JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Using bacterial extract along with differential gene expression in Acropora millepora larvae to decouple the processes of attachment and metamorphosis.
Biofilms of the bacterium Pseudoalteromonas induce metamorphosis of acroporid coral larvae. The bacterial metabolite tetrabromopyrrole (TBP), isolated from an extract of Pseudoalteromonas sp. associated with the crustose coralline alga (CCA) Neogoniolithon fosliei, induced coral larval metamorphosis (100%) with little or no attachment (0-2%). To better understand the molecular events and mechanisms underpinning the induction of Acropora millepora larval metamorphosis, including cell proliferation, apoptosis, differentiation, migration, adhesion and biomineralisation, two novel coral gene expression assays were implemented. These involved the use of reverse-transcriptase quantitative PCR (RT-qPCR) and employed 47 genes of interest (GOI), selected based on putative roles in the processes of settlement and metamorphosis. Substantial differences in transcriptomic responses of GOI were detected following incubation of A. millepora larvae with a threshold concentration and 10-fold elevated concentration of TBP-containing extracts of Pseudoalteromonas sp. The notable and relatively abrupt changes of the larval body structure during metamorphosis correlated, at the molecular level, with significant differences (p<0.05) in gene expression profiles of 24 GOI, 12 hours post exposure. Fourteen of those GOI also presented differences in expression (p<0.05) following exposure to the threshold concentration of bacterial TBP-containing extract. The specificity of the bacterial TBP-containing extract to induce the metamorphic stage in A. millepora larvae without attachment, using a robust, low cost, accurate, ecologically relevant and highly reproducible RT-qPCR assay, allowed partially decoupling of the transcriptomic processes of attachment and metamorphosis. The bacterial TBP-containing extract provided a unique opportunity to monitor the regulation of genes exclusively involved in the process of metamorphosis, contrasting previous gene expression studies that utilized cues, such as crustose coralline algae, biofilms or with GLW-amide neuropeptides that stimulate the entire onset of larval metamorphosis and attachment.
Authors: Clare R. Harding, Gunnar N. Schroeder, James W. Collins, Gad Frankel.
Published: 11-22-2013
Legionella pneumophila, the causative agent of a severe pneumonia named Legionnaires' disease, is an important human pathogen that infects and replicates within alveolar macrophages. Its virulence depends on the Dot/Icm type IV secretion system (T4SS), which is essential to establish a replication permissive vacuole known as the Legionella containing vacuole (LCV). L. pneumophila infection can be modeled in mice however most mouse strains are not permissive, leading to the search for novel infection models. We have recently shown that the larvae of the wax moth Galleria mellonella are suitable for investigation of L. pneumophila infection. G. mellonella is increasingly used as an infection model for human pathogens and a good correlation exists between virulence of several bacterial species in the insect and in mammalian models. A key component of the larvae's immune defenses are hemocytes, professional phagocytes, which take up and destroy invaders. L. pneumophila is able to infect, form a LCV and replicate within these cells. Here we demonstrate protocols for analyzing L. pneumophila virulence in the G. mellonella model, including how to grow infectious L. pneumophila, pretreat the larvae with inhibitors, infect the larvae and how to extract infected cells for quantification and immunofluorescence microscopy. We also describe how to quantify bacterial replication and fitness in competition assays. These approaches allow for the rapid screening of mutants to determine factors important in L. pneumophila virulence, describing a new tool to aid our understanding of this complex pathogen.
24 Related JoVE Articles!
Play Button
Ex vivo Culturing of Whole, Developing Drosophila Brains
Authors: Ranjini Prithviraj, Svetlana Trunova, Edward Giniger.
Institutions: National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD.
We describe a method for ex vivo culturing of whole Drosophila brains. This can be used as a counterpoint to chronic genetic manipulations for investigating the cell biology and development of central brain structures by allowing acute pharmacological interventions and live imaging of cellular processes. As an example of the technique, prior work from our lab1 has shown that a previously unrecognized subcellular compartment lies between the axonal and somatodendritic compartments of axons of the Drosophila central brain. The development of this compartment, referred to as the axon initial segment (AIS)2, was shown genetically to depend on the neuron-specific cyclin-dependent kinase, Cdk5. We show here that ex vivo treatment of wild-type Drosophila larval brains with the Cdk5-specific pharmacological inhibitors roscovitine and olomoucine3 causes acute changes in actin organization, and in localization of the cell-surface protein Fasciclin 2, that mimic the changes seen in mutants that lack Cdk5 activity genetically. A second example of the ex vivo culture technique is provided for remodeling of the connections of embryonic mushroom body (MB) gamma neurons during metamorphosis from larva to adult. The mushroom body is the center of olfactory learning and memory in the fly4, and these gamma neurons prune their axonal and dendritic branches during pupal development and then re-extend branches at a later timepoint to establish the adult innervation pattern5. Pruning of these neurons of the MB has been shown to occur via local degeneration of neurite branches6, by a mechanism that is triggered by ecdysone, a steroid hormone, acting at the ecdysone receptor B17, and that is dependent on the activity of the ubiquitin-proteasome system6. Our method of ex vivo culturing can be used to interrogate further the mechanism of developmental remodeling. We found that in the ex vivo culture setting, gamma neurons of the MB recapitulated the process of developmental pruning with a time course similar to that in vivo. It was essential, however, to wait until 1.5 hours after puparium formation before explanting the tissue in order for the cells to commit irreversibly to metamorphosis; dissection of animals at the onset of pupariation led to little or no metamorphosis in culture. Thus, with appropriate modification, the ex vivo culture approach can be applied to study dynamic as well as steady state aspects of central brain biology.
Neuroscience, Issue 65, Developmental Biology, Physiology, Drosophila, mushroom body, ex vivo, organ culture, pruning, pharmacology
Play Button
Visualization of Proprioceptors in Drosophila Larvae and Pupae
Authors: Naomi Halachmi, Atalya Nachman, Adi Salzberg.
Institutions: Technion-Israel Institute of Technology.
Proprioception is the ability to sense the motion, or position, of body parts by responding to stimuli arising within the body. In fruitflies and other insects proprioception is provided by specialized sensory organs termed chordotonal organs (ChOs) 2. Like many other organs in Drosophila, ChOs develop twice during the life cycle of the fly. First, the larval ChOs develop during embryogenesis. Then, the adult ChOs start to develop in the larval imaginal discs and continue to differentiate during metamorphosis. The development of larval ChOs during embryogenesis has been studied extensively 10,11,13,15,16. The centerpiece of each ChO is a sensory unit composed of a neuron and a scolopale cell. The sensory unit is stretched between two types of accessory cells that attach to the cuticle via specialized epidermal attachment cells 1,9,14. When a fly larva moves, the relative displacement of the epidermal attachment cells leads to stretching of the sensory unit and consequent opening of specific transient receptor potential vanilloid (TRPV) channels at the outer segment of the dendrite 8,12. The elicited signal is then transferred to the locomotor central pattern generator circuit in the central nervous system. Multiple ChOs have been described in the adult fly 7. These are located near the joints of the adult fly appendages (legs, wings and halters) and in the thorax and abdomen. In addition, several hundreds of ChOs collectively form the Johnston's organ in the adult antenna that transduce acoustic to mechanical energy 3,5,17,4. In contrast to the extensive knowledge about the development of ChOs in embryonic stages, very little is known about the morphology of these organs during larval stages. Moreover, with the exception of femoral ChOs 18 and Johnston's organ, our knowledge about the development and structure of ChOs in the adult fly is very fragmentary. Here we describe a method for staining and visualizing ChOs in third instar larvae and pupae. This method can be applied together with genetic tools to better characterize the morphology and understand the development of the various ChOs in the fly.
Neuroscience, Issue 64, Developmental Biology, Proprioceptors, chordotonal organs, wing, haltere, Drosophila, immunohistochemistry, pupae, larvae
Play Button
Live Cell Cycle Analysis of Drosophila Tissues using the Attune Acoustic Focusing Cytometer and Vybrant DyeCycle Violet DNA Stain
Authors: Kerry Flegel, Dan Sun, Olga Grushko, Yiqin Ma, Laura Buttitta.
Institutions: University of Michigan .
Flow cytometry has been widely used to obtain information about DNA content in a population of cells, to infer relative percentages in different cell cycle phases. This technique has been successfully extended to the mitotic tissues of the model organism Drosophila melanogaster for genetic studies of cell cycle regulation in vivo. When coupled with cell-type specific fluorescent protein expression and genetic manipulations, one can obtain detailed information about effects on cell number, cell size and cell cycle phasing in vivo. However this live-cell method has relied on the use of the cell permeable Hoechst 33342 DNA-intercalating dye, limiting users to flow cytometers equipped with a UV laser. We have modified this protocol to use a newer live-cell DNA dye, Vybrant DyeCycle Violet, compatible with the more common violet 405nm laser. The protocol presented here allows for efficient cell cycle analysis coupled with cell type, relative cell size and cell number information, in a variety of Drosophila tissues. This protocol extends the useful cell cycle analysis technique for live Drosophila tissues to a small benchtop analyzer, the Attune Acoustic Focusing Cytometer, which can be run and maintained on a single-lab scale.
Molecular Biology, Issue 75, Cellular Biology, Developmental Biology, Anatomy, Physiology, Genetics, Flow Cytometry, Cell Cycle, DNA Replication, Metamorphosis, Biological, drosophila, Gal4/UAS, insect metamorphosis, animal model
Play Button
Use of Shigella flexneri to Study Autophagy-Cytoskeleton Interactions
Authors: Maria J. Mazon Moya, Emma Colucci-Guyon, Serge Mostowy.
Institutions: Imperial College London, Institut Pasteur, Unité Macrophages et Développement de l'Immunité.
Shigella flexneri is an intracellular pathogen that can escape from phagosomes to reach the cytosol, and polymerize the host actin cytoskeleton to promote its motility and dissemination. New work has shown that proteins involved in actin-based motility are also linked to autophagy, an intracellular degradation process crucial for cell autonomous immunity. Strikingly, host cells may prevent actin-based motility of S. flexneri by compartmentalizing bacteria inside ‘septin cages’ and targeting them to autophagy. These observations indicate that a more complete understanding of septins, a family of filamentous GTP-binding proteins, will provide new insights into the process of autophagy. This report describes protocols to monitor autophagy-cytoskeleton interactions caused by S. flexneri in vitro using tissue culture cells and in vivo using zebrafish larvae. These protocols enable investigation of intracellular mechanisms that control bacterial dissemination at the molecular, cellular, and whole organism level.
Infection, Issue 91, ATG8/LC3, autophagy, cytoskeleton, HeLa cells, p62, septin, Shigella, zebrafish
Play Button
Large-scale Gene Knockdown in C. elegans Using dsRNA Feeding Libraries to Generate Robust Loss-of-function Phenotypes
Authors: Kathryn N. Maher, Mary Catanese, Daniel L. Chase.
Institutions: University of Massachusetts, Amherst, University of Massachusetts, Amherst, University of Massachusetts, Amherst.
RNA interference by feeding worms bacteria expressing dsRNAs has been a useful tool to assess gene function in C. elegans. While this strategy works well when a small number of genes are targeted for knockdown, large scale feeding screens show variable knockdown efficiencies, which limits their utility. We have deconstructed previously published RNAi knockdown protocols and found that the primary source of the reduced knockdown can be attributed to the loss of dsRNA-encoding plasmids from the bacteria fed to the animals. Based on these observations, we have developed a dsRNA feeding protocol that greatly reduces or eliminates plasmid loss to achieve efficient, high throughput knockdown. We demonstrate that this protocol will produce robust, reproducible knock down of C. elegans genes in multiple tissue types, including neurons, and will permit efficient knockdown in large scale screens. This protocol uses a commercially available dsRNA feeding library and describes all steps needed to duplicate the library and perform dsRNA screens. The protocol does not require the use of any sophisticated equipment, and can therefore be performed by any C. elegans lab.
Developmental Biology, Issue 79, Caenorhabditis elegans (C. elegans), Gene Knockdown Techniques, C. elegans, dsRNA interference, gene knockdown, large scale feeding screen
Play Button
Appetitive Associative Olfactory Learning in Drosophila Larvae
Authors: Anthi A. Apostolopoulou, Annekathrin Widmann, Astrid Rohwedder, Johanna E. Pfitzenmaier, Andreas S. Thum.
Institutions: University of Konstanz, University of Fribourg.
In the following we describe the methodological details of appetitive associative olfactory learning in Drosophila larvae. The setup, in combination with genetic interference, provides a handle to analyze the neuronal and molecular fundamentals of specifically associative learning in a simple larval brain. Organisms can use past experience to adjust present behavior. Such acquisition of behavioral potential can be defined as learning, and the physical bases of these potentials as memory traces1-4. Neuroscientists try to understand how these processes are organized in terms of molecular and neuronal changes in the brain by using a variety of methods in model organisms ranging from insects to vertebrates5,6. For such endeavors it is helpful to use model systems that are simple and experimentally accessible. The Drosophila larva has turned out to satisfy these demands based on the availability of robust behavioral assays, the existence of a variety of transgenic techniques and the elementary organization of the nervous system comprising only about 10,000 neurons (albeit with some concessions: cognitive limitations, few behavioral options, and richness of experience questionable)7-10. Drosophila larvae can form associations between odors and appetitive gustatory reinforcement like sugar11-14. In a standard assay, established in the lab of B. Gerber, animals receive a two-odor reciprocal training: A first group of larvae is exposed to an odor A together with a gustatory reinforcer (sugar reward) and is subsequently exposed to an odor B without reinforcement 9. Meanwhile a second group of larvae receives reciprocal training while experiencing odor A without reinforcement and subsequently being exposed to odor B with reinforcement (sugar reward). In the following both groups are tested for their preference between the two odors. Relatively higher preferences for the rewarded odor reflect associative learning - presented as a performance index (PI). The conclusion regarding the associative nature of the performance index is compelling, because apart from the contingency between odors and tastants, other parameters, such as odor and reward exposure, passage of time and handling do not differ between the two groups9.
Neuroscience, Issue 72, Developmental Biology, Neurobiology, Biochemistry, Molecular Biology, Physiology, Behavior, Drosophila, fruit fly, larvae, instar, olfaction, olfactory system, odor, 1-octanol, OCT, learning, reward, sugar, feeding, animal model
Play Button
Protocols for Implementing an Escherichia coli Based TX-TL Cell-Free Expression System for Synthetic Biology
Authors: Zachary Z. Sun, Clarmyra A. Hayes, Jonghyeon Shin, Filippo Caschera, Richard M. Murray, Vincent Noireaux.
Institutions: California Institute of Technology, California Institute of Technology, Massachusetts Institute of Technology, University of Minnesota.
Ideal cell-free expression systems can theoretically emulate an in vivo cellular environment in a controlled in vitro platform.1 This is useful for expressing proteins and genetic circuits in a controlled manner as well as for providing a prototyping environment for synthetic biology.2,3 To achieve the latter goal, cell-free expression systems that preserve endogenous Escherichia coli transcription-translation mechanisms are able to more accurately reflect in vivo cellular dynamics than those based on T7 RNA polymerase transcription. We describe the preparation and execution of an efficient endogenous E. coli based transcription-translation (TX-TL) cell-free expression system that can produce equivalent amounts of protein as T7-based systems at a 98% cost reduction to similar commercial systems.4,5 The preparation of buffers and crude cell extract are described, as well as the execution of a three tube TX-TL reaction. The entire protocol takes five days to prepare and yields enough material for up to 3000 single reactions in one preparation. Once prepared, each reaction takes under 8 hr from setup to data collection and analysis. Mechanisms of regulation and transcription exogenous to E. coli, such as lac/tet repressors and T7 RNA polymerase, can be supplemented.6 Endogenous properties, such as mRNA and DNA degradation rates, can also be adjusted.7 The TX-TL cell-free expression system has been demonstrated for large-scale circuit assembly, exploring biological phenomena, and expression of proteins under both T7- and endogenous promoters.6,8 Accompanying mathematical models are available.9,10 The resulting system has unique applications in synthetic biology as a prototyping environment, or "TX-TL biomolecular breadboard."
Cellular Biology, Issue 79, Bioengineering, Synthetic Biology, Chemistry Techniques, Synthetic, Molecular Biology, control theory, TX-TL, cell-free expression, in vitro, transcription-translation, cell-free protein synthesis, synthetic biology, systems biology, Escherichia coli cell extract, biological circuits, biomolecular breadboard
Play Button
The Insect Galleria mellonella as a Powerful Infection Model to Investigate Bacterial Pathogenesis
Authors: Nalini Ramarao, Christina Nielsen-Leroux, Didier Lereclus.
Institutions: INRA, Micalis UMR1319, France.
The study of bacterial virulence often requires a suitable animal model. Mammalian models of infection are costly and may raise ethical issues. The use of insects as infection models provides a valuable alternative. Compared to other non-vertebrate model hosts such as nematodes, insects have a relatively advanced system of antimicrobial defenses and are thus more likely to produce information relevant to the mammalian infection process. Like mammals, insects possess a complex innate immune system1. Cells in the hemolymph are capable of phagocytosing or encapsulating microbial invaders, and humoral responses include the inducible production of lysozyme and small antibacterial peptides2,3. In addition, analogies are found between the epithelial cells of insect larval midguts and intestinal cells of mammalian digestive systems. Finally, several basic components essential for the bacterial infection process such as cell adhesion, resistance to antimicrobial peptides, tissue degradation and adaptation to oxidative stress are likely to be important in both insects and mammals1. Thus, insects are polyvalent tools for the identification and characterization of microbial virulence factors involved in mammalian infections. Larvae of the greater wax moth Galleria mellonella have been shown to provide a useful insight into the pathogenesis of a wide range of microbial infections including mammalian fungal (Fusarium oxysporum, Aspergillus fumigatus, Candida albicans) and bacterial pathogens, such as Staphylococcus aureus, Proteus vulgaris, Serratia marcescens Pseudomonas aeruginosa, Listeria monocytogenes or Enterococcus faecalis4-7. Regardless of the bacterial species, results obtained with Galleria larvae infected by direct injection through the cuticle consistently correlate with those of similar mammalian studies: bacterial strains that are attenuated in mammalian models demonstrate lower virulence in Galleria, and strains causing severe human infections are also highly virulent in the Galleria model8-11. Oral infection of Galleria is much less used and additional compounds, like specific toxins, are needed to reach mortality. G. mellonella larvae present several technical advantages: they are relatively large (last instar larvae before pupation are about 2 cm long and weight 250 mg), thus enabling the injection of defined doses of bacteria; they can be reared at various temperatures (20 °C to 30 °C) and infection studies can be conducted between 15 °C to above 37 °C12,13, allowing experiments that mimic a mammalian environment. In addition, insect rearing is easy and relatively cheap. Infection of the larvae allows monitoring bacterial virulence by several means, including calculation of LD5014, measurement of bacterial survival15,16 and examination of the infection process17. Here, we describe the rearing of the insects, covering all life stages of G. mellonella. We provide a detailed protocol of infection by two routes of inoculation: oral and intra haemocoelic. The bacterial model used in this protocol is Bacillus cereus, a Gram positive pathogen implicated in gastrointestinal as well as in other severe local or systemic opportunistic infections18,19.
Infection, Issue 70, Microbiology, Immunology, Molecular Biology, Bacteriology, Entomology, Bacteria, Galleria mellonella, greater wax moth, insect larvae, intra haemocoelic injection, ingestion, animal model, host pathogen interactions
Play Button
A New Clarification Method to Visualize Biliary Degeneration During Liver Metamorphosis in Sea Lamprey (Petromyzon marinus)
Authors: Yu-Wen Chung-Davidson, Peter J. Davidson, Anne M. Scott, Erin J. Walaszczyk, Cory O. Brant, Tyler Buchinger, Nicholas S. Johnson, Weiming Li.
Institutions: Michigan State University, U.S. Geological Survey.
Biliary atresia is a rare disease of infancy, with an estimated 1 in 15,000 frequency in the southeast United States, but more common in East Asian countries, with a reported frequency of 1 in 5,000 in Taiwan. Although much is known about the management of biliary atresia, its pathogenesis is still elusive. The sea lamprey (Petromyzon marinus) provides a unique opportunity to examine the mechanism and progression of biliary degeneration. Sea lamprey develop through three distinct life stages: larval, parasitic, and adult. During the transition from larvae to parasitic juvenile, sea lamprey undergo metamorphosis with dramatic reorganization and remodeling in external morphology and internal organs. In the liver, the entire biliary system is lost, including the gall bladder and the biliary tree. A newly-developed method called “CLARITY” was modified to clarify the entire liver and the junction with the intestine in metamorphic sea lamprey. The process of biliary degeneration was visualized and discerned during sea lamprey metamorphosis by using laser scanning confocal microscopy. This method provides a powerful tool to study biliary atresia in a unique animal model.
Developmental Biology, Issue 88, Biliary atresia, liver development, bile duct degeneration, Petromyzon marinus, metamorphosis, apoptosis
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
Play Button
Larval RNA Interference in the Red Flour Beetle, Tribolium castaneum
Authors: David M. Linz, Courtney M. Clark-Hachtel, Ferran Borràs-Castells, Yoshinori Tomoyasu.
Institutions: Miami University.
The red flour beetle, Tribolium castaneum, offers a repertoire of experimental tools for genetic and developmental studies, including a fully annotated genome sequence, transposon-based transgenesis, and effective RNA interference (RNAi). Among these advantages, RNAi-based gene knockdown techniques are at the core of Tribolium research. T. castaneum show a robust systemic RNAi response, making it possible to perform RNAi at any life stage by simply injecting double-stranded RNA (dsRNA) into the beetle’s body cavity. In this report, we provide an overview of our larval RNAi technique in T. castaneum. The protocol includes (i) isolation of the proper stage of T. castaneum larvae for injection, (ii) preparation for the injection setting, and (iii) dsRNA injection. Larval RNAi is a simple, but powerful technique that provides us with quick access to loss-of-function phenotypes, including multiple gene knockdown phenotypes as well as a series of hypomorphic phenotypes. Since virtually all T. castaneum tissues are susceptible to extracellular dsRNA, the larval RNAi technique allows researchers to study a wide variety of tissues in diverse contexts, including the genetic basis of organismal responses to the outside environment. In addition, the simplicity of this technique stimulates more student involvement in research, making T. castaneum an ideal genetic system for use in a classroom setting.
Molecular Biology, Issue 92, RNA interference, RNAi, gene knockdown, red flour beetle, Tribolium castaneum, injection, double-stranded RNA, functional analysis, teaching laboratories
Play Button
Affinity-based Isolation of Tagged Nuclei from Drosophila Tissues for Gene Expression Analysis
Authors: Jingqun Ma, Vikki Marie Weake.
Institutions: Purdue University.
Drosophila melanogaster embryonic and larval tissues often contain a highly heterogeneous mixture of cell types, which can complicate the analysis of gene expression in these tissues. Thus, to analyze cell-specific gene expression profiles from Drosophila tissues, it may be necessary to isolate specific cell types with high purity and at sufficient yields for downstream applications such as transcriptional profiling and chromatin immunoprecipitation. However, the irregular cellular morphology in tissues such as the central nervous system, coupled with the rare population of specific cell types in these tissues, can pose challenges for traditional methods of cell isolation such as laser microdissection and fluorescence-activated cell sorting (FACS). Here, an alternative approach to characterizing cell-specific gene expression profiles using affinity-based isolation of tagged nuclei, rather than whole cells, is described. Nuclei in the specific cell type of interest are genetically labeled with a nuclear envelope-localized EGFP tag using the Gal4/UAS binary expression system. These EGFP-tagged nuclei can be isolated using antibodies against GFP that are coupled to magnetic beads. The approach described in this protocol enables consistent isolation of nuclei from specific cell types in the Drosophila larval central nervous system at high purity and at sufficient levels for expression analysis, even when these cell types comprise less than 2% of the total cell population in the tissue. This approach can be used to isolate nuclei from a wide variety of Drosophila embryonic and larval cell types using specific Gal4 drivers, and may be useful for isolating nuclei from cell types that are not suitable for FACS or laser microdissection.
Biochemistry, Issue 85, Gene Expression, nuclei isolation, Drosophila, KASH, GFP, cell-type specific
Play Button
Ex vivo Culture of Drosophila Pupal Testis and Single Male Germ-line Cysts: Dissection, Imaging, and Pharmacological Treatment
Authors: Stefanie M. K. Gärtner, Christina Rathke, Renate Renkawitz-Pohl, Stephan Awe.
Institutions: Philipps-Universität Marburg, Philipps-Universität Marburg.
During spermatogenesis in mammals and in Drosophila melanogaster, male germ cells develop in a series of essential developmental processes. This includes differentiation from a stem cell population, mitotic amplification, and meiosis. In addition, post-meiotic germ cells undergo a dramatic morphological reshaping process as well as a global epigenetic reconfiguration of the germ line chromatin—the histone-to-protamine switch. Studying the role of a protein in post-meiotic spermatogenesis using mutagenesis or other genetic tools is often impeded by essential embryonic, pre-meiotic, or meiotic functions of the protein under investigation. The post-meiotic phenotype of a mutant of such a protein could be obscured through an earlier developmental block, or the interpretation of the phenotype could be complicated. The model organism Drosophila melanogaster offers a bypass to this problem: intact testes and even cysts of germ cells dissected from early pupae are able to develop ex vivo in culture medium. Making use of such cultures allows microscopic imaging of living germ cells in testes and of germ-line cysts. Importantly, the cultivated testes and germ cells also become accessible to pharmacological inhibitors, thereby permitting manipulation of enzymatic functions during spermatogenesis, including post-meiotic stages. The protocol presented describes how to dissect and cultivate pupal testes and germ-line cysts. Information on the development of pupal testes and culture conditions are provided alongside microscope imaging data of live testes and germ-line cysts in culture. We also describe a pharmacological assay to study post-meiotic spermatogenesis, exemplified by an assay targeting the histone-to-protamine switch using the histone acetyltransferase inhibitor anacardic acid. In principle, this cultivation method could be adapted to address many other research questions in pre- and post-meiotic spermatogenesis.
Developmental Biology, Issue 91, Ex vivo culture, testis, male germ-line cells, Drosophila, imaging, pharmacological assay
Play Button
Genetic Manipulation in Δku80 Strains for Functional Genomic Analysis of Toxoplasma gondii
Authors: Leah M. Rommereim, Miryam A. Hortua Triana, Alejandra Falla, Kiah L. Sanders, Rebekah B. Guevara, David J. Bzik, Barbara A. Fox.
Institutions: The Geisel School of Medicine at Dartmouth.
Targeted genetic manipulation using homologous recombination is the method of choice for functional genomic analysis to obtain a detailed view of gene function and phenotype(s). The development of mutant strains with targeted gene deletions, targeted mutations, complemented gene function, and/or tagged genes provides powerful strategies to address gene function, particularly if these genetic manipulations can be efficiently targeted to the gene locus of interest using integration mediated by double cross over homologous recombination. Due to very high rates of nonhomologous recombination, functional genomic analysis of Toxoplasma gondii has been previously limited by the absence of efficient methods for targeting gene deletions and gene replacements to specific genetic loci. Recently, we abolished the major pathway of nonhomologous recombination in type I and type II strains of T. gondii by deleting the gene encoding the KU80 protein1,2. The Δku80 strains behave normally during tachyzoite (acute) and bradyzoite (chronic) stages in vitro and in vivo and exhibit essentially a 100% frequency of homologous recombination. The Δku80 strains make functional genomic studies feasible on the single gene as well as on the genome scale1-4. Here, we report methods for using type I and type II Δku80Δhxgprt strains to advance gene targeting approaches in T. gondii. We outline efficient methods for generating gene deletions, gene replacements, and tagged genes by targeted insertion or deletion of the hypoxanthine-xanthine-guanine phosphoribosyltransferase (HXGPRT) selectable marker. The described gene targeting protocol can be used in a variety of ways in Δku80 strains to advance functional analysis of the parasite genome and to develop single strains that carry multiple targeted genetic manipulations. The application of this genetic method and subsequent phenotypic assays will reveal fundamental and unique aspects of the biology of T. gondii and related significant human pathogens that cause malaria (Plasmodium sp.) and cryptosporidiosis (Cryptosporidium).
Infectious Diseases, Issue 77, Genetics, Microbiology, Infection, Medicine, Immunology, Molecular Biology, Cellular Biology, Biomedical Engineering, Bioengineering, Genomics, Parasitology, Pathology, Apicomplexa, Coccidia, Toxoplasma, Genetic Techniques, Gene Targeting, Eukaryota, Toxoplasma gondii, genetic manipulation, gene targeting, gene deletion, gene replacement, gene tagging, homologous recombination, DNA, sequencing
Play Button
A Microplate Assay to Assess Chemical Effects on RBL-2H3 Mast Cell Degranulation: Effects of Triclosan without Use of an Organic Solvent
Authors: Lisa M. Weatherly, Rachel H. Kennedy, Juyoung Shim, Julie A. Gosse.
Institutions: University of Maine, Orono, University of Maine, Orono.
Mast cells play important roles in allergic disease and immune defense against parasites. Once activated (e.g. by an allergen), they degranulate, a process that results in the exocytosis of allergic mediators. Modulation of mast cell degranulation by drugs and toxicants may have positive or adverse effects on human health. Mast cell function has been dissected in detail with the use of rat basophilic leukemia mast cells (RBL-2H3), a widely accepted model of human mucosal mast cells3-5. Mast cell granule component and the allergic mediator β-hexosaminidase, which is released linearly in tandem with histamine from mast cells6, can easily and reliably be measured through reaction with a fluorogenic substrate, yielding measurable fluorescence intensity in a microplate assay that is amenable to high-throughput studies1. Originally published by Naal et al.1, we have adapted this degranulation assay for the screening of drugs and toxicants and demonstrate its use here. Triclosan is a broad-spectrum antibacterial agent that is present in many consumer products and has been found to be a therapeutic aid in human allergic skin disease7-11, although the mechanism for this effect is unknown. Here we demonstrate an assay for the effect of triclosan on mast cell degranulation. We recently showed that triclosan strongly affects mast cell function2. In an effort to avoid use of an organic solvent, triclosan is dissolved directly into aqueous buffer with heat and stirring, and resultant concentration is confirmed using UV-Vis spectrophotometry (using ε280 = 4,200 L/M/cm)12. This protocol has the potential to be used with a variety of chemicals to determine their effects on mast cell degranulation, and more broadly, their allergic potential.
Immunology, Issue 81, mast cell, basophil, degranulation, RBL-2H3, triclosan, irgasan, antibacterial, β-hexosaminidase, allergy, Asthma, toxicants, ionophore, antigen, fluorescence, microplate, UV-Vis
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
Play Button
Using Coculture to Detect Chemically Mediated Interspecies Interactions
Authors: Elizabeth Anne Shank.
Institutions: University of North Carolina at Chapel Hill .
In nature, bacteria rarely exist in isolation; they are instead surrounded by a diverse array of other microorganisms that alter the local environment by secreting metabolites. These metabolites have the potential to modulate the physiology and differentiation of their microbial neighbors and are likely important factors in the establishment and maintenance of complex microbial communities. We have developed a fluorescence-based coculture screen to identify such chemically mediated microbial interactions. The screen involves combining a fluorescent transcriptional reporter strain with environmental microbes on solid media and allowing the colonies to grow in coculture. The fluorescent transcriptional reporter is designed so that the chosen bacterial strain fluoresces when it is expressing a particular phenotype of interest (i.e. biofilm formation, sporulation, virulence factor production, etc.) Screening is performed under growth conditions where this phenotype is not expressed (and therefore the reporter strain is typically nonfluorescent). When an environmental microbe secretes a metabolite that activates this phenotype, it diffuses through the agar and activates the fluorescent reporter construct. This allows the inducing-metabolite-producing microbe to be detected: they are the nonfluorescent colonies most proximal to the fluorescent colonies. Thus, this screen allows the identification of environmental microbes that produce diffusible metabolites that activate a particular physiological response in a reporter strain. This publication discusses how to: a) select appropriate coculture screening conditions, b) prepare the reporter and environmental microbes for screening, c) perform the coculture screen, d) isolate putative inducing organisms, and e) confirm their activity in a secondary screen. We developed this method to screen for soil organisms that activate biofilm matrix-production in Bacillus subtilis; however, we also discuss considerations for applying this approach to other genetically tractable bacteria.
Microbiology, Issue 80, High-Throughput Screening Assays, Genes, Reporter, Microbial Interactions, Soil Microbiology, Coculture, microbial interactions, screen, fluorescent transcriptional reporters, Bacillus subtilis
Play Button
Modeling Neural Immune Signaling of Episodic and Chronic Migraine Using Spreading Depression In Vitro
Authors: Aya D. Pusic, Yelena Y. Grinberg, Heidi M. Mitchell, Richard P. Kraig.
Institutions: The University of Chicago Medical Center, The University of Chicago Medical Center.
Migraine and its transformation to chronic migraine are healthcare burdens in need of improved treatment options. We seek to define how neural immune signaling modulates the susceptibility to migraine, modeled in vitro using spreading depression (SD), as a means to develop novel therapeutic targets for episodic and chronic migraine. SD is the likely cause of migraine aura and migraine pain. It is a paroxysmal loss of neuronal function triggered by initially increased neuronal activity, which slowly propagates within susceptible brain regions. Normal brain function is exquisitely sensitive to, and relies on, coincident low-level immune signaling. Thus, neural immune signaling likely affects electrical activity of SD, and therefore migraine. Pain perception studies of SD in whole animals are fraught with difficulties, but whole animals are well suited to examine systems biology aspects of migraine since SD activates trigeminal nociceptive pathways. However, whole animal studies alone cannot be used to decipher the cellular and neural circuit mechanisms of SD. Instead, in vitro preparations where environmental conditions can be controlled are necessary. Here, it is important to recognize limitations of acute slices and distinct advantages of hippocampal slice cultures. Acute brain slices cannot reveal subtle changes in immune signaling since preparing the slices alone triggers: pro-inflammatory changes that last days, epileptiform behavior due to high levels of oxygen tension needed to vitalize the slices, and irreversible cell injury at anoxic slice centers. In contrast, we examine immune signaling in mature hippocampal slice cultures since the cultures closely parallel their in vivo counterpart with mature trisynaptic function; show quiescent astrocytes, microglia, and cytokine levels; and SD is easily induced in an unanesthetized preparation. Furthermore, the slices are long-lived and SD can be induced on consecutive days without injury, making this preparation the sole means to-date capable of modeling the neuroimmune consequences of chronic SD, and thus perhaps chronic migraine. We use electrophysiological techniques and non-invasive imaging to measure neuronal cell and circuit functions coincident with SD. Neural immune gene expression variables are measured with qPCR screening, qPCR arrays, and, importantly, use of cDNA preamplification for detection of ultra-low level targets such as interferon-gamma using whole, regional, or specific cell enhanced (via laser dissection microscopy) sampling. Cytokine cascade signaling is further assessed with multiplexed phosphoprotein related targets with gene expression and phosphoprotein changes confirmed via cell-specific immunostaining. Pharmacological and siRNA strategies are used to mimic and modulate SD immune signaling.
Neuroscience, Issue 52, innate immunity, hormesis, microglia, T-cells, hippocampus, slice culture, gene expression, laser dissection microscopy, real-time qPCR, interferon-gamma
Play Button
Microgavage of Zebrafish Larvae
Authors: Jordan L. Cocchiaro, John F. Rawls.
Institutions: University of North Carolina at Chapel Hill .
The zebrafish has emerged as a powerful model organism for studying intestinal development1-5, physiology6-11, disease12-16, and host-microbe interactions17-25. Experimental approaches for studying intestinal biology often require the in vivo introduction of selected materials into the lumen of the intestine. In the larval zebrafish model, this is typically accomplished by immersing fish in a solution of the selected material, or by injection through the abdominal wall. Using the immersion method, it is difficult to accurately monitor or control the route or timing of material delivery to the intestine. For this reason, immersion exposure can cause unintended toxicity and other effects on extraintestinal tissues, limiting the potential range of material amounts that can be delivered into the intestine. Also, the amount of material ingested during immersion exposure can vary significantly between individual larvae26. Although these problems are not encountered during direct injection through the abdominal wall, proper injection is difficult and causes tissue damage which could influence experimental results. We introduce a method for microgavage of zebrafish larvae. The goal of this method is to provide a safe, effective, and consistent way to deliver material directly to the lumen of the anterior intestine in larval zebrafish with controlled timing. Microgavage utilizes standard embryo microinjection and stereomicroscopy equipment common to most laboratories that perform zebrafish research. Once fish are properly positioned in methylcellulose, gavage can be performed quickly at a rate of approximately 7-10 fish/ min, and post-gavage survival approaches 100% depending on the gavaged material. We also show that microgavage can permit loading of the intestinal lumen with high concentrations of materials that are lethal to fish when exposed by immersion. To demonstrate the utility of this method, we present a fluorescent dextran microgavage assay that can be used to quantify transit from the intestinal lumen to extraintestinal spaces. This test can be used to verify proper execution of the microgavage procedure, and also provides a novel zebrafish assay to examine intestinal epithelial barrier integrity under different experimental conditions (e.g. genetic manipulation, drug treatment, or exposure to environmental factors). Furthermore, we show how gavage can be used to evaluate intestinal motility by gavaging fluorescent microspheres and monitoring their subsequent transit. Microgavage can be applied to deliver diverse materials such as live microorganisms, secreted microbial factors/toxins, pharmacological agents, and physiological probes. With these capabilities, the larval zebrafish microgavage method has the potential to enhance a broad range of research fields using the zebrafish model system.
Biochemistry, Issue 72, Molecular Biology, Anatomy, Physiology, Basic Protocols, Surgery, Zebrafish, Danio rerio, intestine, lumen, larvae, gavage, microgavage, epithelium, barrier function, gut motility, microsurgery, microscopy, animal model
Play Button
Drosophila Pupal Abdomen Immunohistochemistry
Authors: Wei Wang, John H. Yoder.
Institutions: University of Alabama.
The Drosophila pupal abdomen is an established model system for the study of epithelial morphogenesis and the development of sexually dimorphic morphologies 1-3. During pupation, which spans approximately 96 hours (at 25 °C), proliferating populations of imaginal cells replace the larval epidermis to generate the adult abdominal segments. These imaginal cells, born during embryogenesis, exist as lateral pairs of histoblast nests in each abdominal segment of the larvae. Four pairs of histoblast nests give rise to the adult dorsal cuticle (anterior and posterior dorsal nests), the ventral cuticle (ventral nests) and the spiracles associated with each segment (spiracle nests) 4. Upon puparation, these diploid cells (distinguishable by size from the larger polyploid larval epidermal cells- LECs) begin a stereotypical process of proliferation, migration and replacement of the LECs. Various molecular and genetic tools can be employed to investigate the contributions of genetic pathways involved in morphogenesis of the adult abdomen. Ultimate adult phenotypes are typically analyzed following dissection of adult abdominal cuticles. However, investigation of the underlying molecular processes requires immunohistochemical analyses of the pupal epithelium, which present unique challenges. Temporally dynamic morphogenesis and the interactions of two distinct epithelial populations (larval and imaginal) generate a fragile tissue prone to excessive cell loss during dissection and subsequent processing. We have developed methods of dissection, fixation, mounting and imaging of the Drosophila pupal abdominem epithelium for immunohistochemical studies that generate consistent high quality samples suitable for confocal or standard fluorescent microscopy.
Immunology, Issue 56, Drosophila, immunohistochemistry, pupae, abdomen, epithelium, antibody
Play Button
Analysis of Gene Expression in Emerald Ash Borer (Agrilus planipennis) Using Quantitative Real Time-PCR
Authors: Binny Bhandary, Swapna Priya Rajarapu, Loren Rivera-Vega, Omprakash Mittapalli.
Institutions: The Ohio State University.
Emerald ash borer (EAB, Agrilus planipennis) is an exotic invasive pest, which has killed millions of ash trees (Fraxinus spp) in North America. EAB continues to spread rapidly and attacks ash trees of different ages, from saplings to mature trees. However, to date very little or no molecular knowledge exists for EAB. We are interested in deciphering the molecular-based physiological processes at the tissue level that aid EAB in successful colonization of ash trees. In this report we show the effective use of quantitative real-time PCR (qRT-PCR) to ascertain mRNA levels in different larval tissues (including midgut, fat bodies and cuticle) and different developmental stages (including 1st-, 2nd-, 3rd-, 4th-instars, prepupae and adults) of EAB. As an example, a peritrophin gene (herein named, AP-PERI1) is exemplified as the gene of interest and a ribosomal protein (AP-RP1) as the internal control. Peritrophins are important components of the peritrophic membrane/matrix (PM), which is the lining of the insect gut. The PM has diverse functions including digestion and mechanical protection to the midgut epithelium.
Cellular Biology, Issue 39, quantitative real time-PCR, peritrophin, emerald ash borer, gene expression
Play Button
In vivo Visualization of Synaptic Vesicles Within Drosophila Larval Segmental Axons
Authors: Michelle L. Kuznicki, Shermali Gunawardena.
Institutions: SUNY-University at Buffalo.
Elucidating the mechanisms of axonal transport has shown to be very important in determining how defects in long distance transport affect different neurological diseases. Defects in this essential process can have detrimental effects on neuronal functioning and development. We have developed a dissection protocol that is designed to expose the Drosophila larval segmental nerves to view axonal transport in real time. We have adapted this protocol for live imaging from the one published by Hurd and Saxton (1996) used for immunolocalizatin of larval segmental nerves. Careful dissection and proper buffer conditions are critical for maximizing the lifespan of the dissected larvae. When properly done, dissected larvae have shown robust vesicle transport for 2-3 hours under physiological conditions. We use the UAS-GAL4 method 1 to express GFP-tagged APP or synaptotagmin vesicles within a single axon or many axons in larval segmental nerves by using different neuronal GAL4 drivers. Other fluorescently tagged markers, for example mitochrondria (MitoTracker) or lysosomes (LysoTracker), can be also applied to the larvae before viewing. GFP-vesicle movement and particle movement can be viewed simultaneously using separate wavelengths.
Neuroscience, Issue 44, Live imaging, Axonal transport, GFP-tagged vesicles
Play Button
Quantitative Comparison of cis-Regulatory Element (CRE) Activities in Transgenic Drosophila melanogaster
Authors: William A. Rogers, Thomas M. Williams.
Institutions: University of Dayton, University of Dayton.
Gene expression patterns are specified by cis-regulatory element (CRE) sequences, which are also called enhancers or cis-regulatory modules. A typical CRE possesses an arrangement of binding sites for several transcription factor proteins that confer a regulatory logic specifying when, where, and at what level the regulated gene(s) is expressed. The full set of CREs within an animal genome encodes the organism′s program for development1, and empirical as well as theoretical studies indicate that mutations in CREs played a prominent role in morphological evolution2-4. Moreover, human genome wide association studies indicate that genetic variation in CREs contribute substantially to phenotypic variation5,6. Thus, understanding regulatory logic and how mutations affect such logic is a central goal of genetics. Reporter transgenes provide a powerful method to study the in vivo function of CREs. Here a known or suspected CRE sequence is coupled to heterologous promoter and coding sequences for a reporter gene encoding an easily observable protein product. When a reporter transgene is inserted into a host organism, the CRE′s activity becomes visible in the form of the encoded reporter protein. P-element mediated transgenesis in the fruit fly species Drosophila (D.) melanogaster7 has been used for decades to introduce reporter transgenes into this model organism, though the genomic placement of transgenes is random. Hence, reporter gene activity is strongly influenced by the local chromatin and gene environment, limiting CRE comparisons to being qualitative. In recent years, the phiC31 based integration system was adapted for use in D. melanogaster to insert transgenes into specific genome landing sites8-10. This capability has made the quantitative measurement of gene and, relevant here, CRE activity11-13 feasible. The production of transgenic fruit flies can be outsourced, including phiC31-based integration, eliminating the need to purchase expensive equipment and/or have proficiency at specialized transgene injection protocols. Here, we present a general protocol to quantitatively evaluate a CRE′s activity, and show how this approach can be used to measure the effects of an introduced mutation on a CRE′s activity and to compare the activities of orthologous CREs. Although the examples given are for a CRE active during fruit fly metamorphosis, the approach can be applied to other developmental stages, fruit fly species, or model organisms. Ultimately, a more widespread use of this approach to study CREs should advance an understanding of regulatory logic and how logic can vary and evolve.
Developmental Biology, Issue 58, Cis-regulatory element, CRE, cis-regulatory module, enhancer, site-specific integration, reporter transgenes, confocal microscopy, regulatory logic, transcription factors, binding sites, Drosophila melanogaster, Drosophila
Play Button
Dissection of Larval CNS in Drosophila Melanogaster
Authors: Nathaniel Hafer, Paul Schedl.
Institutions: Princeton University.
The central nervous system (CNS) of Drosophila larvae is complex and poorly understood. One way to investigate the CNS is to use immunohistochemistry to examine the expression of various novel and marker proteins. Staining of whole larvae is impractical because the tough cuticle prevents antibodies from penetrating inside the body cavity. In order to stain these tissues it is necessary to dissect the animal prior to fixing and staining. In this article we demonstrate how to dissect Drosophila larvae without damaging the CNS. Begin by tearing the larva in half with a pair of fine forceps, and then turn the cuticle "inside-out" to expose the CNS. If the dissection is performed carefully the CNS will remain attached to the cuticle. We usually keep the CNS attached to the cuticle throughout the fixation and staining steps, and only completely remove the CNS from the cuticle just prior to mounting the samples on glass slides. We also show some representative images of a larval CNS stained with Eve, a transcription factor expressed in a subset of neurons in the CNS. The article concludes with a discussion of some of the practical uses of this technique and the potential difficulties that may arise.
Developmental Biology, Issue 1, Drosophila, fly, CNS, larvae
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.