JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Measurement of ad libitum food intake, physical activity, and sedentary time in response to overfeeding.
Given the wide availability of highly palatable foods, overeating is common. Energy intake and metabolic responses to overfeeding may provide insights into weight gain prevention. We hypothesized a down-regulation in subsequent food intake and sedentary time, and up-regulation in non-exercise activity and core temperature in response to overfeeding in order to maintain body weight constant. In a monitored inpatient clinical research unit using a cross over study design, we investigated ad libitum energy intake (EI, using automated vending machines), core body temperature, and physical activity (using accelerometry) following a short term (3-day) weight maintaining (WM) vs overfeeding (OF) diet in healthy volunteers (n?=?21, BMI, mean ± SD, 33.2±8.6 kg/m(2), 73.6% male). During the ad libitum periods following the WM vs. OF diets, there was no significant difference in mean 3-d EI (4061±1084 vs. 3926±1284 kcal/day, p?=?0.41), and there were also no differences either in core body temperature (37.0±0.2°C vs. 37.1±0.2°C, p?=?0.75) or sedentary time (70.9±12.9 vs. 72.0±7.4%, p?=?0.88). However, during OF (but not WM), sedentary time was positively associated with weight gain (r?=?0.49, p?=?0.05, adjusted for age, sex, and initial weight). In conclusion, short term overfeeding did not result in a decrease in subsequent ad libitum food intake or overall change in sedentary time although in secondary analysis sedentary time was associated with weight gain during OF. Beyond possible changes in sedentary time, there is minimal attempt to restore energy balance during or following short term overfeeding. Trial registration: NCT00342732.
Authors: James M Kasper, Sarah B Johnson, Jonathan D. Hommel.
Published: 06-27-2014
Obesity is a growing problem in the United States of America, with more than a third of the population classified as obese. One factor contributing to this multifactorial disorder is the consumption of a high fat diet, a behavior that has been shown to increase both caloric intake and body fat content. However, the elements regulating preference for high fat food over other foods remain understudied. To overcome this deficit, a model to quickly and easily test changes in the preference for dietary fat was developed. The Fat Preference model presents rats with a series of choices between foods with differing fat content. Like humans, rats have a natural bias toward consuming high fat food, making the rat model ideal for translational studies. Changes in preference can be ascribed to the effect of either genetic differences or pharmacological interventions. This model allows for the exploration of determinates of fat preference and screening pharmacotherapeutic agents that influence acquisition of obesity.
16 Related JoVE Articles!
Play Button
Roux-en-Y Gastric Bypass Operation in Rats
Authors: Marco Bueter, Kathrin Abegg, Florian Seyfried, Thomas A. Lutz, Carel W. le Roux.
Institutions: University Hospital Zürich, University of Zürich, University of Zürich, Imperial College London .
Currently, the most effective therapy for the treatment of morbid obesity to induce significant and maintained body weight loss with a proven mortality benefit is bariatric surgery1,2. Consequently, there has been a steady rise in the number of bariatric operations done worldwide in recent years with the Roux-en-Y gastric bypass (gastric bypass) being the most commonly performed operation3. Against this background, it is important to understand the physiological mechanisms by which gastric bypass induces and maintains body weight loss. These mechanisms are yet not fully understood, but may include reduced hunger and increased satiation4,5, increased energy expenditure6,7, altered preference for food high in fat and sugar8,9, altered salt and water handling of the kidney10 as well as alterations in gut microbiota11. Such changes seen after gastric bypass may at least partly stem from how the surgery alters the hormonal milieu because gastric bypass increases the postprandial release of peptide-YY (PYY) and glucagon-like-peptide-1 (GLP-1), hormones that are released by the gut in the presence of nutrients and that reduce eating12. During the last two decades numerous studies using rats have been carried out to further investigate physiological changes after gastric bypass. The gastric bypass rat model has proven to be a valuable experimental tool not least as it closely mimics the time profile and magnitude of human weight loss, but also allows researchers to control and manipulate critical anatomic and physiologic factors including the use of appropriate controls. Consequently, there is a wide array of rat gastric bypass models available in the literature reviewed elsewhere in more detail 13-15. The description of the exact surgical technique of these models varies widely and differs e.g. in terms of pouch size, limb lengths, and the preservation of the vagal nerve. If reported, mortality rates seem to range from 0 to 35%15. Furthermore, surgery has been carried out almost exclusively in male rats of different strains and ages. Pre- and postoperative diets also varied significantly. Technical and experimental variations in published gastric bypass rat models complicate the comparison and identification of potential physiological mechanisms involved in gastric bypass. There is no clear evidence that any of these models is superior, but there is an emerging need for standardization of the procedure to achieve consistent and comparable data. This article therefore aims to summarize and discuss technical and experimental details of our previously validated and published gastric bypass rat model.
Medicine, Issue 64, Physiology, Roux-en-Y Gastric bypass, rat model, gastric pouch size, gut hormones
Play Button
A Method to Study the Impact of Chemically-induced Ovarian Failure on Exercise Capacity and Cardiac Adaptation in Mice
Authors: Hao Chen, Jessica N. Perez, Eleni Constantopoulos, Laurel McKee, Jessica Regan, Patricia B. Hoyer, Heddwen L. Brooks, John Konhilas.
Institutions: University of Arizona.
The risk of cardiovascular disease (CVD) increases in post-menopausal women, yet, the role of exercise, as a preventative measure for CVD risk in post-menopausal women has not been adequately studied. Accordingly, we investigated the impact of voluntary cage-wheel exercise and forced treadmill exercise on cardiac adaptation in menopausal mice. The most commonly used inducible model for mimicking menopause in women is the ovariectomized (OVX) rodent. However, the OVX model has a few dissimilarities from menopause in humans. In this study, we administered 4-vinylcyclohexene diepoxide (VCD) to female mice, which accelerates ovarian failure as an alternative menopause model to study the impact of exercise in menopausal mice. VCD selectively accelerates the loss of primary and primordial follicles resulting in an endocrine state that closely mimics the natural progression from pre- to peri- to post-menopause in humans. To determine the impact of exercise on exercise capacity and cardiac adaptation in VCD-treated female mice, two methods were used. First, we exposed a group of VCD-treated and untreated mice to a voluntary cage wheel. Second, we used forced treadmill exercise to determine exercise capacity in a separate group VCD-treated and untreated mice measured as a tolerance to exercise intensity and endurance.
Medicine, Issue 86, VCD, menopause, voluntary wheel running, forced treadmill exercise, exercise capacity, adaptive cardiac adaptation
Play Button
A Novel Procedure for Evaluating the Reinforcing Properties of Tastants in Laboratory Rats: Operant Intraoral Self-administration
Authors: AnneMarie Levy, Cheryl L. Limebeer, Justin Ferdinand, Ucal Shillingford, Linda A. Parker, Francesco Leri.
Institutions: University of Guelph.
This paper describes a novel method for studying the bio-behavioral basis of addiction to food. This method combines the surgical component of taste reactivity with the behavioral aspects of operant self-administration of drugs. Under very brief general anaesthesia, rats are implanted with an intraoral (IO) cannula that allows delivery of test solutions directly in the oral cavity. Animals are then tested in operant self-administration chambers whereby they can press a lever to receive IO infusions of test solutions. IO self-administration has several advantages over experimental procedures that involve drinking a solution from a spout or operant responding for solid pellets or solutions delivered in a receptacle. Here, we show that IO self-administration can be employed to study self-administration of high fructose corn syrup (HFCS). Rats were first tested for self-administration on a progressive ratio (PR) schedule, which assesses the maximum amount of operant behavior that will be emitted for different concentrations of HFCS (i.e. 8%, 25%, and 50%). Following this test, rats self-administered these concentrations on a continuous schedule of reinforcement (i.e. one infusion for each lever press) for 10 consecutive days (1 session/day; each lasting 3 hr), and then they were retested on the PR schedule. On the continuous reinforcement schedule, rats took fewer infusions of higher concentrations, although the lowest concentration of HFCS (8%) maintained more variable self-administration. Furthermore, the PR tests revealed that 8% had lower reinforcing value than 25% and 50%. These results indicate that IO self-administration can be employed to study acquisition and maintenance of responding for sweet solutions. The sensitivity of the operant response to differences in concentration and schedule of reinforcement makes IO self-administration an ideal procedure to investigate the neurobiology of voluntary intake of sweets.
Behavior, Issue 84, Administration, Oral, Conditioning, Operant, Reinforcement (Psychology), Reinforcement Schedule, Taste, Neurosciences, Intraoral infusions, operant chambers, self-administration, high fructose corn syrup, progressive ratio, breakpoint, addiction
Play Button
Measuring Oral Fatty Acid Thresholds, Fat Perception, Fatty Food Liking, and Papillae Density in Humans
Authors: Rivkeh Y. Haryono, Madeline A. Sprajcer, Russell S. J. Keast.
Institutions: Deakin University.
Emerging evidence from a number of laboratories indicates that humans have the ability to identify fatty acids in the oral cavity, presumably via fatty acid receptors housed on taste cells. Previous research has shown that an individual's oral sensitivity to fatty acid, specifically oleic acid (C18:1) is associated with body mass index (BMI), dietary fat consumption, and the ability to identify fat in foods. We have developed a reliable and reproducible method to assess oral chemoreception of fatty acids, using a milk and C18:1 emulsion, together with an ascending forced choice triangle procedure. In parallel, a food matrix has been developed to assess an individual's ability to perceive fat, in addition to a simple method to assess fatty food liking. As an added measure tongue photography is used to assess papillae density, with higher density often being associated with increased taste sensitivity.
Neuroscience, Issue 88, taste, overweight and obesity, dietary fat, fatty acid, diet, fatty food liking, detection threshold
Play Button
Ovariectomy and 17β-estradiol Replacement in Rats and Mice: A Visual Demonstration
Authors: Jakob O. Ström, Annette Theodorsson, Edvin Ingberg, Ida-Maria Isaksson, Elvar Theodorsson.
Institutions: Linköping University.
Estrogens are a family of female sexual hormones with an exceptionally wide spectrum of effects. When rats and mice are used in estrogen research they are commonly ovariectomized in order to ablate the rapidly cycling hormone production, replacing the 17β-estradiol exogenously. There is, however, lack of consensus regarding how the hormone should be administered to obtain physiological serum concentrations. This is crucial since the 17β-estradiol level/administration method profoundly influences the experimental results1-3. We have in a series of studies characterized the different modes of 17β-estradiol administration, finding that subcutaneous silastic capsules and per-oral nut-cream Nutella are superior to commercially available slow-release pellets (produced by the company Innovative Research of America) and daily injections in terms of producing physiological serum concentrations of 17β-estradiol4-6. Amongst the advantages of the nut-cream method, that previously has been used for buprenorphine administration7, is that when used for estrogen administration it resembles peroral hormone replacement therapy and is non-invasive. The subcutaneous silastic capsules are convenient and produce the most stable serum concentrations. This video article contains step-by-step demonstrations of ovariectomy and 17β-estradiol hormone replacement by silastic capsules and peroral Nutella in rats and mice, followed by a discussion of important aspects of the administration procedures.
Medicine, Issue 64, Physiology, Oophorectomy, Rat, Mouse, 17β-estradiol, Administration, Silastic capsules, Nutella
Play Button
Measuring Frailty in HIV-infected Individuals. Identification of Frail Patients is the First Step to Amelioration and Reversal of Frailty
Authors: Hilary C. Rees, Voichita Ianas, Patricia McCracken, Shannon Smith, Anca Georgescu, Tirdad Zangeneh, Jane Mohler, Stephen A. Klotz.
Institutions: University of Arizona, University of Arizona.
A simple, validated protocol consisting of a battery of tests is available to identify elderly patients with frailty syndrome. This syndrome of decreased reserve and resistance to stressors increases in incidence with increasing age. In the elderly, frailty may pursue a step-wise loss of function from non-frail to pre-frail to frail. We studied frailty in HIV-infected patients and found that ~20% are frail using the Fried phenotype using stringent criteria developed for the elderly1,2. In HIV infection the syndrome occurs at a younger age. HIV patients were checked for 1) unintentional weight loss; 2) slowness as determined by walking speed; 3) weakness as measured by a grip dynamometer; 4) exhaustion by responses to a depression scale; and 5) low physical activity was determined by assessing kilocalories expended in a week's time. Pre-frailty was present with any two of five criteria and frailty was present if any three of the five criteria were abnormal. The tests take approximately 10-15 min to complete and they can be performed by medical assistants during routine clinic visits. Test results are scored by referring to standard tables. Understanding which of the five components contribute to frailty in an individual patient can allow the clinician to address relevant underlying problems, many of which are not evident in routine HIV clinic visits.
Medicine, Issue 77, Infection, Virology, Infectious Diseases, Anatomy, Physiology, Molecular Biology, Biomedical Engineering, Retroviridae Infections, Body Weight Changes, Diagnostic Techniques and Procedures, Physical Examination, Muscle Strength, Behavior, Virus Diseases, Pathological Conditions, Signs and Symptoms, Diagnosis, Musculoskeletal and Neural Physiological Phenomena, HIV, HIV-1, AIDS, Frailty, Depression, Weight Loss, Weakness, Slowness, Exhaustion, Aging, clinical techniques
Play Button
Meal Duration as a Measure of Orofacial Nociceptive Responses in Rodents
Authors: Phillip R. Kramer, Larry L. Bellinger.
Institutions: Texas A&M University Baylor College of Dentistry.
A lengthening in meal duration can be used to measure an increase in orofacial mechanical hyperalgesia having similarities to the guarding behavior of humans with orofacial pain. To measure meal duration unrestrained rats are continuously kept in sound attenuated, computerized feeding modules for days to weeks to record feeding behavior. These sound-attenuated chambers are equipped with chow pellet dispensers. The dispenser has a pellet trough with a photobeam placed at the bottom of the trough and when a rodent removes a pellet from the feeder trough this beam is no longer blocked, signaling the computer to drop another pellet. The computer records the date and time when the pellets were taken from the trough and from this data the experimenter can calculate the meal parameters. When calculating meal parameters a meal was defined based on previous work and was set at 10 min (in other words when the animal does not eat for 10 min that would be the end of the animal's meal) also the minimum meal size was set at 3 pellets. The meal duration, meal number, food intake, meal size and inter-meal interval can then be calculated by the software for any time period that the operator desires. Of the feeding parameters that can be calculated meal duration has been shown to be a continuous noninvasive biological marker of orofacial nociception in male rats and mice and female rats. Meal duration measurements are quantitative, require no training or animal manipulation, require cortical participation, and do not compete with other experimentally induced behaviors. These factors distinguish this assay from other operant or reflex methods for recording orofacial nociception.
Behavior, Issue 83, Pain, rat, nociception, myofacial, orofacial, tooth, temporomandibular joint (TMJ)
Play Button
Studying Food Reward and Motivation in Humans
Authors: Hisham Ziauddeen, Naresh Subramaniam, Victoria C. Cambridge, Nenad Medic, Ismaa Sadaf Farooqi, Paul C. Fletcher.
Institutions: University of Cambridge, University of Cambridge, University of Cambridge, Addenbrooke's Hospital.
A key challenge in studying reward processing in humans is to go beyond subjective self-report measures and quantify different aspects of reward such as hedonics, motivation, and goal value in more objective ways. This is particularly relevant for the understanding of overeating and obesity as well as their potential treatments. In this paper are described a set of measures of food-related motivation using handgrip force as a motivational measure. These methods can be used to examine changes in food related motivation with metabolic (satiety) and pharmacological manipulations and can be used to evaluate interventions targeted at overeating and obesity. However to understand food-related decision making in the complex food environment it is essential to be able to ascertain the reward goal values that guide the decisions and behavioral choices that people make. These values are hidden but it is possible to ascertain them more objectively using metrics such as the willingness to pay and a method for this is described. Both these sets of methods provide quantitative measures of motivation and goal value that can be compared within and between individuals.
Behavior, Issue 85, Food reward, motivation, grip force, willingness to pay, subliminal motivation
Play Button
An Alternant Method to the Traditional NASA Hindlimb Unloading Model in Mice
Authors: J. Andries Ferreira, Jacqueline M. Crissey, Marybeth Brown.
Institutions: University of Missouri, Columbia, University of Missouri, Columbia.
The Morey-Holton hindlimb unloading (HU) method is a widely accepted National Aeronautics and Space Administration (NASA) ground-based model for studying disuse-atrophy in rodents 4-6. Our study evaluated an alternant method to the gold-standard Morey-Holton HU tail-traction technique in mice. Fifty-four female mice (4-8 mo.) were HU for 14 days (n=34) or 28 days (n=20). Recovery from HU was assessed after 3 days of normal cage ambulation following HU (n=22). Aged matched mice (n=76) served as weight-bearing controls. Prior to HU a tail ring was formed with a 2-0 sterile surgical steel wire that was passed through the 5th, 6th, or 7th inter-vertebral disc space and shaped into a ring from which the mice were suspended. Vertebral location for the tail-ring was selected to appropriately balance animal body weight without interfering with defecation. We determined the success of this novel HU technique by assessing body weight before and after HU, degree of soleus atrophy, and adrenal mass following HU. Body weight of the mice prior to HU (24.3 ± 2.9g) did not significantly decline immediately after 14d of HU (22.7 ± 1.9g), 28d of HU (21.3 + 2.1g) or after 3 days recovery (24.0 ± 1.8g). Soleus muscle mass significantly declined (-39.1%, and -46.6%) following HU for 14 days and 28 days respectively (p<0.001). Following 3 days of recovery soleus mass significantly increased to 74% of control values. Adrenal weights of HU mice were not different compared to control mice. The success of our novel HU method is evidenced by the maintenance of animal body weight, comparable adrenal gland weights, and soleus atrophy following HU, corresponding to expected literature values 2, 7, 8. The primary advantages of this HU method include: 1) ease of tail examination during suspension; 2) decreased likelihood of cyanotic, inflamed, and/or necrotic tails frequently observed with tail-taping and HU; 3) no possibility of mice chewing the traction tape and coming out of the suspension apparatus; and 4) rapid recovery and normal cage activity immediately after HU.
Physiology, Issue 49, Hindlimb unloading, suspension, tail-traction, mice, animal model, atrophy
Play Button
DNBS/TNBS Colitis Models: Providing Insights Into Inflammatory Bowel Disease and Effects of Dietary Fat
Authors: Vijay Morampudi, Ganive Bhinder, Xiujuan Wu, Chuanbin Dai, Ho Pan Sham, Bruce A. Vallance, Kevan Jacobson.
Institutions: BC Children's Hospital.
Inflammatory Bowel Diseases (IBD), including Crohn's Disease and Ulcerative Colitis, have long been associated with a genetic basis, and more recently host immune responses to microbial and environmental agents. Dinitrobenzene sulfonic acid (DNBS)-induced colitis allows one to study the pathogenesis of IBD associated environmental triggers such as stress and diet, the effects of potential therapies, and the mechanisms underlying intestinal inflammation and mucosal injury. In this paper, we investigated the effects of dietary n-3 and n-6 fatty acids on the colonic mucosal inflammatory response to DNBS-induced colitis in rats. All rats were fed identical diets with the exception of different types of fatty acids [safflower oil (SO), canola oil (CO), or fish oil (FO)] for three weeks prior to exposure to intrarectal DNBS. Control rats given intrarectal ethanol continued gaining weight over the 5 day study, whereas, DNBS-treated rats fed lipid diets all lost weight with FO and CO fed rats demonstrating significant weight loss by 48 hr and rats fed SO by 72 hr. Weight gain resumed after 72 hr post DNBS, and by 5 days post DNBS, the FO group had a higher body weight than SO or CO groups. Colonic sections collected 5 days post DNBS-treatment showed focal ulceration, crypt destruction, goblet cell depletion, and mucosal infiltration of both acute and chronic inflammatory cells that differed in severity among diet groups. The SO fed group showed the most severe damage followed by the CO, and FO fed groups that showed the mildest degree of tissue injury. Similarly, colonic myeloperoxidase (MPO) activity, a marker of neutrophil activity was significantly higher in SO followed by CO fed rats, with FO fed rats having significantly lower MPO activity. These results demonstrate the use of DNBS-induced colitis, as outlined in this protocol, to determine the impact of diet in the pathogenesis of IBD.
Medicine, Issue 84, Chemical colitis, Inflammatory Bowel Disease, intra rectal administration, intestinal inflammation, transmural inflammation, myeloperoxidase activity
Play Button
Functional Interrogation of Adult Hypothalamic Neurogenesis with Focal Radiological Inhibition
Authors: Daniel A. Lee, Juan Salvatierra, Esteban Velarde, John Wong, Eric C. Ford, Seth Blackshaw.
Institutions: California Institute of Technology, Johns Hopkins University School of Medicine, Johns Hopkins University School of Medicine, University Of Washington Medical Center, Johns Hopkins University School of Medicine.
The functional characterization of adult-born neurons remains a significant challenge. Approaches to inhibit adult neurogenesis via invasive viral delivery or transgenic animals have potential confounds that make interpretation of results from these studies difficult. New radiological tools are emerging, however, that allow one to noninvasively investigate the function of select groups of adult-born neurons through accurate and precise anatomical targeting in small animals. Focal ionizing radiation inhibits the birth and differentiation of new neurons, and allows targeting of specific neural progenitor regions. In order to illuminate the potential functional role that adult hypothalamic neurogenesis plays in the regulation of physiological processes, we developed a noninvasive focal irradiation technique to selectively inhibit the birth of adult-born neurons in the hypothalamic median eminence. We describe a method for Computer tomography-guided focal irradiation (CFIR) delivery to enable precise and accurate anatomical targeting in small animals. CFIR uses three-dimensional volumetric image guidance for localization and targeting of the radiation dose, minimizes radiation exposure to nontargeted brain regions, and allows for conformal dose distribution with sharp beam boundaries. This protocol allows one to ask questions regarding the function of adult-born neurons, but also opens areas to questions in areas of radiobiology, tumor biology, and immunology. These radiological tools will facilitate the translation of discoveries at the bench to the bedside.
Neuroscience, Issue 81, Neural Stem Cells (NSCs), Body Weight, Radiotherapy, Image-Guided, Metabolism, Energy Metabolism, Neurogenesis, Cell Proliferation, Neurosciences, Irradiation, Radiological treatment, Computer-tomography (CT) imaging, Hypothalamus, Hypothalamic Proliferative Zone (HPZ), Median Eminence (ME), Small Animal Radiation Research Platform (SARRP)
Play Button
Getting to Compliance in Forced Exercise in Rodents: A Critical Standard to Evaluate Exercise Impact in Aging-related Disorders and Disease
Authors: Jennifer C. Arnold, Michael F. Salvatore.
Institutions: Louisiana State University Health Sciences Center.
There is a major increase in the awareness of the positive impact of exercise on improving several disease states with neurobiological basis; these include improving cognitive function and physical performance. As a result, there is an increase in the number of animal studies employing exercise. It is argued that one intrinsic value of forced exercise is that the investigator has control over the factors that can influence the impact of exercise on behavioral outcomes, notably exercise frequency, duration, and intensity of the exercise regimen. However, compliance in forced exercise regimens may be an issue, particularly if potential confounds of employing foot-shock are to be avoided. It is also important to consider that since most cognitive and locomotor impairments strike in the aged individual, determining impact of exercise on these impairments should consider using aged rodents with a highest possible level of compliance to ensure minimal need for test subjects. Here, the pertinent steps and considerations necessary to achieve nearly 100% compliance to treadmill exercise in an aged rodent model will be presented and discussed. Notwithstanding the particular exercise regimen being employed by the investigator, our protocol should be of use to investigators that are particularly interested in the potential impact of forced exercise on aging-related impairments, including aging-related Parkinsonism and Parkinson’s disease.
Behavior, Issue 90, Exercise, locomotor, Parkinson’s disease, aging, treadmill, bradykinesia, Parkinsonism
Play Button
Progressive-ratio Responding for Palatable High-fat and High-sugar Food in Mice
Authors: Sandeep Sharma, Cecile Hryhorczuk, Stephanie Fulton.
Institutions: University of Montreal.
Foods that are rich in fat and sugar significantly contribute to over-eating and escalating rates of obesity. The consumption of palatable foods can produce a rewarding effect that strengthens action-outcome associations and reinforces future behavior directed at obtaining these foods. Increasing evidence that the rewarding effects of energy-dense foods play a profound role in overeating and the development of obesity has heightened interest in studying the genes, molecules and neural circuitry that modulate food reward1,2. The rewarding impact of different stimuli can be studied by measuring the willingness to work to obtain them, such as in operant conditioning tasks3. Operant models of food reward measure acquired and voluntary behavioral responses that are directed at obtaining food. A commonly used measure of reward strength is an operant procedure known as the progressive ratio (PR) schedule of reinforcement.4,5 In the PR task, the subject is required to make an increasing number of operant responses for each successive reward. The pioneering study of Hodos (1961) demonstrated that the number of responses made to obtain the last reward, termed the breakpoint, serves as an index of reward strength4. While operant procedures that measure changes in response rate alone cannot separate changes in reward strength from alterations in performance capacity, the breakpoint derived from the PR schedule is a well-validated measure of the rewarding effects of food. The PR task has been used extensively to assess the rewarding impact of drugs of abuse and food in rats (e.g.,6-8), but to a lesser extent in mice9. The increased use of genetically engineered mice and diet-induced obese mouse models has heightened demands for behavioral measures of food reward in mice. In the present article we detail the materials and procedures used to train mice to respond (lever-press) for a high-fat and high-sugar food pellets on a PR schedule of reinforcement. We show that breakpoint response thresholds increase following acute food deprivation and decrease with peripheral administration of the anorectic hormone leptin and thereby validate the use of this food-operant paradigm in mice.
Neuroscience, Issue 63, behavioral neuroscience, operant conditioning, food, reward, obesity, leptin, mouse
Play Button
Flat-floored Air-lifted Platform: A New Method for Combining Behavior with Microscopy or Electrophysiology on Awake Freely Moving Rodents
Authors: Mikhail Kislin, Ekaterina Mugantseva, Dmitry Molotkov, Natalia Kulesskaya, Stanislav Khirug, Ilya Kirilkin, Evgeny Pryazhnikov, Julia Kolikova, Dmytro Toptunov, Mikhail Yuryev, Rashid Giniatullin, Vootele Voikar, Claudio Rivera, Heikki Rauvala, Leonard Khiroug.
Institutions: University of Helsinki, Neurotar LTD, University of Eastern Finland, University of Helsinki.
It is widely acknowledged that the use of general anesthetics can undermine the relevance of electrophysiological or microscopical data obtained from a living animal’s brain. Moreover, the lengthy recovery from anesthesia limits the frequency of repeated recording/imaging episodes in longitudinal studies. Hence, new methods that would allow stable recordings from non-anesthetized behaving mice are expected to advance the fields of cellular and cognitive neurosciences. Existing solutions range from mere physical restraint to more sophisticated approaches, such as linear and spherical treadmills used in combination with computer-generated virtual reality. Here, a novel method is described where a head-fixed mouse can move around an air-lifted mobile homecage and explore its environment under stress-free conditions. This method allows researchers to perform behavioral tests (e.g., learning, habituation or novel object recognition) simultaneously with two-photon microscopic imaging and/or patch-clamp recordings, all combined in a single experiment. This video-article describes the use of the awake animal head fixation device (mobile homecage), demonstrates the procedures of animal habituation, and exemplifies a number of possible applications of the method.
Empty Value, Issue 88, awake, in vivo two-photon microscopy, blood vessels, dendrites, dendritic spines, Ca2+ imaging, intrinsic optical imaging, patch-clamp
Play Button
Assessment of Murine Exercise Endurance Without the Use of a Shock Grid: An Alternative to Forced Exercise
Authors: Jennifer D. Conner, Tami Wolden-Hanson, LeBris S. Quinn.
Institutions: VA Puget Sound Health Care System, Seattle Institute for Biomedical and Clinical Research, University of Washington, VA Puget Sound Health Care System.
Using laboratory mouse models, the molecular pathways responsible for the metabolic benefits of endurance exercise are beginning to be defined. The most common method for assessing exercise endurance in mice utilizes forced running on a motorized treadmill equipped with a shock grid. Animals who quit running are pushed by the moving treadmill belt onto a grid that delivers an electric foot shock; to escape the negative stimulus, the mice return to running on the belt. However, avoidance behavior and psychological stress due to use of a shock apparatus can interfere with quantitation of running endurance, as well as confound measurements of postexercise serum hormone and cytokine levels. Here, we demonstrate and validate a refined method to measure running endurance in naïve C57BL/6 laboratory mice on a motorized treadmill without utilizing a shock grid. When mice are preacclimated to the treadmill, they run voluntarily with gait speeds specific to each mouse. Use of the shock grid is replaced by gentle encouragement by a human operator using a tongue depressor, coupled with sensitivity to the voluntary willingness to run on the part of the mouse. Clear endpoints for quantifying running time-to-exhaustion for each mouse are defined and reflected in behavioral signs of exhaustion such as splayed posture and labored breathing. This method is a humane refinement which also decreases the confounding effects of stress on experimental parameters.
Behavior, Issue 90, Exercise, Mouse, Treadmill, Endurance, Refinement
Play Button
Electric Cell-substrate Impedance Sensing for the Quantification of Endothelial Proliferation, Barrier Function, and Motility
Authors: Robert Szulcek, Harm Jan Bogaard, Geerten P. van Nieuw Amerongen.
Institutions: Institute for Cardiovascular Research, VU University Medical Center, Institute for Cardiovascular Research, VU University Medical Center.
Electric Cell-substrate Impedance Sensing (ECIS) is an in vitro impedance measuring system to quantify the behavior of cells within adherent cell layers. To this end, cells are grown in special culture chambers on top of opposing, circular gold electrodes. A constant small alternating current is applied between the electrodes and the potential across is measured. The insulating properties of the cell membrane create a resistance towards the electrical current flow resulting in an increased electrical potential between the electrodes. Measuring cellular impedance in this manner allows the automated study of cell attachment, growth, morphology, function, and motility. Although the ECIS measurement itself is straightforward and easy to learn, the underlying theory is complex and selection of the right settings and correct analysis and interpretation of the data is not self-evident. Yet, a clear protocol describing the individual steps from the experimental design to preparation, realization, and analysis of the experiment is not available. In this article the basic measurement principle as well as possible applications, experimental considerations, advantages and limitations of the ECIS system are discussed. A guide is provided for the study of cell attachment, spreading and proliferation; quantification of cell behavior in a confluent layer, with regard to barrier function, cell motility, quality of cell-cell and cell-substrate adhesions; and quantification of wound healing and cellular responses to vasoactive stimuli. Representative results are discussed based on human microvascular (MVEC) and human umbilical vein endothelial cells (HUVEC), but are applicable to all adherent growing cells.
Bioengineering, Issue 85, ECIS, Impedance Spectroscopy, Resistance, TEER, Endothelial Barrier, Cell Adhesions, Focal Adhesions, Proliferation, Migration, Motility, Wound Healing
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.