthermore, the distribution of the JBG revert is currently unknown and without the ability to identify these varieties through morphology, some cogongrass infestations may be the result of JBG reverts. Unfortunately, current molecular methods of identification typically rely on AFLP (Amplified Fragment Length Polymorphisms) and DNA sequencing, both of which are time consuming and costly. Here, we present the first cost-effective and reliable PCR-based molecular genotyping method to accurately distinguish between cogongrass and JBG revert.
Molecular Biology, Issue 60, Molecular genotyping, Japanese blood grass, Red Baron, cogongrass, invasive plants
Play Button
Primer Extension Capture: Targeted Sequence Retrieval from Heavily Degraded DNA Sources
Authors: Adrian W. Briggs, Jeffrey M. Good, Richard E. Green, Johannes Krause, Tomislav Maricic, Udo Stenzel, Svante Pääbo.
Institutions: Max-Planck Institute for Evolutionary Anthropology, Leipzig.
We present a method of targeted DNA sequence retrieval from DNA sources which are heavily degraded and contaminated with microbial DNA, as is typical of ancient bones. The method greatly reduces sample destruction and sequencing demands relative to direct PCR or shotgun sequencing approaches. We used this method to reconstruct the complete mitochondrial DNA (mtDNA) genomes of five Neandertals from across their geographic range. The mtDNA genetic diversity of the late Neandertals was approximately three times lower than that of contemporary modern humans. Together with analyses of mtDNA protein evolution, these data suggest that the long-term effective population size of Neandertals was smaller than that of modern humans and extant great apes.
Cellular Biology, Issue 31, Neandertal, anthropology, evolution, ancient DNA, DNA sequencing, targeted sequencing, capture
Play Button
DNA Methylation: Bisulphite Modification and Analysis
Authors: Kate Patterson, Laura Molloy, Wenjia Qu, Susan Clark.
Institutions: Garvan Institute of Medical Research, University of NSW.
Epigenetics describes the heritable changes in gene function that occur independently to the DNA sequence. The molecular basis of epigenetic gene regulation is complex, but essentially involves modifications to the DNA itself or the proteins with which DNA associates. The predominant epigenetic modification of DNA in mammalian genomes is methylation of cytosine nucleotides (5-MeC). DNA methylation provides instruction to gene expression machinery as to where and when the gene should be expressed. The primary target sequence for DNA methylation in mammals is 5'-CpG-3' dinucleotides (Figure 1). CpG dinucleotides are not uniformly distributed throughout the genome, but are concentrated in regions of repetitive genomic sequences and CpG "islands" commonly associated with gene promoters (Figure 1). DNA methylation patterns are established early in development, modulated during tissue specific differentiation and disrupted in many disease states including cancer. To understand the biological role of DNA methylation and its role in human disease, precise, efficient and reproducible methods are required to detect and quantify individual 5-MeCs. This protocol for bisulphite conversion is the "gold standard" for DNA methylation analysis and facilitates identification and quantification of DNA methylation at single nucleotide resolution. The chemistry of cytosine deamination by sodium bisulphite involves three steps (Figure 2). (1) Sulphonation: The addition of bisulphite to the 5-6 double bond of cytosine (2) Hydrolic Deamination: hydrolytic deamination of the resulting cytosine-bisulphite derivative to give a uracil-bisulphite derivative (3) Alkali Desulphonation: Removal of the sulphonate group by an alkali treatment, to give uracil. Bisulphite preferentially deaminates cytosine to uracil in single stranded DNA, whereas 5-MeC, is refractory to bisulphite-mediated deamination. Upon PCR amplification, uracil is amplified as thymine while 5-MeC residues remain as cytosines, allowing methylated CpGs to be distinguished from unmethylated CpGs by presence of a cytosine "C" versus thymine "T" residue during sequencing. DNA modification by bisulphite conversion is a well-established protocol that can be exploited for many methods of DNA methylation analysis. Since the detection of 5-MeC by bisulphite conversion was first demonstrated by Frommer et al.1 and Clark et al.2, methods based around bisulphite conversion of genomic DNA account for the majority of new data on DNA methylation. Different methods of post PCR analysis may be utilized, depending on the degree of specificity and resolution of methylation required. Cloning and sequencing is still the most readily available method that can give single nucleotide resolution for methylation across the DNA molecule.
Genetics, Issue 56, epigenetics, DNA methylation, Bisulphite, 5-methylcytosine (5-MeC), PCR
Play Button
Identification of Sleeping Beauty Transposon Insertions in Solid Tumors using Linker-mediated PCR
Authors: Callie L. Janik, Timothy K. Starr.
Institutions: University of Minnesota, Minneapolis, University of Minnesota, Minneapolis.
Genomic, proteomic, transcriptomic, and epigenomic analyses of human tumors indicate that there are thousands of anomalies within each cancer genome compared to matched normal tissue. Based on these analyses it is evident that there are many undiscovered genetic drivers of cancer1. Unfortunately these drivers are hidden within a much larger number of passenger anomalies in the genome that do not directly contribute to tumor formation. Another aspect of the cancer genome is that there is considerable genetic heterogeneity within similar tumor types. Each tumor can harbor different mutations that provide a selective advantage for tumor formation2. Performing an unbiased forward genetic screen in mice provides the tools to generate tumors and analyze their genetic composition, while reducing the background of passenger mutations. The Sleeping Beauty (SB) transposon system is one such method3. The SB system utilizes mobile vectors (transposons) that can be inserted throughout the genome by the transposase enzyme. Mutations are limited to a specific cell type through the use of a conditional transposase allele that is activated by Cre Recombinase. Many mouse lines exist that express Cre Recombinase in specific tissues. By crossing one of these lines to the conditional transposase allele (e.g. Lox-stop-Lox-SB11), the SB system is activated only in cells that express Cre Recombinase. The Cre Recombinase will excise a stop cassette that blocks expression of the transposase allele, thereby activating transposon mutagenesis within the designated cell type. An SB screen is initiated by breeding three strains of transgenic mice so that the experimental mice carry a conditional transposase allele, a concatamer of transposons, and a tissue-specific Cre Recombinase allele. These mice are allowed to age until tumors form and they become moribund. The mice are then necropsied and genomic DNA is isolated from the tumors. Next, the genomic DNA is subjected to linker-mediated-PCR (LM-PCR) that results in amplification of genomic loci containing an SB transposon. LM-PCR performed on a single tumor will result in hundreds of distinct amplicons representing the hundreds of genomic loci containing transposon insertions in a single tumor4. The transposon insertions in all tumors are analyzed and common insertion sites (CISs) are identified using an appropriate statistical method5. Genes within the CIS are highly likely to be oncogenes or tumor suppressor genes, and are considered candidate cancer genes. The advantages of using the SB system to identify candidate cancer genes are: 1) the transposon can easily be located in the genome because its sequence is known, 2) transposition can be directed to almost any cell type and 3) the transposon is capable of introducing both gain- and loss-of-function mutations6. The following protocol describes how to devise and execute a forward genetic screen using the SB transposon system to identify candidate cancer genes (Figure 1).
Genetics, Issue 72, Medicine, Cancer Biology, Biomedical Engineering, Genomics, Mice, Genetic Techniques, life sciences, animal models, Neoplasms, Genetic Phenomena, Forward genetic screen, cancer drivers, mouse models, oncogenes, tumor suppressor genes, Sleeping Beauty transposons, insertions, DNA, PCR, animal model
Play Button
Transgenic Rodent Assay for Quantifying Male Germ Cell Mutant Frequency
Authors: Jason M. O'Brien, Marc A. Beal, John D. Gingerich, Lynda Soper, George R. Douglas, Carole L. Yauk, Francesco Marchetti.
Institutions: Environmental Health Centre.
De novo mutations arise mostly in the male germline and may contribute to adverse health outcomes in subsequent generations. Traditional methods for assessing the induction of germ cell mutations require the use of large numbers of animals, making them impractical. As such, germ cell mutagenicity is rarely assessed during chemical testing and risk assessment. Herein, we describe an in vivo male germ cell mutation assay using a transgenic rodent model that is based on a recently approved Organisation for Economic Co-operation and Development (OECD) test guideline. This method uses an in vitro positive selection assay to measure in vivo mutations induced in a transgenic λgt10 vector bearing a reporter gene directly in the germ cells of exposed males. We further describe how the detection of mutations in the transgene recovered from germ cells can be used to characterize the stage-specific sensitivity of the various spermatogenic cell types to mutagen exposure by controlling three experimental parameters: the duration of exposure (administration time), the time between exposure and sample collection (sampling time), and the cell population collected for analysis. Because a large number of germ cells can be assayed from a single male, this method has superior sensitivity compared with traditional methods, requires fewer animals and therefore much less time and resources.
Genetics, Issue 90, sperm, spermatogonia, male germ cells, spermatogenesis, de novo mutation, OECD TG 488, transgenic rodent mutation assay, N-ethyl-N-nitrosourea, genetic toxicology
Play Button
Combining Computer Game-Based Behavioural Experiments With High-Density EEG and Infrared Gaze Tracking
Authors: Keith J. Yoder, Matthew K. Belmonte.
Institutions: Cornell University, University of Chicago, Manesar, India.
Experimental paradigms are valuable insofar as the timing and other parameters of their stimuli are well specified and controlled, and insofar as they yield data relevant to the cognitive processing that occurs under ecologically valid conditions. These two goals often are at odds, since well controlled stimuli often are too repetitive to sustain subjects' motivation. Studies employing electroencephalography (EEG) are often especially sensitive to this dilemma between ecological validity and experimental control: attaining sufficient signal-to-noise in physiological averages demands large numbers of repeated trials within lengthy recording sessions, limiting the subject pool to individuals with the ability and patience to perform a set task over and over again. This constraint severely limits researchers' ability to investigate younger populations as well as clinical populations associated with heightened anxiety or attentional abnormalities. Even adult, non-clinical subjects may not be able to achieve their typical levels of performance or cognitive engagement: an unmotivated subject for whom an experimental task is little more than a chore is not the same, behaviourally, cognitively, or neurally, as a subject who is intrinsically motivated and engaged with the task. A growing body of literature demonstrates that embedding experiments within video games may provide a way between the horns of this dilemma between experimental control and ecological validity. The narrative of a game provides a more realistic context in which tasks occur, enhancing their ecological validity (Chaytor & Schmitter-Edgecombe, 2003). Moreover, this context provides motivation to complete tasks. In our game, subjects perform various missions to collect resources, fend off pirates, intercept communications or facilitate diplomatic relations. In so doing, they also perform an array of cognitive tasks, including a Posner attention-shifting paradigm (Posner, 1980), a go/no-go test of motor inhibition, a psychophysical motion coherence threshold task, the Embedded Figures Test (Witkin, 1950, 1954) and a theory-of-mind (Wimmer & Perner, 1983) task. The game software automatically registers game stimuli and subjects' actions and responses in a log file, and sends event codes to synchronise with physiological data recorders. Thus the game can be combined with physiological measures such as EEG or fMRI, and with moment-to-moment tracking of gaze. Gaze tracking can verify subjects' compliance with behavioural tasks (e.g. fixation) and overt attention to experimental stimuli, and also physiological arousal as reflected in pupil dilation (Bradley et al., 2008). At great enough sampling frequencies, gaze tracking may also help assess covert attention as reflected in microsaccades - eye movements that are too small to foveate a new object, but are as rapid in onset and have the same relationship between angular distance and peak velocity as do saccades that traverse greater distances. The distribution of directions of microsaccades correlates with the (otherwise) covert direction of attention (Hafed & Clark, 2002).
Neuroscience, Issue 46, High-density EEG, ERP, ICA, gaze tracking, computer game, ecological validity
Play Button
In Vitro Synthesis of Modified mRNA for Induction of Protein Expression in Human Cells
Authors: Meltem Avci-Adali, Andreas Behring, Heidrun Steinle, Timea Keller, Stefanie Krajeweski, Christian Schlensak, Hans P. Wendel.
Institutions: University Hospital Tuebingen.
The exogenous delivery of coding synthetic messenger RNA (mRNA) for induction of protein synthesis in desired cells has enormous potential in the fields of regenerative medicine, basic cell biology, treatment of diseases, and reprogramming of cells. Here, we describe a step by step protocol for generation of modified mRNA with reduced immune activation potential and increased stability, quality control of produced mRNA, transfection of cells with mRNA and verification of the induced protein expression by flow cytometry. Up to 3 days after a single transfection with eGFP mRNA, the transfected HEK293 cells produce eGFP. In this video article, the synthesis of eGFP mRNA is described as an example. However, the procedure can be applied for production of other desired mRNA. Using the synthetic modified mRNA, cells can be induced to transiently express the desired proteins, which they normally would not express.
Genetics, Issue 93, mRNA synthesis, in vitro transcription, modification, transfection, protein synthesis, eGFP, flow cytometry
Play Button
Multiplex PCR and Reverse Line Blot Hybridization Assay (mPCR/RLB)
Authors: Matthew V. N. O'Sullivan, Fei Zhou, Vitali Sintchenko, Fanrong Kong, Gwendolyn L. Gilbert.
Institutions: University of Sydney.
Multiplex PCR/Reverse Line Blot Hybridization assay allows the detection of up to 43 molecular targets in 43 samples using one multiplex PCR reaction followed by probe hybridization on a nylon membrane, which is re-usable. Probes are 5' amine modified to allow fixation to the membrane. Primers are 5' biotin modified which allows detection of hybridized PCR products using streptavidin-peroxidase and a chemiluminescent substrate via photosensitive film. With low setup and consumable costs, this technique is inexpensive (approximately US$2 per sample), high throughput (multiple membranes can be processed simultaneously) and has a short turnaround time (approximately 10 hours). The technique can be utilized in a number of ways. Multiple probes can be designed to detect sequence variation within a single amplified product, or multiple products can be amplified simultaneously, with one (or more) probes used for subsequent detection. A combination of both approaches can also be used within a single assay. The ability to include multiple probes for a single target sequence makes the assay highly specific. Published applications of mPCR/RLB include detection of antibiotic resistance genes1,2, typing of methicillin-resistant Staphylococcus aureus3-5 and Salmonella sp6, molecular serotyping of Streptococcus pneumoniae7,8, Streptococcus agalactiae9 and enteroviruses10,11, identification of Mycobacterium sp12, detection of genital13-15 and respiratory tract16 and other17 pathogens and detection and identification of mollicutes18. However, the versatility of the technique means the applications are virtually limitless and not restricted to molecular analysis of micro-organisms. The five steps in mPCR/RLB are a) Primer and Probe design, b) DNA extraction and PCR amplification c) Preparation of the membrane, d) Hybridization and detection, and e) Regeneration of the Membrane.
Molecular Biology, Issue 54, Typing, MRSA, macroarray, molecular epidemiology
Play Button
RNA-seq Analysis of Transcriptomes in Thrombin-treated and Control Human Pulmonary Microvascular Endothelial Cells
Authors: Dilyara Cheranova, Margaret Gibson, Suman Chaudhary, Li Qin Zhang, Daniel P. Heruth, Dmitry N. Grigoryev, Shui Qing Ye.
Institutions: Children's Mercy Hospital and Clinics, School of Medicine, University of Missouri-Kansas City.
The characterization of gene expression in cells via measurement of mRNA levels is a useful tool in determining how the transcriptional machinery of the cell is affected by external signals (e.g. drug treatment), or how cells differ between a healthy state and a diseased state. With the advent and continuous refinement of next-generation DNA sequencing technology, RNA-sequencing (RNA-seq) has become an increasingly popular method of transcriptome analysis to catalog all species of transcripts, to determine the transcriptional structure of all expressed genes and to quantify the changing expression levels of the total set of transcripts in a given cell, tissue or organism1,2 . RNA-seq is gradually replacing DNA microarrays as a preferred method for transcriptome analysis because it has the advantages of profiling a complete transcriptome, providing a digital type datum (copy number of any transcript) and not relying on any known genomic sequence3. Here, we present a complete and detailed protocol to apply RNA-seq to profile transcriptomes in human pulmonary microvascular endothelial cells with or without thrombin treatment. This protocol is based on our recent published study entitled "RNA-seq Reveals Novel Transcriptome of Genes and Their Isoforms in Human Pulmonary Microvascular Endothelial Cells Treated with Thrombin,"4 in which we successfully performed the first complete transcriptome analysis of human pulmonary microvascular endothelial cells treated with thrombin using RNA-seq. It yielded unprecedented resources for further experimentation to gain insights into molecular mechanisms underlying thrombin-mediated endothelial dysfunction in the pathogenesis of inflammatory conditions, cancer, diabetes, and coronary heart disease, and provides potential new leads for therapeutic targets to those diseases. The descriptive text of this protocol is divided into four parts. The first part describes the treatment of human pulmonary microvascular endothelial cells with thrombin and RNA isolation, quality analysis and quantification. The second part describes library construction and sequencing. The third part describes the data analysis. The fourth part describes an RT-PCR validation assay. Representative results of several key steps are displayed. Useful tips or precautions to boost success in key steps are provided in the Discussion section. Although this protocol uses human pulmonary microvascular endothelial cells treated with thrombin, it can be generalized to profile transcriptomes in both mammalian and non-mammalian cells and in tissues treated with different stimuli or inhibitors, or to compare transcriptomes in cells or tissues between a healthy state and a disease state.
Genetics, Issue 72, Molecular Biology, Immunology, Medicine, Genomics, Proteins, RNA-seq, Next Generation DNA Sequencing, Transcriptome, Transcription, Thrombin, Endothelial cells, high-throughput, DNA, genomic DNA, RT-PCR, PCR
Play Button
Simultaneous Multicolor Imaging of Biological Structures with Fluorescence Photoactivation Localization Microscopy
Authors: Nikki M. Curthoys, Michael J. Mlodzianoski, Dahan Kim, Samuel T. Hess.
Institutions: University of Maine.
Localization-based super resolution microscopy can be applied to obtain a spatial map (image) of the distribution of individual fluorescently labeled single molecules within a sample with a spatial resolution of tens of nanometers. Using either photoactivatable (PAFP) or photoswitchable (PSFP) fluorescent proteins fused to proteins of interest, or organic dyes conjugated to antibodies or other molecules of interest, fluorescence photoactivation localization microscopy (FPALM) can simultaneously image multiple species of molecules within single cells. By using the following approach, populations of large numbers (thousands to hundreds of thousands) of individual molecules are imaged in single cells and localized with a precision of ~10-30 nm. Data obtained can be applied to understanding the nanoscale spatial distributions of multiple protein types within a cell. One primary advantage of this technique is the dramatic increase in spatial resolution: while diffraction limits resolution to ~200-250 nm in conventional light microscopy, FPALM can image length scales more than an order of magnitude smaller. As many biological hypotheses concern the spatial relationships among different biomolecules, the improved resolution of FPALM can provide insight into questions of cellular organization which have previously been inaccessible to conventional fluorescence microscopy. In addition to detailing the methods for sample preparation and data acquisition, we here describe the optical setup for FPALM. One additional consideration for researchers wishing to do super-resolution microscopy is cost: in-house setups are significantly cheaper than most commercially available imaging machines. Limitations of this technique include the need for optimizing the labeling of molecules of interest within cell samples, and the need for post-processing software to visualize results. We here describe the use of PAFP and PSFP expression to image two protein species in fixed cells. Extension of the technique to living cells is also described.
Basic Protocol, Issue 82, Microscopy, Super-resolution imaging, Multicolor, single molecule, FPALM, Localization microscopy, fluorescent proteins
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (, a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
Play Button
Polymerase Chain Reaction: Basic Protocol Plus Troubleshooting and Optimization Strategies
Authors: Todd C. Lorenz.
Institutions: University of California, Los Angeles .
In the biological sciences there have been technological advances that catapult the discipline into golden ages of discovery. For example, the field of microbiology was transformed with the advent of Anton van Leeuwenhoek's microscope, which allowed scientists to visualize prokaryotes for the first time. The development of the polymerase chain reaction (PCR) is one of those innovations that changed the course of molecular science with its impact spanning countless subdisciplines in biology. The theoretical process was outlined by Keppe and coworkers in 1971; however, it was another 14 years until the complete PCR procedure was described and experimentally applied by Kary Mullis while at Cetus Corporation in 1985. Automation and refinement of this technique progressed with the introduction of a thermal stable DNA polymerase from the bacterium Thermus aquaticus, consequently the name Taq DNA polymerase. PCR is a powerful amplification technique that can generate an ample supply of a specific segment of DNA (i.e., an amplicon) from only a small amount of starting material (i.e., DNA template or target sequence). While straightforward and generally trouble-free, there are pitfalls that complicate the reaction producing spurious results. When PCR fails it can lead to many non-specific DNA products of varying sizes that appear as a ladder or smear of bands on agarose gels. Sometimes no products form at all. Another potential problem occurs when mutations are unintentionally introduced in the amplicons, resulting in a heterogeneous population of PCR products. PCR failures can become frustrating unless patience and careful troubleshooting are employed to sort out and solve the problem(s). This protocol outlines the basic principles of PCR, provides a methodology that will result in amplification of most target sequences, and presents strategies for optimizing a reaction. By following this PCR guide, students should be able to: ● Set up reactions and thermal cycling conditions for a conventional PCR experiment ● Understand the function of various reaction components and their overall effect on a PCR experiment ● Design and optimize a PCR experiment for any DNA template ● Troubleshoot failed PCR experiments
Basic Protocols, Issue 63, PCR, optimization, primer design, melting temperature, Tm, troubleshooting, additives, enhancers, template DNA quantification, thermal cycler, molecular biology, genetics
Play Button
BEST: Barcode Enabled Sequencing of Tetrads
Authors: Adrian C. Scott, Catherine L. Ludlow, Gareth A. Cromie, Aimée M. Dudley.
Institutions: Pacific Northwest Diabetes Research Institute.
Tetrad analysis is a valuable tool for yeast genetics, but the laborious manual nature of the process has hindered its application on large scales. Barcode Enabled Sequencing of Tetrads (BEST)1 replaces the manual processes of isolating, disrupting and spacing tetrads. BEST isolates tetrads by virtue of a sporulation-specific GFP fusion protein that permits fluorescence-activated cell sorting of tetrads directly onto agar plates, where the ascus is enzymatically digested and the spores are disrupted and randomly arrayed by glass bead plating. The haploid colonies are then assigned sister spore relationships, i.e. information about which spores originated from the same tetrad, using molecular barcodes read during genotyping. By removing the bottleneck of manual dissection, hundreds or even thousands of tetrads can be isolated in minutes. Here we present a detailed description of the experimental procedures required to perform BEST in the yeast Saccharomyces cerevisiae, starting with a heterozygous diploid strain through the isolation of colonies derived from the haploid meiotic progeny.
Genetics, Issue 87, Yeast, Tetrad, Genetics, DNA sequencing
Play Button
Infinium Assay for Large-scale SNP Genotyping Applications
Authors: Adam J. Adler, Graham B. Wiley, Patrick M. Gaffney.
Institutions: Oklahoma Medical Research Foundation.
Genotyping variants in the human genome has proven to be an efficient method to identify genetic associations with phenotypes. The distribution of variants within families or populations can facilitate identification of the genetic factors of disease. Illumina's panel of genotyping BeadChips allows investigators to genotype thousands or millions of single nucleotide polymorphisms (SNPs) or to analyze other genomic variants, such as copy number, across a large number of DNA samples. These SNPs can be spread throughout the genome or targeted in specific regions in order to maximize potential discovery. The Infinium assay has been optimized to yield high-quality, accurate results quickly. With proper setup, a single technician can process from a few hundred to over a thousand DNA samples per week, depending on the type of array. This assay guides users through every step, starting with genomic DNA and ending with the scanning of the array. Using propriety reagents, samples are amplified, fragmented, precipitated, resuspended, hybridized to the chip, extended by a single base, stained, and scanned on either an iScan or Hi Scan high-resolution optical imaging system. One overnight step is required to amplify the DNA. The DNA is denatured and isothermally amplified by whole-genome amplification; therefore, no PCR is required. Samples are hybridized to the arrays during a second overnight step. By the third day, the samples are ready to be scanned and analyzed. Amplified DNA may be stockpiled in large quantities, allowing bead arrays to be processed every day of the week, thereby maximizing throughput.
Basic Protocol, Issue 81, genomics, SNP, Genotyping, Infinium, iScan, HiScan, Illumina
Play Button
Detection of Rare Genomic Variants from Pooled Sequencing Using SPLINTER
Authors: Francesco Vallania, Enrique Ramos, Sharon Cresci, Robi D. Mitra, Todd E. Druley.
Institutions: Washington University School of Medicine, Washington University School of Medicine, Washington University School of Medicine.
As DNA sequencing technology has markedly advanced in recent years2, it has become increasingly evident that the amount of genetic variation between any two individuals is greater than previously thought3. In contrast, array-based genotyping has failed to identify a significant contribution of common sequence variants to the phenotypic variability of common disease4,5. Taken together, these observations have led to the evolution of the Common Disease / Rare Variant hypothesis suggesting that the majority of the "missing heritability" in common and complex phenotypes is instead due to an individual's personal profile of rare or private DNA variants6-8. However, characterizing how rare variation impacts complex phenotypes requires the analysis of many affected individuals at many genomic loci, and is ideally compared to a similar survey in an unaffected cohort. Despite the sequencing power offered by today's platforms, a population-based survey of many genomic loci and the subsequent computational analysis required remains prohibitive for many investigators. To address this need, we have developed a pooled sequencing approach1,9 and a novel software package1 for highly accurate rare variant detection from the resulting data. The ability to pool genomes from entire populations of affected individuals and survey the degree of genetic variation at multiple targeted regions in a single sequencing library provides excellent cost and time savings to traditional single-sample sequencing methodology. With a mean sequencing coverage per allele of 25-fold, our custom algorithm, SPLINTER, uses an internal variant calling control strategy to call insertions, deletions and substitutions up to four base pairs in length with high sensitivity and specificity from pools of up to 1 mutant allele in 500 individuals. Here we describe the method for preparing the pooled sequencing library followed by step-by-step instructions on how to use the SPLINTER package for pooled sequencing analysis ( We show a comparison between pooled sequencing of 947 individuals, all of whom also underwent genome-wide array, at over 20kb of sequencing per person. Concordance between genotyping of tagged and novel variants called in the pooled sample were excellent. This method can be easily scaled up to any number of genomic loci and any number of individuals. By incorporating the internal positive and negative amplicon controls at ratios that mimic the population under study, the algorithm can be calibrated for optimal performance. This strategy can also be modified for use with hybridization capture or individual-specific barcodes and can be applied to the sequencing of naturally heterogeneous samples, such as tumor DNA.
Genetics, Issue 64, Genomics, Cancer Biology, Bioinformatics, Pooled DNA sequencing, SPLINTER, rare genetic variants, genetic screening, phenotype, high throughput, computational analysis, DNA, PCR, primers
Play Button
Detecting Somatic Genetic Alterations in Tumor Specimens by Exon Capture and Massively Parallel Sequencing
Authors: Helen H Won, Sasinya N Scott, A. Rose Brannon, Ronak H Shah, Michael F Berger.
Institutions: Memorial Sloan-Kettering Cancer Center, Memorial Sloan-Kettering Cancer Center.
Efforts to detect and investigate key oncogenic mutations have proven valuable to facilitate the appropriate treatment for cancer patients. The establishment of high-throughput, massively parallel "next-generation" sequencing has aided the discovery of many such mutations. To enhance the clinical and translational utility of this technology, platforms must be high-throughput, cost-effective, and compatible with formalin-fixed paraffin embedded (FFPE) tissue samples that may yield small amounts of degraded or damaged DNA. Here, we describe the preparation of barcoded and multiplexed DNA libraries followed by hybridization-based capture of targeted exons for the detection of cancer-associated mutations in fresh frozen and FFPE tumors by massively parallel sequencing. This method enables the identification of sequence mutations, copy number alterations, and select structural rearrangements involving all targeted genes. Targeted exon sequencing offers the benefits of high throughput, low cost, and deep sequence coverage, thus conferring high sensitivity for detecting low frequency mutations.
Molecular Biology, Issue 80, Molecular Diagnostic Techniques, High-Throughput Nucleotide Sequencing, Genetics, Neoplasms, Diagnosis, Massively parallel sequencing, targeted exon sequencing, hybridization capture, cancer, FFPE, DNA mutations
Play Button
Characterization of Complex Systems Using the Design of Experiments Approach: Transient Protein Expression in Tobacco as a Case Study
Authors: Johannes Felix Buyel, Rainer Fischer.
Institutions: RWTH Aachen University, Fraunhofer Gesellschaft.
Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.
Bioengineering, Issue 83, design of experiments (DoE), transient protein expression, plant-derived biopharmaceuticals, promoter, 5'UTR, fluorescent reporter protein, model building, incubation conditions, monoclonal antibody
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.