JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Efficient asymmetric reduction of 4-(trimethylsilyl)-3-butyn-2-one by Candida parapsilosis cells in an ionic liquid-containing system.
Hydrophilic ionic liquids (ILs) were employed as green solvents to construct an IL-containing co-solvent system for improving the asymmetric reduction of 4-(trimethylsilyl)-3-butyn-2-one by immobilized Candida parapsilosis cells. Among 14 hydrophilic ILs examined, 1-(2-hydroxyl)ethyl-3-methylimidazolium nitrate (C(2)OHMIM·NO(3)) was considered as the most suitable IL for the bioreduction with the fastest initial reaction rate, the highest yield and the highest product e.e., which may be due to the good biocompatibility with the cells. For a better understanding of the bioreduction performed in the C(2)OHMIM·NO(3)-containing co-solvent system, the effects of several crucial variables were systematically investigated. The optimal C(2)OHMIM·NO(3) content, substrate concentration, buffer pH, co-substrate concentration and temperature were 10% (v/v), 3.0 mmol/L, 5.0, 98.1 mmol/L and 30°C, respectively. Under the optimal conditions, the initial reaction rate, the maximum yield and the product e.e. were 17.3 µmol/h g(cell), 95.2% and >99.9%, respectively, which are much better than the corresponding results previously reported. Moreover, the immobilized cells remained more than 83% of their initial activity even after being used repeatedly for 10 batches in the C(2)OHMIM·NO(3)-containing system, exhibiting excellent operational stability.
Functionalized naphthalenes have applications in a variety of research fields ranging from the synthesis of natural or biologically active molecules to the preparation of new organic dyes. Although numerous strategies have been reported to access naphthalene scaffolds, many procedures still present limitations in terms of incorporating functionality, which in turn narrows the range of available substrates. The development of versatile methods for direct access to substituted naphthalenes is therefore highly desirable. The Diels-Alder (DA) cycloaddition reaction is a powerful and attractive method for the formation of saturated and unsaturated ring systems from readily available starting materials. A new microwave-assisted intramolecular dehydrogenative DA reaction of styrenyl derivatives described herein generates a variety of functionalized cyclopenta[b]naphthalenes that could not be prepared using existing synthetic methods. When compared to conventional heating, microwave irradiation accelerates reaction rates, enhances yields, and limits the formation of undesired byproducts. The utility of this protocol is further demonstrated by the conversion of a DA cycloadduct into a novel solvatochromic fluorescent dye via a Buchwald-Hartwig palladium-catalyzed cross-coupling reaction. Fluorescence spectroscopy, as an informative and sensitive analytical technique, plays a key role in research fields including environmental science, medicine, pharmacology, and cellular biology. Access to a variety of new organic fluorophores provided by the microwave-assisted dehydrogenative DA reaction allows for further advancement in these fields.
27 Related JoVE Articles!
Play Button
Hydrophobic Salt-modified Nafion for Enzyme Immobilization and Stabilization
Authors: Shannon Meredith, Shuai Xu, Matthew T. Meredith, Shelley D. Minteer.
Institutions: University of Utah .
Over the last decade, there has been a wealth of application for immobilized and stabilized enzymes including biocatalysis, biosensors, and biofuel cells.1-3 In most bioelectrochemical applications, enzymes or organelles are immobilized onto an electrode surface with the use of some type of polymer matrix. This polymer scaffold should keep the enzymes stable and allow for the facile diffusion of molecules and ions in and out of the matrix. Most polymers used for this type of immobilization are based on polyamines or polyalcohols - polymers that mimic the natural environment of the enzymes that they encapsulate and stabilize the enzyme through hydrogen or ionic bonding. Another method for stabilizing enzymes involves the use of micelles, which contain hydrophobic regions that can encapsulate and stabilize enzymes.4,5 In particular, the Minteer group has developed a micellar polymer based on commercially available Nafion.6,7 Nafion itself is a micellar polymer that allows for the channel-assisted diffusion of protons and other small cations, but the micelles and channels are extremely small and the polymer is very acidic due to sulfonic acid side chains, which is unfavorable for enzyme immobilization. However, when Nafion is mixed with an excess of hydrophobic alkyl ammonium salts such as tetrabutylammonium bromide (TBAB), the quaternary ammonium cations replace the protons and become the counter ions to the sulfonate groups on the polymer side chains (Figure 1). This results in larger micelles and channels within the polymer that allow for the diffusion of large substrates and ions that are necessary for enzymatic function such as nicotinamide adenine dinucleotide (NAD). This modified Nafion polymer has been used to immobilize many different types of enzymes as well as mitochondria for use in biosensors and biofuel cells.8-12 This paper describes a novel procedure for making this micellar polymer enzyme immobilization membrane that can stabilize enzymes. The synthesis of the micellar enzyme immobilization membrane, the procedure for immobilizing enzymes within the membrane, and the assays for studying enzymatic specific activity of the immobilized enzyme are detailed below.
Bioengineering, Issue 65, Materials Science, Chemical Engineering, enzyme immobilization, polymer modification, Nafion, enzyme stabilization, enzyme activity assays
Play Button
Synthesis and Purification of Iodoaziridines Involving Quantitative Selection of the Optimal Stationary Phase for Chromatography
Authors: Tom Boultwood, Dominic P. Affron, James A. Bull.
Institutions: Imperial College London.
The highly diastereoselective preparation of cis-N-Ts-iodoaziridines through reaction of diiodomethyllithium with N-Ts aldimines is described. Diiodomethyllithium is prepared by the deprotonation of diiodomethane with LiHMDS, in a THF/diethyl ether mixture, at -78 °C in the dark. These conditions are essential for the stability of the LiCHI2 reagent generated. The subsequent dropwise addition of N-Ts aldimines to the preformed diiodomethyllithium solution affords an amino-diiodide intermediate, which is not isolated. Rapid warming of the reaction mixture to 0 °C promotes cyclization to afford iodoaziridines with exclusive cis-diastereoselectivity. The addition and cyclization stages of the reaction are mediated in one reaction flask by careful temperature control. Due to the sensitivity of the iodoaziridines to purification, assessment of suitable methods of purification is required. A protocol to assess the stability of sensitive compounds to stationary phases for column chromatography is described. This method is suitable to apply to new iodoaziridines, or other potentially sensitive novel compounds. Consequently this method may find application in range of synthetic projects. The procedure involves firstly the assessment of the reaction yield, prior to purification, by 1H NMR spectroscopy with comparison to an internal standard. Portions of impure product mixture are then exposed to slurries of various stationary phases appropriate for chromatography, in a solvent system suitable as the eluent in flash chromatography. After stirring for 30 min to mimic chromatography, followed by filtering, the samples are analyzed by 1H NMR spectroscopy. Calculated yields for each stationary phase are then compared to that initially obtained from the crude reaction mixture. The results obtained provide a quantitative assessment of the stability of the compound to the different stationary phases; hence the optimal can be selected. The choice of basic alumina, modified to activity IV, as a suitable stationary phase has allowed isolation of certain iodoaziridines in excellent yield and purity.
Chemistry, Issue 87, organic chemistry; aziridines, heterocycles, organolithium reagents, chromatography, purification, iodoaziridines
Play Button
Formulation of Diblock Polymeric Nanoparticles through Nanoprecipitation Technique
Authors: Shrirang Karve, Michael E. Werner, Natalie D. Cummings, Rohit Sukumar, Edina C. Wang, Ying-Ao Zhang, Andrew Z. Wang.
Institutions: University of North Carolina School of Medicine, University of North Carolina .
Nanotechnology is a relatively new branch of science that involves harnessing the unique properties of particles that are nanometers in scale (nanoparticles). Nanoparticles can be engineered in a precise fashion where their size, composition and surface chemistry can be carefully controlled. This enables unprecedented freedom to modify some of the fundamental properties of their cargo, such as solubility, diffusivity, biodistribution, release characteristics and immunogenicity. Since their inception, nanoparticles have been utilized in many areas of science and medicine, including drug delivery, imaging, and cell biology1-4. However, it has not been fully utilized outside of "nanotechnology laboratories" due to perceived technical barrier. In this article, we describe a simple method to synthesize a polymer based nanoparticle platform that has a wide range of potential applications. The first step is to synthesize a diblock co-polymer that has both a hydrophobic domain and hydrophilic domain. Using PLGA and PEG as model polymers, we described a conjugation reaction using EDC/NHS chemistry5 (Fig 1). We also discuss the polymer purification process. The synthesized diblock co-polymer can self-assemble into nanoparticles in the nanoprecipitation process through hydrophobic-hydrophilic interactions. The described polymer nanoparticle is very versatile. The hydrophobic core of the nanoparticle can be utilized to carry poorly soluble drugs for drug delivery experiments6. Furthermore, the nanoparticles can overcome the problem of toxic solvents for poorly soluble molecular biology reagents, such as wortmannin, which requires a solvent like DMSO. However, DMSO can be toxic to cells and interfere with the experiment. These poorly soluble drugs and reagents can be effectively delivered using polymer nanoparticles with minimal toxicity. Polymer nanoparticles can also be loaded with fluorescent dye and utilized for intracellular trafficking studies. Lastly, these polymer nanoparticles can be conjugated to targeting ligands through surface PEG. Such targeted nanoparticles can be utilized to label specific epitopes on or in cells7-10.
Bioengineering, Issue 55, Nanoparticles, nanomedicine, drug delivery, polymeric micelles, polymeric nanoparticles, diblock co-polymers, nanoplatform, nanoparticle molecular imaging, polymer conjugation.
Play Button
Millifluidics for Chemical Synthesis and Time-resolved Mechanistic Studies
Authors: Katla Sai Krishna, Sanchita Biswas, Chelliah V. Navin, Dawit G. Yamane, Jeffrey T. Miller, Challa S.S.R. Kumar.
Institutions: Louisiana State University, Louisiana State University, Louisiana State University, Argonne National Laboratory.
Procedures utilizing millifluidic devices for chemical synthesis and time-resolved mechanistic studies are described by taking three examples. In the first, synthesis of ultra-small copper nanoclusters is described. The second example provides their utility for investigating time resolved kinetics of chemical reactions by analyzing gold nanoparticle formation using in situ X-ray absorption spectroscopy. The final example demonstrates continuous flow catalysis of reactions inside millifluidic channel coated with nanostructured catalyst.
Bioengineering, Issue 81, Millifluidics, Millifluidic Device, Time-resolved Kinetics, Synthesis, Catalysis, Nanomaterials, Lab-on-a-Chip
Play Button
Establishment of an In vitro System to Study Intracellular Behavior of Candida glabrata in Human THP-1 Macrophages
Authors: Maruti Nandan Rai, Sapan Borah, Gaurav Bairwa, Sriram Balusu, Neelima Gorityala, Rupinder Kaur.
Institutions: Centre for DNA Fingerprinting and Diagnostics, Andhra Pradesh, India, Fiers-Schell-Van Montagu Building, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium.
A cell culture model system, if a close mimic of host environmental conditions, can serve as an inexpensive, reproducible and easily manipulatable alternative to animal model systems for the study of a specific step of microbial pathogen infection. A human monocytic cell line THP-1 which, upon phorbol ester treatment, is differentiated into macrophages, has previously been used to study virulence strategies of many intracellular pathogens including Mycobacterium tuberculosis. Here, we discuss a protocol to enact an in vitro cell culture model system using THP-1 macrophages to delineate the interaction of an opportunistic human yeast pathogen Candida glabrata with host phagocytic cells. This model system is simple, fast, amenable to high-throughput mutant screens, and requires no sophisticated equipment. A typical THP-1 macrophage infection experiment takes approximately 24 hr with an additional 24-48 hr to allow recovered intracellular yeast to grow on rich medium for colony forming unit-based viability analysis. Like other in vitro model systems, a possible limitation of this approach is difficulty in extrapolating the results obtained to a highly complex immune cell circuitry existing in the human host. However, despite this, the current protocol is very useful to elucidate the strategies that a fungal pathogen may employ to evade/counteract antimicrobial response and survive, adapt, and proliferate in the nutrient-poor environment of host immune cells.
Immunology, Issue 82, Candida glabrata, THP-1 macrophages, colony forming unit (CFU) assay, fluorescence microscopy, signature-tagged mutagenesis
Play Button
Metabolomic Analysis of Rat Brain by High Resolution Nuclear Magnetic Resonance Spectroscopy of Tissue Extracts
Authors: Norbert W. Lutz, Evelyne Béraud, Patrick J. Cozzone.
Institutions: Aix-Marseille Université, Aix-Marseille Université.
Studies of gene expression on the RNA and protein levels have long been used to explore biological processes underlying disease. More recently, genomics and proteomics have been complemented by comprehensive quantitative analysis of the metabolite pool present in biological systems. This strategy, termed metabolomics, strives to provide a global characterization of the small-molecule complement involved in metabolism. While the genome and the proteome define the tasks cells can perform, the metabolome is part of the actual phenotype. Among the methods currently used in metabolomics, spectroscopic techniques are of special interest because they allow one to simultaneously analyze a large number of metabolites without prior selection for specific biochemical pathways, thus enabling a broad unbiased approach. Here, an optimized experimental protocol for metabolomic analysis by high-resolution NMR spectroscopy is presented, which is the method of choice for efficient quantification of tissue metabolites. Important strengths of this method are (i) the use of crude extracts, without the need to purify the sample and/or separate metabolites; (ii) the intrinsically quantitative nature of NMR, permitting quantitation of all metabolites represented by an NMR spectrum with one reference compound only; and (iii) the nondestructive nature of NMR enabling repeated use of the same sample for multiple measurements. The dynamic range of metabolite concentrations that can be covered is considerable due to the linear response of NMR signals, although metabolites occurring at extremely low concentrations may be difficult to detect. For the least abundant compounds, the highly sensitive mass spectrometry method may be advantageous although this technique requires more intricate sample preparation and quantification procedures than NMR spectroscopy. We present here an NMR protocol adjusted to rat brain analysis; however, the same protocol can be applied to other tissues with minor modifications.
Neuroscience, Issue 91, metabolomics, brain tissue, rodents, neurochemistry, tissue extracts, NMR spectroscopy, quantitative metabolite analysis, cerebral metabolism, metabolic profile
Play Button
Fine-tuning the Size and Minimizing the Noise of Solid-state Nanopores
Authors: Eric Beamish, Harold Kwok, Vincent Tabard-Cossa, Michel Godin.
Institutions: University of Ottawa, University of Ottawa.
Solid-state nanopores have emerged as a versatile tool for the characterization of single biomolecules such as nucleic acids and proteins1. However, the creation of a nanopore in a thin insulating membrane remains challenging. Fabrication methods involving specialized focused electron beam systems can produce well-defined nanopores, but yield of reliable and low-noise nanopores in commercially available membranes remains low2,3 and size control is nontrivial4,5. Here, the application of high electric fields to fine-tune the size of the nanopore while ensuring optimal low-noise performance is demonstrated. These short pulses of high electric field are used to produce a pristine electrical signal and allow for enlarging of nanopores with subnanometer precision upon prolonged exposure. This method is performed in situ in an aqueous environment using standard laboratory equipment, improving the yield and reproducibility of solid-state nanopore fabrication.
Physics, Issue 80, Nanopore, Solid-State, Size Control, Noise Reduction, Translocation, DNA, High Electric Fields, Nanopore Conditioning
Play Button
Protocols for Vaginal Inoculation and Sample Collection in the Experimental Mouse Model of Candida vaginitis
Authors: Junko Yano, Paul L. Fidel, Jr..
Institutions: Louisiana State University Health Sciences Center.
Vulvovaginal candidiasis (VVC), caused by Candida species, is a fungal infection of the lower female genital tract that affects approximately 75% of otherwise healthy women during their reproductive years18,32-34. Predisposing factors include antibiotic usage, uncontrolled diabetes and disturbance in reproductive hormone levels due to pregnancy, oral contraceptives or hormone replacement therapies33,34. Recurrent VVC (RVVC), defined as three or more episodes per year, affects a separate 5 to 8% of women with no predisposing factors33. An experimental mouse model of VVC has been established and used to study the pathogenesis and mucosal host response to Candida3,4,11,16,17,19,21,25,37. This model has also been employed to test potential antifungal therapies in vivo13,24. The model requires that the animals be maintained in a state of pseudoestrus for optimal Candida colonization/infection6,14,23. Under such conditions, inoculated animals will have detectable vaginal fungal burden for weeks to months. Past studies show an extremely high parallel between the animal model and human infection relative to immunological and physiological properties3,16,21. Differences, however, include a lack of Candida as normal vaginal flora and a neutral vaginal pH in the mice. Here, we demonstrate a series of key methods in the mouse vaginitis model that include vaginal inoculation, rapid collection of vaginal specimens, assessment of vaginal fungal burden, and tissue preparations for cellular extraction/isolation. This is followed by representative results for constituents of vaginal lavage fluid, fungal burden, and draining lymph node leukocyte yields. With the use of anesthetics, lavage samples can be collected at multiple time points on the same mice for longitudinal evaluation of infection/colonization. Furthermore, this model requires no immunosuppressive agents to initiate infection, allowing immunological studies under defined host conditions. Finally, the model and each technique introduced here could potentially give rise to use of the methodologies to examine other infectious diseases of the lower female genital tract (bacterial, parasitic, viral) and respective local or systemic host defenses.
Immunology, Issue 58, Candida albicans, vaginitis, mouse, lumbar lymph nodes, vaginal tissues, vaginal lavage
Play Button
Non-invasive Imaging of Disseminated Candidiasis in Zebrafish Larvae
Authors: Kimberly M. Brothers, Robert T. Wheeler.
Institutions: University of Maine.
Disseminated candidiasis caused by the pathogen Candida albicans is a clinically important problem in hospitalized individuals and is associated with a 30 to 40% attributable mortality6. Systemic candidiasis is normally controlled by innate immunity, and individuals with genetic defects in innate immune cell components such as phagocyte NADPH oxidase are more susceptible to candidemia7-9. Very little is known about the dynamics of C. albicans interaction with innate immune cells in vivo. Extensive in vitro studies have established that outside of the host C. albicans germinates inside of macrophages, and is quickly destroyed by neutrophils10-14. In vitro studies, though useful, cannot recapitulate the complex in vivo environment, which includes time-dependent dynamics of cytokine levels, extracellular matrix attachments, and intercellular contacts10, 15-18. To probe the contribution of these factors in host-pathogen interaction, it is critical to find a model organism to visualize these aspects of infection non-invasively in a live intact host. The zebrafish larva offers a unique and versatile vertebrate host for the study of infection. For the first 30 days of development zebrafish larvae have only innate immune defenses2, 19-21, simplifying the study of diseases such as disseminated candidiasis that are highly dependent on innate immunity. The small size and transparency of zebrafish larvae enable imaging of infection dynamics at the cellular level for both host and pathogen. Transgenic larvae with fluorescing innate immune cells can be used to identify specific cells types involved in infection22-24. Modified anti-sense oligonucleotides (Morpholinos) can be used to knock down various immune components such as phagocyte NADPH oxidase and study the changes in response to fungal infection5. In addition to the ethical and practical advantages of using a small lower vertebrate, the zebrafish larvae offers the unique possibility to image the pitched battle between pathogen and host both intravitally and in color. The zebrafish has been used to model infection for a number of human pathogenic bacteria, and has been instrumental in major advances in our understanding of mycobacterial infection3, 25. However, only recently have much larger pathogens such as fungi been used to infect larva5, 23, 26, and to date there has not been a detailed visual description of the infection methodology. Here we present our techniques for hindbrain ventricle microinjection of prim25 zebrafish, including our modifications to previous protocols. Our findings using the larval zebrafish model for fungal infection diverge from in vitro studies and reinforce the need to examine the host-pathogen interaction in the complex environment of the host rather than the simplified system of the Petri dish5.
Immunology, Issue 65, Infection, Molecular Biology, Developmental Biology, Candida albicans, candidiasis, zebrafish larvae, Danio rerio, microinjection, confocal imaging
Play Button
Ambient Method for the Production of an Ionically Gated Carbon Nanotube Common Cathode in Tandem Organic Solar Cells
Authors: Alexander B. Cook, Jonathan D. Yuen, Joseph W. Micheli, Albert G. Nasibulin, Anvar Zakhidov.
Institutions: The University of Texas at Dallas, The University of Texas at Dallas, Aalto University School of Science.
A method of fabricating organic photovoltaic (OPV) tandems that requires no vacuum processing is presented. These devices are comprised of two solution-processed polymeric cells connected in parallel by a transparent carbon nanotubes (CNT) interlayer. This structure includes improvements in fabrication techniques for tandem OPV devices. First the need for ambient-processed cathodes is considered. The CNT anode in the tandem device is tuned via ionic gating to become a common cathode. Ionic gating employs electric double layer charging to lower the work function of the CNT electrode. Secondly, the difficulty of sequentially stacking tandem layers by solution-processing is addressed. The devices are fabricated via solution and dry-lamination in ambient conditions with parallel processing steps. The method of fabricating the individual polymeric cells, the steps needed to laminate them together with a common CNT cathode, and then provide some representative results are described. These results demonstrate ionic gating of the CNT electrode to create a common cathode and addition of current and efficiency as a result of the lamination procedure.
Physics, Issue 93, Organic Photovoltaic, Carbon Nanotubes, Ionic Liquid, Tandem Photovoltaic, Conjugated Polymers, Ambient Processing
Play Button
A 96 Well Microtiter Plate-based Method for Monitoring Formation and Antifungal Susceptibility Testing of Candida albicans Biofilms
Authors: Christopher G. Pierce, Priya Uppuluri, Sushma Tummala, Jose L. Lopez-Ribot.
Institutions: University of Texas San Antonio - UTSA, University of Texas San Antonio - UTSA.
Candida albicans remains the most frequent cause of fungal infections in an expanding population of compromised patients and candidiasis is now the third most common infection in US hospitals. Different manifestations of candidiasis are associated with biofilm formation, both on host tissues and/or medical devices (i.e. catheters). Biofilm formation carries negative clinical implications, as cells within the biofilms are protected from host immune responses and from the action of antifungals. We have developed a simple, fast and robust in vitro model for the formation of C. albicans biofilms using 96 well microtiter-plates, which can also be used for biofilm antifungal susceptibility testing. The readout of this assay is colorimetric, based on the reduction of XTT (a tetrazolium salt) by metabolically active fungal biofilm cells. A typical experiment takes approximately 24 h for biofilm formation, with an additional 24 h for antifungal susceptibility testing. Because of its simplicity and the use of commonly available laboratory materials and equipment, this technique democratizes biofilm research and represents an important step towards the standardization of antifungal susceptibility testing of fungal biofilms.
Immunology, Issue 44, Microbiology, Medical Mycology, Candida, candidiasis, biofilms, antifungals
Play Button
Modeling Mucosal Candidiasis in Larval Zebrafish by Swimbladder Injection
Authors: Remi L. Gratacap, Audrey C. Bergeron, Robert T. Wheeler.
Institutions: University of Maine, University of Maine.
Early defense against mucosal pathogens consists of both an epithelial barrier and innate immune cells. The immunocompetency of both, and their intercommunication, are paramount for the protection against infections. The interactions of epithelial and innate immune cells with a pathogen are best investigated in vivo, where complex behavior unfolds over time and space. However, existing models do not allow for easy spatio-temporal imaging of the battle with pathogens at the mucosal level. The model developed here creates a mucosal infection by direct injection of the fungal pathogen, Candida albicans, into the swimbladder of juvenile zebrafish. The resulting infection enables high-resolution imaging of epithelial and innate immune cell behavior throughout the development of mucosal disease. The versatility of this method allows for interrogation of the host to probe the detailed sequence of immune events leading to phagocyte recruitment and to examine the roles of particular cell types and molecular pathways in protection. In addition, the behavior of the pathogen as a function of immune attack can be imaged simultaneously by using fluorescent protein-expressing C. albicans. Increased spatial resolution of the host-pathogen interaction is also possible using the described rapid swimbladder dissection technique. The mucosal infection model described here is straightforward and highly reproducible, making it a valuable tool for the study of mucosal candidiasis. This system may also be broadly translatable to other mucosal pathogens such as mycobacterial, bacterial or viral microbes that normally infect through epithelial surfaces.
Immunology, Issue 93, Zebrafish, mucosal candidiasis, mucosal infection, epithelial barrier, epithelial cells, innate immunity, swimbladder, Candida albicans, in vivo.
Play Button
Retropinacol/Cross-pinacol Coupling Reactions - A Catalytic Access to 1,2-Unsymmetrical Diols
Authors: Ulf Scheffler, Rainer Mahrwald.
Institutions: Humboldt University of Berlin.
Unsymmetrical 1,2-diols are hardly accessible by reductive pinacol coupling processes. A successful execution of such a transformation is bound to a clear recognition and strict differentiation of two similar carbonyl compounds (aldehydes → secondary 1,2-diols or ketones → tertiary 1,2-diols). This fine-tuning is still a challenge and an unsolved problem for an organic chemist. There exist several reports on successful execution of this transformation but they cannot be generalized. Herein we describe a catalytic direct pinacol coupling process which proceeds via a retropinacol/cross-pinacol coupling sequence. Thus, unsymmetrical substituted 1,2-diols can be accessed with almost quantitative yields by means of an operationally simple performance under very mild conditions. Artificial techniques, such as syringe-pump techniques or delayed additions of reactants are not necessary. The procedure we describe provides a very rapid access to cross-pinacol products (1,2-diols, vicinal diols). A further extension of this new process, e.g. an enantioselective performance could provide a very useful tool for the synthesis of unsymmetrical chiral 1,2-diols.
Chemistry, Issue 86, cross-pinacol coupling reactions, unsymmetrical 1,2-diols, catalysis, titanium(IV) alkoxides, mechanism, aldehydes, ketones
Play Button
Mizoroki-Heck Cross-coupling Reactions Catalyzed by Dichloro{bis[1,1',1''-(phosphinetriyl)tripiperidine]}palladium Under Mild Reaction Conditions
Authors: Miriam Oberholzer, Christian M. Frech.
Institutions: University of Zürich, Zürich University of Applied Sciences.
Dichloro-bis(aminophosphine) complexes of palladium with the general formula of [(P{(NC5H10)3-n(C6H11)n})2Pd(Cl)2] (where n = 0-2), belong to a new family of easy accessible, very cheap, and air stable, but highly active and universally applicable C-C cross-coupling catalysts with an excellent functional group tolerance. Dichloro{bis[1,1',1''-(phosphinetriyl)tripiperidine]}palladium [(P(NC5H10)3)2Pd(Cl)2] (1), the least stable complex within this series towards protons; e.g. in the form of water, allows an eased nanoparticle formation and hence, proved to be the most active Heck catalyst within this series at 100 °C and is a very rare example of an effective and versatile catalyst system that efficiently operates under mild reaction conditions. Rapid and complete catalyst degradation under work-up conditions into phosphonates, piperidinium salts and other, palladium-containing decomposition products assure an easy separation of the coupling products from catalyst and ligands. The facile, cheap, and rapid synthesis of 1,1',1"-(phosphinetriyl)tripiperidine and 1 respectively, the simple and convenient use as well as its excellent catalytic performance in the Heck reaction at 100 °C make 1 to one of the most attractive and greenest Heck catalysts available. We provide here the visualized protocols for the ligand and catalyst syntheses as well as the reaction protocol for Heck reactions performed at 10 mmol scale at 100 °C and show that this catalyst is suitable for its use in organic syntheses.
Chemistry, Issue 85, Heck reaction, C-C cross-coupling, Catalysis, Catalysts, green chemistry, Palladium, Aminophosphines, Palladium nanoparticles, Reaction mechanism, water-induced ligand degradation
Play Button
In Situ SIMS and IR Spectroscopy of Well-defined Surfaces Prepared by Soft Landing of Mass-selected Ions
Authors: Grant E. Johnson, K. Don Dasitha Gunaratne, Julia Laskin.
Institutions: Pacific Northwest National Laboratory.
Soft landing of mass-selected ions onto surfaces is a powerful approach for the highly-controlled preparation of materials that are inaccessible using conventional synthesis techniques. Coupling soft landing with in situ characterization using secondary ion mass spectrometry (SIMS) and infrared reflection absorption spectroscopy (IRRAS) enables analysis of well-defined surfaces under clean vacuum conditions. The capabilities of three soft-landing instruments constructed in our laboratory are illustrated for the representative system of surface-bound organometallics prepared by soft landing of mass-selected ruthenium tris(bipyridine) dications, [Ru(bpy)3]2+ (bpy = bipyridine), onto carboxylic acid terminated self-assembled monolayer surfaces on gold (COOH-SAMs). In situ time-of-flight (TOF)-SIMS provides insight into the reactivity of the soft-landed ions. In addition, the kinetics of charge reduction, neutralization and desorption occurring on the COOH-SAM both during and after ion soft landing are studied using in situ Fourier transform ion cyclotron resonance (FT-ICR)-SIMS measurements. In situ IRRAS experiments provide insight into how the structure of organic ligands surrounding metal centers is perturbed through immobilization of organometallic ions on COOH-SAM surfaces by soft landing. Collectively, the three instruments provide complementary information about the chemical composition, reactivity and structure of well-defined species supported on surfaces.
Chemistry, Issue 88, soft landing, mass selected ions, electrospray, secondary ion mass spectrometry, infrared spectroscopy, organometallic, catalysis
Play Button
Polymerase Chain Reaction: Basic Protocol Plus Troubleshooting and Optimization Strategies
Authors: Todd C. Lorenz.
Institutions: University of California, Los Angeles .
In the biological sciences there have been technological advances that catapult the discipline into golden ages of discovery. For example, the field of microbiology was transformed with the advent of Anton van Leeuwenhoek's microscope, which allowed scientists to visualize prokaryotes for the first time. The development of the polymerase chain reaction (PCR) is one of those innovations that changed the course of molecular science with its impact spanning countless subdisciplines in biology. The theoretical process was outlined by Keppe and coworkers in 1971; however, it was another 14 years until the complete PCR procedure was described and experimentally applied by Kary Mullis while at Cetus Corporation in 1985. Automation and refinement of this technique progressed with the introduction of a thermal stable DNA polymerase from the bacterium Thermus aquaticus, consequently the name Taq DNA polymerase. PCR is a powerful amplification technique that can generate an ample supply of a specific segment of DNA (i.e., an amplicon) from only a small amount of starting material (i.e., DNA template or target sequence). While straightforward and generally trouble-free, there are pitfalls that complicate the reaction producing spurious results. When PCR fails it can lead to many non-specific DNA products of varying sizes that appear as a ladder or smear of bands on agarose gels. Sometimes no products form at all. Another potential problem occurs when mutations are unintentionally introduced in the amplicons, resulting in a heterogeneous population of PCR products. PCR failures can become frustrating unless patience and careful troubleshooting are employed to sort out and solve the problem(s). This protocol outlines the basic principles of PCR, provides a methodology that will result in amplification of most target sequences, and presents strategies for optimizing a reaction. By following this PCR guide, students should be able to: ● Set up reactions and thermal cycling conditions for a conventional PCR experiment ● Understand the function of various reaction components and their overall effect on a PCR experiment ● Design and optimize a PCR experiment for any DNA template ● Troubleshoot failed PCR experiments
Basic Protocols, Issue 63, PCR, optimization, primer design, melting temperature, Tm, troubleshooting, additives, enhancers, template DNA quantification, thermal cycler, molecular biology, genetics
Play Button
A Microplate Assay to Assess Chemical Effects on RBL-2H3 Mast Cell Degranulation: Effects of Triclosan without Use of an Organic Solvent
Authors: Lisa M. Weatherly, Rachel H. Kennedy, Juyoung Shim, Julie A. Gosse.
Institutions: University of Maine, Orono, University of Maine, Orono.
Mast cells play important roles in allergic disease and immune defense against parasites. Once activated (e.g. by an allergen), they degranulate, a process that results in the exocytosis of allergic mediators. Modulation of mast cell degranulation by drugs and toxicants may have positive or adverse effects on human health. Mast cell function has been dissected in detail with the use of rat basophilic leukemia mast cells (RBL-2H3), a widely accepted model of human mucosal mast cells3-5. Mast cell granule component and the allergic mediator β-hexosaminidase, which is released linearly in tandem with histamine from mast cells6, can easily and reliably be measured through reaction with a fluorogenic substrate, yielding measurable fluorescence intensity in a microplate assay that is amenable to high-throughput studies1. Originally published by Naal et al.1, we have adapted this degranulation assay for the screening of drugs and toxicants and demonstrate its use here. Triclosan is a broad-spectrum antibacterial agent that is present in many consumer products and has been found to be a therapeutic aid in human allergic skin disease7-11, although the mechanism for this effect is unknown. Here we demonstrate an assay for the effect of triclosan on mast cell degranulation. We recently showed that triclosan strongly affects mast cell function2. In an effort to avoid use of an organic solvent, triclosan is dissolved directly into aqueous buffer with heat and stirring, and resultant concentration is confirmed using UV-Vis spectrophotometry (using ε280 = 4,200 L/M/cm)12. This protocol has the potential to be used with a variety of chemicals to determine their effects on mast cell degranulation, and more broadly, their allergic potential.
Immunology, Issue 81, mast cell, basophil, degranulation, RBL-2H3, triclosan, irgasan, antibacterial, β-hexosaminidase, allergy, Asthma, toxicants, ionophore, antigen, fluorescence, microplate, UV-Vis
Play Button
Synthesis of an Intein-mediated Artificial Protein Hydrogel
Authors: Miguel A. Ramirez, Zhilei Chen.
Institutions: Texas A&M University, College Station, Texas A&M University, College Station.
We present the synthesis of a highly stable protein hydrogel mediated by a split-intein-catalyzed protein trans-splicing reaction. The building blocks of this hydrogel are two protein block-copolymers each containing a subunit of a trimeric protein that serves as a crosslinker and one half of a split intein. A highly hydrophilic random coil is inserted into one of the block-copolymers for water retention. Mixing of the two protein block copolymers triggers an intein trans-splicing reaction, yielding a polypeptide unit with crosslinkers at either end that rapidly self-assembles into a hydrogel. This hydrogel is very stable under both acidic and basic conditions, at temperatures up to 50 °C, and in organic solvents. The hydrogel rapidly reforms after shear-induced rupture. Incorporation of a "docking station peptide" into the hydrogel building block enables convenient incorporation of "docking protein"-tagged target proteins. The hydrogel is compatible with tissue culture growth media, supports the diffusion of 20 kDa molecules, and enables the immobilization of bioactive globular proteins. The application of the intein-mediated protein hydrogel as an organic-solvent-compatible biocatalyst was demonstrated by encapsulating the horseradish peroxidase enzyme and corroborating its activity.
Bioengineering, Issue 83, split-intein, self-assembly, shear-thinning, enzyme, immobilization, organic synthesis
Play Button
Determination of Protein-ligand Interactions Using Differential Scanning Fluorimetry
Authors: Mirella Vivoli, Halina R. Novak, Jennifer A. Littlechild, Nicholas J. Harmer.
Institutions: University of Exeter.
A wide range of methods are currently available for determining the dissociation constant between a protein and interacting small molecules. However, most of these require access to specialist equipment, and often require a degree of expertise to effectively establish reliable experiments and analyze data. Differential scanning fluorimetry (DSF) is being increasingly used as a robust method for initial screening of proteins for interacting small molecules, either for identifying physiological partners or for hit discovery. This technique has the advantage that it requires only a PCR machine suitable for quantitative PCR, and so suitable instrumentation is available in most institutions; an excellent range of protocols are already available; and there are strong precedents in the literature for multiple uses of the method. Past work has proposed several means of calculating dissociation constants from DSF data, but these are mathematically demanding. Here, we demonstrate a method for estimating dissociation constants from a moderate amount of DSF experimental data. These data can typically be collected and analyzed within a single day. We demonstrate how different models can be used to fit data collected from simple binding events, and where cooperative binding or independent binding sites are present. Finally, we present an example of data analysis in a case where standard models do not apply. These methods are illustrated with data collected on commercially available control proteins, and two proteins from our research program. Overall, our method provides a straightforward way for researchers to rapidly gain further insight into protein-ligand interactions using DSF.
Biophysics, Issue 91, differential scanning fluorimetry, dissociation constant, protein-ligand interactions, StepOne, cooperativity, WcbI.
Play Button
Microwave-assisted Functionalization of Poly(ethylene glycol) and On-resin Peptides for Use in Chain Polymerizations and Hydrogel Formation
Authors: Amy H. Van Hove, Brandon D. Wilson, Danielle S. W. Benoit.
Institutions: University of Rochester, University of Rochester, University of Rochester Medical Center.
One of the main benefits to using poly(ethylene glycol) (PEG) macromers in hydrogel formation is synthetic versatility. The ability to draw from a large variety of PEG molecular weights and configurations (arm number, arm length, and branching pattern) affords researchers tight control over resulting hydrogel structures and properties, including Young’s modulus and mesh size. This video will illustrate a rapid, efficient, solvent-free, microwave-assisted method to methacrylate PEG precursors into poly(ethylene glycol) dimethacrylate (PEGDM). This synthetic method provides much-needed starting materials for applications in drug delivery and regenerative medicine. The demonstrated method is superior to traditional methacrylation methods as it is significantly faster and simpler, as well as more economical and environmentally friendly, using smaller amounts of reagents and solvents. We will also demonstrate an adaptation of this technique for on-resin methacrylamide functionalization of peptides. This on-resin method allows the N-terminus of peptides to be functionalized with methacrylamide groups prior to deprotection and cleavage from resin. This allows for selective addition of methacrylamide groups to the N-termini of the peptides while amino acids with reactive side groups (e.g. primary amine of lysine, primary alcohol of serine, secondary alcohols of threonine, and phenol of tyrosine) remain protected, preventing functionalization at multiple sites. This article will detail common analytical methods (proton Nuclear Magnetic Resonance spectroscopy (;H-NMR) and Matrix Assisted Laser Desorption Ionization Time of Flight mass spectrometry (MALDI-ToF)) to assess the efficiency of the functionalizations. Common pitfalls and suggested troubleshooting methods will be addressed, as will modifications of the technique which can be used to further tune macromer functionality and resulting hydrogel physical and chemical properties. Use of synthesized products for the formation of hydrogels for drug delivery and cell-material interaction studies will be demonstrated, with particular attention paid to modifying hydrogel composition to affect mesh size, controlling hydrogel stiffness and drug release.
Chemistry, Issue 80, Poly(ethylene glycol), peptides, polymerization, polymers, methacrylation, peptide functionalization, 1H-NMR, MALDI-ToF, hydrogels, macromer synthesis
Play Button
Characterization of Complex Systems Using the Design of Experiments Approach: Transient Protein Expression in Tobacco as a Case Study
Authors: Johannes Felix Buyel, Rainer Fischer.
Institutions: RWTH Aachen University, Fraunhofer Gesellschaft.
Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.
Bioengineering, Issue 83, design of experiments (DoE), transient protein expression, plant-derived biopharmaceuticals, promoter, 5'UTR, fluorescent reporter protein, model building, incubation conditions, monoclonal antibody
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (, a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
Play Button
Physical, Chemical and Biological Characterization of Six Biochars Produced for the Remediation of Contaminated Sites
Authors: Mackenzie J. Denyes, Michèle A. Parisien, Allison Rutter, Barbara A. Zeeb.
Institutions: Royal Military College of Canada, Queen's University.
The physical and chemical properties of biochar vary based on feedstock sources and production conditions, making it possible to engineer biochars with specific functions (e.g. carbon sequestration, soil quality improvements, or contaminant sorption). In 2013, the International Biochar Initiative (IBI) made publically available their Standardized Product Definition and Product Testing Guidelines (Version 1.1) which set standards for physical and chemical characteristics for biochar. Six biochars made from three different feedstocks and at two temperatures were analyzed for characteristics related to their use as a soil amendment. The protocol describes analyses of the feedstocks and biochars and includes: cation exchange capacity (CEC), specific surface area (SSA), organic carbon (OC) and moisture percentage, pH, particle size distribution, and proximate and ultimate analysis. Also described in the protocol are the analyses of the feedstocks and biochars for contaminants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), metals and mercury as well as nutrients (phosphorous, nitrite and nitrate and ammonium as nitrogen). The protocol also includes the biological testing procedures, earthworm avoidance and germination assays. Based on the quality assurance / quality control (QA/QC) results of blanks, duplicates, standards and reference materials, all methods were determined adequate for use with biochar and feedstock materials. All biochars and feedstocks were well within the criterion set by the IBI and there were little differences among biochars, except in the case of the biochar produced from construction waste materials. This biochar (referred to as Old biochar) was determined to have elevated levels of arsenic, chromium, copper, and lead, and failed the earthworm avoidance and germination assays. Based on these results, Old biochar would not be appropriate for use as a soil amendment for carbon sequestration, substrate quality improvements or remediation.
Environmental Sciences, Issue 93, biochar, characterization, carbon sequestration, remediation, International Biochar Initiative (IBI), soil amendment
Play Button
Optimization of the Ugi Reaction Using Parallel Synthesis and Automated Liquid Handling
Authors: Jean-Claude Bradley, Khalid Baig Mirza, Tom Osborne, Antony Wiliams, Kevin Owens.
Institutions: Drexel University, Mettler-Toledo, Chemspider.
The optimization of a Ugi reaction involving the mixing of furfurylamine, benzaldehyde, boc-glycine and t-butylisocyanide is described. Triplicate runs of 48 parallel experiments are reported, varying concentration, solvent and the excess of some of the reagents. The isolation of the product was achieved by a simple filtration and wash procedure. The highest yield obtained was 66% from 0.4 M methanol with 1.2 eq. of imine. This is significantly above the 49% yield obtained from the initial reaction under equimolar concentration at 0.4 M in methanol. Methanol solutions with reagent concentrations of 0.4M or 0.2M gave superior yields while all solvent systems at 0.07M performed poorly. At 0.2M, methanol and ethanol/methanol (60/40) mixtures were statistically equally good while THF/methanol (60/40) was poor and acetonitrile/methanol (60/40) was intermediate. Good reproducibility of the precipitate yields was obtained in these replicate experiments, allowing for subtle interaction effects to be positively identified.
Chemistry, Issue 21, Ugi Reaction, Automated Liquid Handling, Combinatorial Chemistry, organic chemistry, Mini-block, Open Notebook Science, reaction optimization, UsefulChem, MiniBlock, precipitate
Play Button
Preparation and Use of Samarium Diiodide (SmI2) in Organic Synthesis: The Mechanistic Role of HMPA and Ni(II) Salts in the Samarium Barbier Reaction
Authors: Dhandapani V. Sadasivam, Kimberly A. Choquette, Robert A. Flowers II.
Institutions: Lehigh University .
Although initially considered an esoteric reagent, SmI2 has become a common tool for synthetic organic chemists. SmI2 is generated through the addition of molecular iodine to samarium metal in THF.1,2-3 It is a mild and selective single electron reductant and its versatility is a result of its ability to initiate a wide range of reductions including C-C bond-forming and cascade or sequential reactions. SmI2 can reduce a variety of functional groups including sulfoxides and sulfones, phosphine oxides, epoxides, alkyl and aryl halides, carbonyls, and conjugated double bonds.2-12 One of the fascinating features of SmI-2-mediated reactions is the ability to manipulate the outcome of reactions through the selective use of cosolvents or additives. In most instances, additives are essential in controlling the rate of reduction and the chemo- or stereoselectivity of reactions.13-14 Additives commonly utilized to fine tune the reactivity of SmI2 can be classified into three major groups: (1) Lewis bases (HMPA, other electron-donor ligands, chelating ethers, etc.), (2) proton sources (alcohols, water etc.), and (3) inorganic additives (Ni(acac)2, FeCl3, etc).3 Understanding the mechanism of SmI2 reactions and the role of the additives enables utilization of the full potential of the reagent in organic synthesis. The Sm-Barbier reaction is chosen to illustrate the synthetic importance and mechanistic role of two common additives: HMPA and Ni(II) in this reaction. The Sm-Barbier reaction is similar to the traditional Grignard reaction with the only difference being that the alkyl halide, carbonyl, and Sm reductant are mixed simultaneously in one pot.1,15 Examples of Sm-mediated Barbier reactions with a range of coupling partners have been reported,1,3,7,10,12 and have been utilized in key steps of the synthesis of large natural products.16,17 Previous studies on the effect of additives on SmI2 reactions have shown that HMPA enhances the reduction potential of SmI2 by coordinating to the samarium metal center, producing a more powerful,13-14,18 sterically encumbered reductant19-21 and in some cases playing an integral role in post electron-transfer steps facilitating subsequent bond-forming events.22 In the Sm-Barbier reaction, HMPA has been shown to additionally activate the alkyl halide by forming a complex in a pre-equilibrium step.23 Ni(II) salts are a catalytic additive used frequently in Sm-mediated transformations.24-27 Though critical for success, the mechanistic role of Ni(II) was not known in these reactions. Recently it has been shown that SmI2 reduces Ni(II) to Ni(0), and the reaction is then carried out through organometallic Ni(0) chemistry.28 These mechanistic studies highlight that although the same Barbier product is obtained, the use of different additives in the SmI2 reaction drastically alters the mechanistic pathway of the reaction. The protocol for running these SmI2-initiated reactions is described.
Chemistry, Issue 72, Organic Chemistry, Chemical Engineering, Biochemistry, Samarium diiodide, Sml2, Samarium-Barbier Reaction, HMPA, hexamethylphosphoramide, Ni(II), Nickel(II) acetylacetonate, nickel, samarium, iodine, additives, synthesis, catalyst, reaction, synthetic organic chemistry
Play Button
Synthesis of Antiviral Tetrahydrocarbazole Derivatives by Photochemical and Acid-catalyzed C-H Functionalization via Intermediate Peroxides (CHIPS)
Authors: Naeem Gulzar, Martin Klussmann.
Institutions: Max-Planck-Institut fuer Kohlenforschung.
The direct functionalization of C-H bonds is an important and long standing goal in organic chemistry. Such transformations can be very powerful in order to streamline synthesis by saving steps, time and material compared to conventional methods that require the introduction and removal of activating or directing groups. Therefore, the functionalization of C-H bonds is also attractive for green chemistry. Under oxidative conditions, two C-H bonds or one C-H and one heteroatom-H bond can be transformed to C-C and C-heteroatom bonds, respectively. Often these oxidative coupling reactions require synthetic oxidants, expensive catalysts or high temperatures. Here, we describe a two-step procedure to functionalize indole derivatives, more specifically tetrahydrocarbazoles, by C-H amination using only elemental oxygen as oxidant. The reaction uses the principle of C-H functionalization via Intermediate PeroxideS (CHIPS). In the first step, a hydroperoxide is generated oxidatively using visible light, a photosensitizer and elemental oxygen. In the second step, the N-nucleophile, an aniline, is introduced by Brønsted-acid catalyzed activation of the hydroperoxide leaving group. The products of the first and second step often precipitate and can be conveniently filtered off. The synthesis of a biologically active compound is shown.
Chemistry, Issue 88, Catalysis, Photocatalysis, C-H functionalization, Oxygen, Peroxides, Indoles, Pharmaceuticals
Play Button
Enhanced Northern Blot Detection of Small RNA Species in Drosophila Melanogaster
Authors: Pietro Laneve, Angela Giangrande.
Institutions: Institut de Génétique et de Biologie Moléculaire et Cellulaire, Istituto Italiano di Tecnologia.
The last decades have witnessed the explosion of scientific interest around gene expression control mechanisms at the RNA level. This branch of molecular biology has been greatly fueled by the discovery of noncoding RNAs as major players in post-transcriptional regulation. Such a revolutionary perspective has been accompanied and triggered by the development of powerful technologies for profiling short RNAs expression, both at the high-throughput level (genome-wide identification) or as single-candidate analysis (steady state accumulation of specific species). Although several state-of-art strategies are currently available for dosing or visualizing such fleeing molecules, Northern Blot assay remains the eligible approach in molecular biology for immediate and accurate evaluation of RNA expression. It represents a first step toward the application of more sophisticated, costly technologies and, in many cases, remains a preferential method to easily gain insights into RNA biology. Here we overview an efficient protocol (Enhanced Northern Blot) for detecting weakly expressed microRNAs (or other small regulatory RNA species) from Drosophila melanogaster whole embryos, manually dissected larval/adult tissues or in vitro cultured cells. A very limited amount of RNA is required and the use of material from flow cytometry-isolated cells can be also envisaged.
Molecular Biology, Issue 90, Northern blotting, Noncoding RNAs, microRNAs, rasiRNA, Gene expression, Gcm/Glide, Drosophila melanogaster
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.