JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Evolution of eye morphology and rhodopsin expression in the Drosophila melanogaster species subgroup.
A striking diversity of compound eye size and shape has evolved among insects. The number of ommatidia and their size are major determinants of the visual sensitivity and acuity of the compound eye. Each ommatidium is composed of eight photoreceptor cells that facilitate the discrimination of different colours via the expression of various light sensitive Rhodopsin proteins. It follows that variation in eye size, shape, and opsin composition is likely to directly influence vision. We analyzed variation in these three traits in D. melanogaster, D. simulans and D. mauritiana. We show that D. mauritiana generally has larger eyes than its sibling species, which is due to a combination of larger ommatidia and more ommatidia. In addition, intra- and inter-specific differences in eye size among D. simulans and D. melanogaster strains are mainly caused by variation in ommatidia number. By applying a geometric morphometrics approach to assess whether the formation of larger eyes influences other parts of the head capsule, we found that an increase in eye size is associated with a reduction in the adjacent face cuticle. Our shape analysis also demonstrates that D. mauritiana eyes are specifically enlarged in the dorsal region. Intriguingly, this dorsal enlargement is associated with enhanced expression of rhodopsin 3 in D. mauritiana. In summary, our data suggests that the morphology and functional properties of the compound eyes vary considerably within and among these closely related Drosophila species and may be part of coordinated morphological changes affecting the head capsule.
Authors: Pierre Dourlen, Clemence Levet, Alexandre Mejat, Alexis Gambis, Bertrand Mollereau.
Published: 09-20-2013
The Drosophila eye is widely used as a model for studies of development and neuronal degeneration. With the powerful mitotic recombination technique, elegant genetic screens based on clonal analysis have led to the identification of signaling pathways involved in eye development and photoreceptor (PR) differentiation at larval stages. We describe here the Tomato/GFP-FLP/FRT method, which can be used for rapid clonal analysis in the eye of living adult Drosophila. Fluorescent photoreceptor cells are imaged with the cornea neutralization technique, on retinas with mosaic clones generated by flipase-mediated recombination. This method has several major advantages over classical histological sectioning of the retina: it can be used for high-throughput screening and has proved an effective method for identifying the factors regulating PR survival and function. It can be used for kinetic analyses of PR degeneration in the same living animal over several weeks, to demonstrate the requirement for specific genes for PR survival or function in the adult fly. This method is also useful for addressing cell autonomy issues in developmental mutants, such as those in which the establishment of planar cell polarity is affected.
21 Related JoVE Articles!
Play Button
Dissection and Immunohistochemistry of Larval, Pupal and Adult Drosophila Retinas
Authors: Hui-Yi Hsiao, Robert J. Johnston Jr., David Jukam, Daniel Vasiliauskas, Claude Desplan, Jens Rister.
Institutions: New York University .
The compound eye of Drosophila melanogaster consists of about 750 ommatidia (unit eyes). Each ommatidium is composed of about 20 cells, including lens-secreting cone cells, pigment cells, a bristle cell and eight photoreceptors (PRs) R1-R8 2. The PRs have specialized microvillar structures, the rhabdomeres, which contain light-sensitive pigments, the Rhodopsins (Rhs). The rhabdomeres of six PRs (R1-R6) form a trapezoid and contain Rh1 3 4. The rhabdomeres of R7 and R8 are positioned in tandem in the center of the trapezoid and share the same path of light. R7 and R8 PRs stochastically express different combinations of Rhs in two main subtypes5: In the 'p' subtype, Rh3 in pR7s is coupled with Rh5 in pR8s, whereas in the 'y' subtype, Rh4 in yR7s is associated with Rh6 in yR8s 6 7 8. Early specification of PRs and development of ommatidia begins in the larval eye-antennal imaginal disc, a monolayer of epithelial cells. A wave of differentiation sweeps across the disc9 and initiates the assembly of undifferentiated cells into ommatidia10-11. The 'founder cell' R8 is specified first and recruits R1-6 and then R7 12-14. Subsequently, during pupal development, PR differentiation leads to extensive morphological changes 15, including rhabdomere formation, synaptogenesis and eventually rh expression. In this protocol, we describe methods for retinal dissections and immunohistochemistry at three defined periods of retina development, which can be applied to address a variety of questions concerning retinal formation and developmental pathways. Here, we use these methods to visualize the stepwise PR differentiation at the single-cell level in whole mount larval, midpupal and adult retinas (Figure 1).
Neuroscience, Issue 69, Anatomy, Physiology, Immunology, Developmental Biology, Drosophila, retina, photoreceptor, imaginal disc, larva, pupa, confocal microscopy, immunohistochemistry
Play Button
Single Drosophila Ommatidium Dissection and Imaging
Authors: Vera Volpi, Daniel Mackay, Manolis Fanto.
Institutions: King's College London.
The fruit fly Drosophila melanogaster has made invaluable contributions to neuroscience research and has been used widely as a model for neurodegenerative diseases because of its powerful genetics1. The fly eye in particular has been the organ of choice for neurodegeneration research, being the most accessible and life-dispensable part of the Drosophila nervous system. However the major caveat of intact eyes is the difficulty, because of the intense autofluorescence of the pigment, in imaging intracellular events, such as autophagy dynamics2, which are paramount to understanding of neurodegeneration. We have recently used the dissection and culture of single ommatidia3 that has been essential for our understanding of autophagic dysfunctions in a fly model of Dentatorubro-Pallidoluysian Atrophy (DRPLA)3, 4. We now report a comprehensive description of this technique (Fig. 1), adapted from electrophysiological studies5, which is likely to expand dramatically the possibility of fly models for neurodegeneration. This method can be adapted to image live subcellular events and to monitor effective drug administration onto photoreceptor cells (Fig. 2). If used in combination with mosaic techniques6-8, the responses of genetically different cells can be assayed in parallel (Fig. 2).
Neuroscience, Issue 54, Drosophila, cell biology, neuroscience, autophagy
Play Button
Experimental Manipulation of Body Size to Estimate Morphological Scaling Relationships in Drosophila
Authors: R. Craig Stillwell, Ian Dworkin, Alexander W. Shingleton, W. Anthony Frankino.
Institutions: University of Houston, Michigan State University.
The scaling of body parts is a central feature of animal morphology1-7. Within species, morphological traits need to be correctly proportioned to the body for the organism to function; larger individuals typically have larger body parts and smaller individuals generally have smaller body parts, such that overall body shape is maintained across a range of adult body sizes. The requirement for correct proportions means that individuals within species usually exhibit low variation in relative trait size. In contrast, relative trait size can vary dramatically among species and is a primary mechanism by which morphological diversity is produced. Over a century of comparative work has established these intra- and interspecific patterns3,4. Perhaps the most widely used approach to describe this variation is to calculate the scaling relationship between the size of two morphological traits using the allometric equation y=bxα, where x and y are the size of the two traits, such as organ and body size8,9. This equation describes the within-group (e.g., species, population) scaling relationship between two traits as both vary in size. Log-transformation of this equation produces a simple linear equation, log(y) = log(b) + αlog(x) and log-log plots of the size of different traits among individuals of the same species typically reveal linear scaling with an intercept of log(b) and a slope of α, called the 'allometric coefficient'9,10. Morphological variation among groups is described by differences in scaling relationship intercepts or slopes for a given trait pair. Consequently, variation in the parameters of the allometric equation (b and α) elegantly describes the shape variation captured in the relationship between organ and body size within and among biological groups (see 11,12). Not all traits scale linearly with each other or with body size (e.g., 13,14) Hence, morphological scaling relationships are most informative when the data are taken from the full range of trait sizes. Here we describe how simple experimental manipulation of diet can be used to produce the full range of body size in insects. This permits an estimation of the full scaling relationship for any given pair of traits, allowing a complete description of how shape covaries with size and a robust comparison of scaling relationship parameters among biological groups. Although we focus on Drosophila, our methodology should be applicable to nearly any fully metamorphic insect.
Developmental Biology, Issue 56, Drosophila, allometry, morphology, body size, scaling, insect
Play Button
VisioTracker, an Innovative Automated Approach to Oculomotor Analysis
Authors: Kaspar P. Mueller, Oliver D. R. Schnaedelbach, Holger D. Russig, Stephan C. F. Neuhauss.
Institutions: University of Zurich, TSE Systems GmbH.
Investigations into the visual system development and function necessitate quantifiable behavioral models of visual performance that are easy to elicit, robust, and simple to manipulate. A suitable model has been found in the optokinetic response (OKR), a reflexive behavior present in all vertebrates due to its high selection value. The OKR involves slow stimulus-following movements of eyes alternated with rapid resetting saccades. The measurement of this behavior is easily carried out in zebrafish larvae, due to its early and stable onset (fully developed after 96 hours post fertilization (hpf)), and benefitting from the thorough knowledge about zebrafish genetics, for decades one of the favored model organisms in this field. Meanwhile the analysis of similar mechanisms in adult fish has gained importance, particularly for pharmacological and toxicological applications. Here we describe VisioTracker, a fully automated, high-throughput system for quantitative analysis of visual performance. The system is based on research carried out in the group of Prof. Stephan Neuhauss and was re-designed by TSE Systems. It consists of an immobilizing device for small fish monitored by a high-quality video camera equipped with a high-resolution zoom lens. The fish container is surrounded by a drum screen, upon which computer-generated stimulus patterns can be projected. Eye movements are recorded and automatically analyzed by the VisioTracker software package in real time. Data analysis enables immediate recognition of parameters such as slow and fast phase duration, movement cycle frequency, slow-phase gain, visual acuity, and contrast sensitivity. Typical results allow for example the rapid identification of visual system mutants that show no apparent alteration in wild type morphology, or the determination of quantitative effects of pharmacological or toxic and mutagenic agents on visual system performance.
Neuroscience, Issue 56, zebrafish, fish larvae, visual system, optokinetic response, developmental genetics, pharmacology, mutants, Danio rerio, adult fish
Play Button
Assessing Differences in Sperm Competitive Ability in Drosophila
Authors: Shu-Dan Yeh, Carolus Chan, José M. Ranz.
Institutions: University of California, Irvine.
Competition among conspecific males for fertilizing the ova is one of the mechanisms of sexual selection, i.e. selection that operates on maximizing the number of successful mating events rather than on maximizing survival and viability 1. Sperm competition represents the competition between males after copulating with the same female 2, in which their sperm are coincidental in time and space. This phenomenon has been reported in multiple species of plants and animals 3. For example, wild-caught D. melanogaster females usually contain sperm from 2-3 males 4. The sperm are stored in specialized organs with limited storage capacity, which might lead to the direct competition of the sperm from different males 2,5. Comparing sperm competitive ability of different males of interest (experimental male types) has been performed through controlled double-mating experiments in the laboratory 6,7. Briefly, a single female is exposed to two different males consecutively, one experimental male and one cross-mating reference male. The same mating scheme is then followed using other experimental male types thus facilitating the indirect comparison of the competitive ability of their sperm through a common reference. The fraction of individuals fathered by the experimental and reference males is identified using markers, which allows one to estimate sperm competitive ability using simple mathematical expressions 7,8. In addition, sperm competitive ability can be estimated in two different scenarios depending on whether the experimental male is second or first to mate (offense and defense assay, respectively) 9, which is assumed to be reflective of different competence attributes. Here, we describe an approach that helps to interrogate the role of different genetic factors that putatively underlie the phenomenon of sperm competitive ability in D. melanogaster.
Developmental Biology, Issue 78, Molecular Biology, Cellular Biology, Genetics, Biochemistry, Spermatozoa, Drosophila melanogaster, Biological Evolution, Phenotype, genetics (animal and plant), animal biology, double-mating experiment, sperm competitive ability, male fertility, Drosophila, fruit fly, animal model
Play Button
Affinity-based Isolation of Tagged Nuclei from Drosophila Tissues for Gene Expression Analysis
Authors: Jingqun Ma, Vikki Marie Weake.
Institutions: Purdue University.
Drosophila melanogaster embryonic and larval tissues often contain a highly heterogeneous mixture of cell types, which can complicate the analysis of gene expression in these tissues. Thus, to analyze cell-specific gene expression profiles from Drosophila tissues, it may be necessary to isolate specific cell types with high purity and at sufficient yields for downstream applications such as transcriptional profiling and chromatin immunoprecipitation. However, the irregular cellular morphology in tissues such as the central nervous system, coupled with the rare population of specific cell types in these tissues, can pose challenges for traditional methods of cell isolation such as laser microdissection and fluorescence-activated cell sorting (FACS). Here, an alternative approach to characterizing cell-specific gene expression profiles using affinity-based isolation of tagged nuclei, rather than whole cells, is described. Nuclei in the specific cell type of interest are genetically labeled with a nuclear envelope-localized EGFP tag using the Gal4/UAS binary expression system. These EGFP-tagged nuclei can be isolated using antibodies against GFP that are coupled to magnetic beads. The approach described in this protocol enables consistent isolation of nuclei from specific cell types in the Drosophila larval central nervous system at high purity and at sufficient levels for expression analysis, even when these cell types comprise less than 2% of the total cell population in the tissue. This approach can be used to isolate nuclei from a wide variety of Drosophila embryonic and larval cell types using specific Gal4 drivers, and may be useful for isolating nuclei from cell types that are not suitable for FACS or laser microdissection.
Biochemistry, Issue 85, Gene Expression, nuclei isolation, Drosophila, KASH, GFP, cell-type specific
Play Button
Cytological Analysis of Spermatogenesis: Live and Fixed Preparations of Drosophila Testes
Authors: Poojitha Sitaram, Sarah Grace Hainline, Laura Anne Lee.
Institutions: Vanderbilt University Medical Center.
Drosophila melanogaster is a powerful model system that has been widely used to elucidate a variety of biological processes. For example, studies of both the female and male germ lines of Drosophila have contributed greatly to the current understanding of meiosis as well as stem cell biology. Excellent protocols are available in the literature for the isolation and imaging of Drosophila ovaries and testes3-12. Herein, methods for the dissection and preparation of Drosophila testes for microscopic analysis are described with an accompanying video demonstration. A protocol for isolating testes from the abdomen of adult males and preparing slides of live tissue for analysis by phase-contrast microscopy as well as a protocol for fixing and immunostaining testes for analysis by fluorescence microscopy are presented. These techniques can be applied in the characterization of Drosophila mutants that exhibit defects in spermatogenesis as well as in the visualization of subcellular localizations of proteins.
Basic Protocol, Issue 83, Drosophila melanogaster, dissection, testes, spermatogenesis, meiosis, germ cells, phase-contrast microscopy, immunofluorescence
Play Button
Electrophysiological Recording From Drosophila Labellar Taste Sensilla
Authors: Rebecca Delventhal, Aidan Kiely, John R. Carlson.
Institutions: Yale University.
The peripheral taste response of insects can be powerfully investigated with electrophysiological techniques. The method described here allows the researcher to measure gustatory responses directly and quantitatively, reflecting the sensory input that the insect nervous system receives from taste stimuli in its environment. This protocol outlines all key steps in performing this technique. The critical steps in assembling an electrophysiology rig, such as selection of necessary equipment and a suitable environment for recording, are delineated. We also describe how to prepare for recording by making appropriate reference and recording electrodes, and tastant solutions. We describe in detail the method used for preparing the insect by insertion of a glass reference electrode into the fly in order to immobilize the proboscis. We show traces of the electrical impulses fired by taste neurons in response to a sugar and a bitter compound. Aspects of the protocol are technically challenging and we include an extensive description of some common technical challenges that may be encountered, such as lack of signal or excessive noise in the system, and potential solutions. The technique has limitations, such as the inability to deliver temporally complex stimuli, observe background firing immediately prior to stimulus delivery, or use water-insoluble taste compounds conveniently. Despite these limitations, this technique (including minor variations referenced in the protocol) is a standard, broadly accepted procedure for recording Drosophila neuronal responses to taste compounds.
Neuroscience, Issue 84, Drosophila, insect, taste, neuron, electrophysiology, labellum, extracellular recording, labellar taste sensilla
Play Button
Simultaneous Multicolor Imaging of Biological Structures with Fluorescence Photoactivation Localization Microscopy
Authors: Nikki M. Curthoys, Michael J. Mlodzianoski, Dahan Kim, Samuel T. Hess.
Institutions: University of Maine.
Localization-based super resolution microscopy can be applied to obtain a spatial map (image) of the distribution of individual fluorescently labeled single molecules within a sample with a spatial resolution of tens of nanometers. Using either photoactivatable (PAFP) or photoswitchable (PSFP) fluorescent proteins fused to proteins of interest, or organic dyes conjugated to antibodies or other molecules of interest, fluorescence photoactivation localization microscopy (FPALM) can simultaneously image multiple species of molecules within single cells. By using the following approach, populations of large numbers (thousands to hundreds of thousands) of individual molecules are imaged in single cells and localized with a precision of ~10-30 nm. Data obtained can be applied to understanding the nanoscale spatial distributions of multiple protein types within a cell. One primary advantage of this technique is the dramatic increase in spatial resolution: while diffraction limits resolution to ~200-250 nm in conventional light microscopy, FPALM can image length scales more than an order of magnitude smaller. As many biological hypotheses concern the spatial relationships among different biomolecules, the improved resolution of FPALM can provide insight into questions of cellular organization which have previously been inaccessible to conventional fluorescence microscopy. In addition to detailing the methods for sample preparation and data acquisition, we here describe the optical setup for FPALM. One additional consideration for researchers wishing to do super-resolution microscopy is cost: in-house setups are significantly cheaper than most commercially available imaging machines. Limitations of this technique include the need for optimizing the labeling of molecules of interest within cell samples, and the need for post-processing software to visualize results. We here describe the use of PAFP and PSFP expression to image two protein species in fixed cells. Extension of the technique to living cells is also described.
Basic Protocol, Issue 82, Microscopy, Super-resolution imaging, Multicolor, single molecule, FPALM, Localization microscopy, fluorescent proteins
Play Button
Membrane Potentials, Synaptic Responses, Neuronal Circuitry, Neuromodulation and Muscle Histology Using the Crayfish: Student Laboratory Exercises
Authors: Brittany Baierlein, Alison L. Thurow, Harold L. Atwood, Robin L. Cooper.
Institutions: University of Kentucky, University of Toronto.
The purpose of this report is to help develop an understanding of the effects caused by ion gradients across a biological membrane. Two aspects that influence a cell's membrane potential and which we address in these experiments are: (1) Ion concentration of K+ on the outside of the membrane, and (2) the permeability of the membrane to specific ions. The crayfish abdominal extensor muscles are in groupings with some being tonic (slow) and others phasic (fast) in their biochemical and physiological phenotypes, as well as in their structure; the motor neurons that innervate these muscles are correspondingly different in functional characteristics. We use these muscles as well as the superficial, tonic abdominal flexor muscle to demonstrate properties in synaptic transmission. In addition, we introduce a sensory-CNS-motor neuron-muscle circuit to demonstrate the effect of cuticular sensory stimulation as well as the influence of neuromodulators on certain aspects of the circuit. With the techniques obtained in this exercise, one can begin to answer many questions remaining in other experimental preparations as well as in physiological applications related to medicine and health. We have demonstrated the usefulness of model invertebrate preparations to address fundamental questions pertinent to all animals.
Neuroscience, Issue 47, Invertebrate, Crayfish, neurophysiology, muscle, anatomy, electrophysiology
Play Button
Preparation of Adult Drosophila Eyes for Thin Sectioning and Microscopic Analysis
Authors: Andreas Jenny.
Institutions: Albert Einstein College of Medicine.
Drosophila has long been used as model system to study development, mainly due to the ease with which it is genetically tractable. Over the years, a plethora of mutant strains and technical tricks have been developed to allow sophisticated questions to be asked and answered in a reasonable amount of time. Fundamental insight into the interplay of components of all known major signaling pathways has been obtained in forward and reverse genetic Drosophila studies. The fly eye has proven to be exceptionally well suited for mutational analysis, since, under laboratory conditions, flies can survive without functional eyes. Furthermore, the surface of the insect eye is composed of some 800 individual unit eyes (facets or ommatidia) that form a regular, smooth surface when looked at under a dissecting microscope. Thus, it is easy to see whether a mutation might affect eye development or growth by externally looking for the loss of the smooth surface ('rough eye' phenotype; Fig. 1) or overall eye size, respectively (for examples of screens based on external eye morphology see e.g.1). Subsequent detailed analyses of eye phenotypes require fixation, plastic embedding and thin-sectioning of adult eyes. The Drosophila eye develops from the so-called eye imaginal disc, a bag of epithelial cells that proliferate and differentiate during larval and pupal stages (for review see e.g. 2). Each ommatidium consists of 20 cells, including eight photoreceptors (PR or R-cells; Fig. 2), four lens-secreting cone cells, pigment cells ('hexagon' around R-cell cluster) and a bristle. The photoreceptors of each ommatidium, most easily identified by their light sensitive organelles, the rhabdomeres, are organized in a trapezoid made up of the six "outer" (R1-6) and two "inner" photoreceptors (R7/8; R8 [Fig. 2] is underneath R7 and thus only seen in sections from deeper areas of the eye). The trapezoid of each facet is precisely aligned with those of its neighbors and the overall anteroposterior and dorsoventral axes of the eye (Fig. 3A). In particular, the ommatidia of the dorsal and ventral (black and red arrows, respectively) halves of the eye are mirror images of each other and correspond to two chiral forms established during planar cell polarity signaling (for review see e.g. 3). The method to generate semi-thin eye sections (such as those presented in Fig. 3) described here is slightly modified from the one originally described by Tomlinson and Ready4. It allows the morphological analysis of all cells except for the transparent cone cells. In addition, the pigment of R-cells (blue arrowheads in Fig. 2 and 3) can be used as a cell-autonomous marker for the genotype of a R-cell, thus genetic requirements of genes in a subset of R-cells can readily be determined5,6.
Developmental Biology, Issue 54, Drosophila eye, embedding, thin section, eye development, planar cell polarity signaling
Play Button
Dissection and Immunostaining of Imaginal Discs from Drosophila melanogaster
Authors: Carrie M. Spratford, Justin P. Kumar.
Institutions: Indiana University.
A significant portion of post-embryonic development in the fruit fly, Drosophila melanogaster, takes place within a set of sac-like structures called imaginal discs. These discs give rise to a high percentage of adult structures that are found within the adult fly. Here we describe a protocol that has been optimized to recover these discs and prepare them for analysis with antibodies, transcriptional reporters and protein traps. This procedure is best suited for thin tissues like imaginal discs, but can be easily modified for use with thicker tissues such as the larval brain and adult ovary. The written protocol and accompanying video will guide the reader/viewer through the dissection of third instar larvae, fixation of tissue, and treatment of imaginal discs with antibodies. The protocol can be used to dissect imaginal discs from younger first and second instar larvae as well. The advantage of this protocol is that it is relatively short and it has been optimized for the high quality preservation of the dissected tissue. Another advantage is that the fixation procedure that is employed works well with the overwhelming number of antibodies that recognize Drosophila proteins. In our experience, there is a very small number of sensitive antibodies that do not work well with this procedure. In these situations, the remedy appears to be to use an alternate fixation cocktail while continuing to follow the guidelines that we have set forth for the dissection steps and antibody incubations.
Cellular Biology, Issue 91, Drosophila, imaginal discs, eye, retina, dissection, developmental biology
Play Button
Ex vivo Culture of Drosophila Pupal Testis and Single Male Germ-line Cysts: Dissection, Imaging, and Pharmacological Treatment
Authors: Stefanie M. K. Gärtner, Christina Rathke, Renate Renkawitz-Pohl, Stephan Awe.
Institutions: Philipps-Universität Marburg, Philipps-Universität Marburg.
During spermatogenesis in mammals and in Drosophila melanogaster, male germ cells develop in a series of essential developmental processes. This includes differentiation from a stem cell population, mitotic amplification, and meiosis. In addition, post-meiotic germ cells undergo a dramatic morphological reshaping process as well as a global epigenetic reconfiguration of the germ line chromatin—the histone-to-protamine switch. Studying the role of a protein in post-meiotic spermatogenesis using mutagenesis or other genetic tools is often impeded by essential embryonic, pre-meiotic, or meiotic functions of the protein under investigation. The post-meiotic phenotype of a mutant of such a protein could be obscured through an earlier developmental block, or the interpretation of the phenotype could be complicated. The model organism Drosophila melanogaster offers a bypass to this problem: intact testes and even cysts of germ cells dissected from early pupae are able to develop ex vivo in culture medium. Making use of such cultures allows microscopic imaging of living germ cells in testes and of germ-line cysts. Importantly, the cultivated testes and germ cells also become accessible to pharmacological inhibitors, thereby permitting manipulation of enzymatic functions during spermatogenesis, including post-meiotic stages. The protocol presented describes how to dissect and cultivate pupal testes and germ-line cysts. Information on the development of pupal testes and culture conditions are provided alongside microscope imaging data of live testes and germ-line cysts in culture. We also describe a pharmacological assay to study post-meiotic spermatogenesis, exemplified by an assay targeting the histone-to-protamine switch using the histone acetyltransferase inhibitor anacardic acid. In principle, this cultivation method could be adapted to address many other research questions in pre- and post-meiotic spermatogenesis.
Developmental Biology, Issue 91, Ex vivo culture, testis, male germ-line cells, Drosophila, imaging, pharmacological assay
Play Button
Dissection and Mounting of Drosophila Pupal Eye Discs
Authors: Joy S. Tea, Albert Cespedes, Daniel Dawson, Utpal Banerjee, Gerald B. Call.
Institutions: University of California at Los Angeles (UCLA), Midwestern University, UCLA.
The Drosophila melanogaster eye disc is a powerful system that can be used to study many different biological processes. It contains approximately 800 separate eye units, termed ommatidia1. Each ommatidium contains eight neuronal photoreceptors that develop from undifferentiated cells following the passage of the morphogenetic furrow in the third larval instar2. Following the sequential differentiation of the photoreceptors, non-neuronal cells develop, including cone and pigment cells, along with mechanosensory bristle cells3. Final differentiation processes, including the structured arrangement of all the ommatidial cell types, programmed cell death of undifferentiated cell types and rhodopsin expression, occurs through the pupal phase4-7. This technique focuses on manipulating the pupal eye disc, providing insight and instruction on how to dissect the eye disc during the pupal phase, which is inherently more difficult to perform than the commonly dissected third instar eye disc. This technique also provides details on immunostaining to allow the visualization of various proteins and other cell components.
Developmental Biology, Issue 93, Drosophila, Eye disc, Dissection, Mounting, Pupa, Developmental Biology, photoreceptor, imaginal disc, immunostaining
Play Button
Quantification of Orofacial Phenotypes in Xenopus
Authors: Allyson E. Kennedy, Amanda J. Dickinson.
Institutions: Virginia Commonwealth University.
Xenopus has become an important tool for dissecting the mechanisms governing craniofacial development and defects. A method to quantify orofacial development will allow for more rigorous analysis of orofacial phenotypes upon abrogation with substances that can genetically or molecularly manipulate gene expression or protein function. Using two dimensional images of the embryonic heads, traditional size dimensions-such as orofacial width, height and area- are measured. In addition, a roundness measure of the embryonic mouth opening is used to describe the shape of the mouth. Geometric morphometrics of these two dimensional images is also performed to provide a more sophisticated view of changes in the shape of the orofacial region. Landmarks are assigned to specific points in the orofacial region and coordinates are created. A principle component analysis is used to reduce landmark coordinates to principle components that then discriminate the treatment groups. These results are displayed as a scatter plot in which individuals with similar orofacial shapes cluster together. It is also useful to perform a discriminant function analysis, which statistically compares the positions of the landmarks between two treatment groups. This analysis is displayed on a transformation grid where changes in landmark position are viewed as vectors. A grid is superimposed on these vectors so that a warping pattern is displayed to show where significant landmark positions have changed. Shape changes in the discriminant function analysis are based on a statistical measure, and therefore can be evaluated by a p-value. This analysis is simple and accessible, requiring only a stereoscope and freeware software, and thus will be a valuable research and teaching resource.
Developmental Biology, Issue 93, Orofacial quantification, geometric morphometrics, Xenopus, orofacial development, orofacial defects, shape changes, facial dimensions
Play Button
Perceptual and Category Processing of the Uncanny Valley Hypothesis' Dimension of Human Likeness: Some Methodological Issues
Authors: Marcus Cheetham, Lutz Jancke.
Institutions: University of Zurich.
Mori's Uncanny Valley Hypothesis1,2 proposes that the perception of humanlike characters such as robots and, by extension, avatars (computer-generated characters) can evoke negative or positive affect (valence) depending on the object's degree of visual and behavioral realism along a dimension of human likeness (DHL) (Figure 1). But studies of affective valence of subjective responses to variously realistic non-human characters have produced inconsistent findings 3, 4, 5, 6. One of a number of reasons for this is that human likeness is not perceived as the hypothesis assumes. While the DHL can be defined following Mori's description as a smooth linear change in the degree of physical humanlike similarity, subjective perception of objects along the DHL can be understood in terms of the psychological effects of categorical perception (CP) 7. Further behavioral and neuroimaging investigations of category processing and CP along the DHL and of the potential influence of the dimension's underlying category structure on affective experience are needed. This protocol therefore focuses on the DHL and allows examination of CP. Based on the protocol presented in the video as an example, issues surrounding the methodology in the protocol and the use in "uncanny" research of stimuli drawn from morph continua to represent the DHL are discussed in the article that accompanies the video. The use of neuroimaging and morph stimuli to represent the DHL in order to disentangle brain regions neurally responsive to physical human-like similarity from those responsive to category change and category processing is briefly illustrated.
Behavior, Issue 76, Neuroscience, Neurobiology, Molecular Biology, Psychology, Neuropsychology, uncanny valley, functional magnetic resonance imaging, fMRI, categorical perception, virtual reality, avatar, human likeness, Mori, uncanny valley hypothesis, perception, magnetic resonance imaging, MRI, imaging, clinical techniques
Play Button
Using Eye Movements to Evaluate the Cognitive Processes Involved in Text Comprehension
Authors: Gary E. Raney, Spencer J. Campbell, Joanna C. Bovee.
Institutions: University of Illinois at Chicago.
The present article describes how to use eye tracking methodologies to study the cognitive processes involved in text comprehension. Measuring eye movements during reading is one of the most precise methods for measuring moment-by-moment (online) processing demands during text comprehension. Cognitive processing demands are reflected by several aspects of eye movement behavior, such as fixation duration, number of fixations, and number of regressions (returning to prior parts of a text). Important properties of eye tracking equipment that researchers need to consider are described, including how frequently the eye position is measured (sampling rate), accuracy of determining eye position, how much head movement is allowed, and ease of use. Also described are properties of stimuli that influence eye movements that need to be controlled in studies of text comprehension, such as the position, frequency, and length of target words. Procedural recommendations related to preparing the participant, setting up and calibrating the equipment, and running a study are given. Representative results are presented to illustrate how data can be evaluated. Although the methodology is described in terms of reading comprehension, much of the information presented can be applied to any study in which participants read verbal stimuli.
Behavior, Issue 83, Eye movements, Eye tracking, Text comprehension, Reading, Cognition
Play Button
An Introduction to Parasitic Wasps of Drosophila and the Antiparasite Immune Response
Authors: Chiyedza Small, Indira Paddibhatla, Roma Rajwani, Shubha Govind.
Institutions: The City College of New York, CUNY, The City University of New York.
Most known parasitoid wasp species attack the larval or pupal stages of Drosophila. While Trichopria drosophilae infect the pupal stages of the host (Fig. 1A-C), females of the genus Leptopilina (Fig. 1D, 1F, 1G) and Ganaspis (Fig. 1E) attack the larval stages. We use these parasites to study the molecular basis of a biological arms race. Parasitic wasps have tremendous value as biocontrol agents. Most of them carry virulence and other factors that modify host physiology and immunity. Analysis of Drosophila wasps is providing insights into how species-specific interactions shape the genetic structures of natural communities. These studies also serve as a model for understanding the hosts' immune physiology and how coordinated immune reactions are thwarted by this class of parasites. The larval/pupal cuticle serves as the first line of defense. The wasp ovipositor is a sharp needle-like structure that efficiently delivers eggs into the host hemocoel. Oviposition is followed by a wound healing reaction at the cuticle (Fig. 1C, arrowheads). Some wasps can insert two or more eggs into the same host, although the development of only one egg succeeds. Supernumerary eggs or developing larvae are eliminated by a process that is not yet understood. These wasps are therefore referred to as solitary parasitoids. Depending on the fly strain and the wasp species, the wasp egg has one of two fates. It is either encapsulated, so that its development is blocked (host emerges; Fig. 2 left); or the wasp egg hatches, develops, molts, and grows into an adult (wasp emerges; Fig. 2 right). L. heterotoma is one of the best-studied species of Drosophila parasitic wasps. It is a "generalist," which means that it can utilize most Drosophila species as hosts1. L. heterotoma and L. victoriae are sister species and they produce virus-like particles that actively interfere with the encapsulation response2. Unlike L. heterotoma, L. boulardi is a specialist parasite and the range of Drosophila species it utilizes is relatively limited1. Strains of L. boulardi also produce virus-like particles3 although they differ significantly in their ability to succeed on D. melanogaster1. Some of these L. boulardi strains are difficult to grow on D. melanogaster1 as the fly host frequently succeeds in encapsulating their eggs. Thus, it is important to have the knowledge of both partners in specific experimental protocols. In addition to barrier tissues (cuticle, gut and trachea), Drosophila larvae have systemic cellular and humoral immune responses that arise from functions of blood cells and the fat body, respectively. Oviposition by L. boulardi activates both immune arms1,4. Blood cells are found in circulation, in sessile populations under the segmented cuticle, and in the lymph gland. The lymph gland is a small hematopoietic organ on the dorsal side of the larva. Clusters of hematopoietic cells, called lobes, are arranged segmentally in pairs along the dorsal vessel that runs along the anterior-posterior axis of the animal (Fig. 3A). The fat body is a large multifunctional organ (Fig. 3B). It secretes antimicrobial peptides in response to microbial and metazoan infections. Wasp infection activates immune signaling (Fig. 4)4. At the cellular level, it triggers division and differentiation of blood cells. In self defense, aggregates and capsules develop in the hemocoel of infected animals (Fig. 5)5,6. Activated blood cells migrate toward the wasp egg (or wasp larva) and begin to form a capsule around it (Fig. 5A-F). Some blood cells aggregate to form nodules (Fig. 5G-H). Careful analysis reveals that wasp infection induces the anterior-most lymph gland lobes to disperse at their peripheries (Fig. 6C, D). We present representative data with Toll signal transduction pathway components Dorsal and Spätzle (Figs. 4,5,7), and its target Drosomycin (Fig. 6), to illustrate how specific changes in the lymph gland and hemocoel can be studied after wasp infection. The dissection protocols described here also yield the wasp eggs (or developing stages of wasps) from the host hemolymph (Fig. 8).
Immunology, Issue 63, Parasitoid wasps, innate immunity, encapsulation, hematopoiesis, insect, fat body, Toll-NF-kappaB, molecular biology
Play Button
Quantitative Comparison of cis-Regulatory Element (CRE) Activities in Transgenic Drosophila melanogaster
Authors: William A. Rogers, Thomas M. Williams.
Institutions: University of Dayton, University of Dayton.
Gene expression patterns are specified by cis-regulatory element (CRE) sequences, which are also called enhancers or cis-regulatory modules. A typical CRE possesses an arrangement of binding sites for several transcription factor proteins that confer a regulatory logic specifying when, where, and at what level the regulated gene(s) is expressed. The full set of CREs within an animal genome encodes the organism′s program for development1, and empirical as well as theoretical studies indicate that mutations in CREs played a prominent role in morphological evolution2-4. Moreover, human genome wide association studies indicate that genetic variation in CREs contribute substantially to phenotypic variation5,6. Thus, understanding regulatory logic and how mutations affect such logic is a central goal of genetics. Reporter transgenes provide a powerful method to study the in vivo function of CREs. Here a known or suspected CRE sequence is coupled to heterologous promoter and coding sequences for a reporter gene encoding an easily observable protein product. When a reporter transgene is inserted into a host organism, the CRE′s activity becomes visible in the form of the encoded reporter protein. P-element mediated transgenesis in the fruit fly species Drosophila (D.) melanogaster7 has been used for decades to introduce reporter transgenes into this model organism, though the genomic placement of transgenes is random. Hence, reporter gene activity is strongly influenced by the local chromatin and gene environment, limiting CRE comparisons to being qualitative. In recent years, the phiC31 based integration system was adapted for use in D. melanogaster to insert transgenes into specific genome landing sites8-10. This capability has made the quantitative measurement of gene and, relevant here, CRE activity11-13 feasible. The production of transgenic fruit flies can be outsourced, including phiC31-based integration, eliminating the need to purchase expensive equipment and/or have proficiency at specialized transgene injection protocols. Here, we present a general protocol to quantitatively evaluate a CRE′s activity, and show how this approach can be used to measure the effects of an introduced mutation on a CRE′s activity and to compare the activities of orthologous CREs. Although the examples given are for a CRE active during fruit fly metamorphosis, the approach can be applied to other developmental stages, fruit fly species, or model organisms. Ultimately, a more widespread use of this approach to study CREs should advance an understanding of regulatory logic and how logic can vary and evolve.
Developmental Biology, Issue 58, Cis-regulatory element, CRE, cis-regulatory module, enhancer, site-specific integration, reporter transgenes, confocal microscopy, regulatory logic, transcription factors, binding sites, Drosophila melanogaster, Drosophila
Play Button
A Novel RFP Reporter to Aid in the Visualization of the Eye Imaginal Disc in Drosophila
Authors: Aamna K. Kaul, Joseph M. Bateman.
Institutions: King's College London.
The Drosophila eye is a powerful model system for studying areas such as neurogenesis, signal transduction and neurodegeneration. Many of the discoveries made using this system have taken advantage of the spatiotemporal nature of photoreceptor differentiation in the developing eye imaginal disc. To use this system it is first necessary for the researcher to learn to identify and dissect the eye disc. We describe a novel RFP reporter to aid in the identification of the eye disc and the visualization of specific cell types in the developing eye. We detail a methodology for dissection of the eye imaginal disc from third instar larvae and describe how the eye-RFP reporter can aid in this dissection. This eye-RFP reporter is only expressed in the eye and can be visualized using fluorescence microscopy either in live tissue or after fixation without the need for signal amplification. We also show how this reporter can be used to identify specific cells types within the eye disc. This protocol and the use of the eye-RFP reporter will aid researchers using the Drosophila eye to address fundamentally important biological questions.
Cellular Biology, Issue 34, fluorescence microscopy, Drosophila, eye, RFP, dissection, imaginal disc
Play Button
Mapping and Application of Enhancer-trap Flippase Expression in Larval and Adult Drosophila CNS
Authors: Taylor R. Fore, Audrey A. Ojwang, Margaret L. Warner, Xinyun Peng, Rudolf A. Bohm, William P. Welch, Lindsey K. Goodnight, Hong Bao, Bing Zhang.
Institutions: University of Oklahoma - Norman, Brandeis University.
The Gal4/ UAS binary method is powerful for gene and neural circuitry manipulation in Drosophila. For most neurobiological studies, however, Gal4 expression is rarely tissue-specific enough to allow for precise correlation of the circuit with behavioral readouts. To overcome this major hurdle, we recently developed the FINGR method to achieve a more restrictive Gal4 expression in the tissue of interest. The FINGR method has three components: 1) the traditional Gal4/UAS system; 2) a set of FLP/FRT-mediated Gal80 converting tools; and 3) enhancer-trap FLP (ET-FLP). Gal4 is used to define the primary neural circuitry of interest. Paring the Gal4 with a UAS-effector, such as UAS-MJD78Q or UAS-Shits, regulates the neuronal activity, which is in turn manifested by alterations in the fly behavior. With an additional UAS-reporter such as UAS-GFP, the neural circuit involved in the specific behavior can be simultaneously mapped for morphological analysis. For Gal4 lines with broad expression, Gal4 expression can be restricted by using two complementary Gal80-converting tools: tubP>Gal80> ('flip out') and tubP>stop>Gal80 ('flip in'). Finally, investigators can turn Gal80 on or off, respectively, with the help of tissue-specific ET-FLP. In the flip-in mode, Gal80 will repress Gal4 expression wherever Gal4 and ET-FLP intersect. In the flip-out mode, Gal80 will relieve Gal4 repression in cells in which Gal4 and FLP overlap. Both approaches enable the restriction of the number of cells in the Gal4-defined circuitry, but in an inverse pattern. The FINGR method is compatible with the vast collection of Gal4 lines in the fly community and highly versatile for traditional clonal analysis and for neural circuit mapping. In this protocol, we demonstrate the mapping of FLP expression patterns in select ET-FLPx2 lines and the effectiveness of the FINGR method in photoreceptor cells. The principle of the FINGR method should also be applicable to other genetic model organisms in which Gal4/UAS, Gal80, and FLP/FRT are used.
Neuroscience, Issue 52, UAS, Gal4, Gal80, Flippase, FRT, Clonal analysis, Behavior, Drosophila
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.