JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Genome-wide characterization of menin-dependent H3K4me3 reveals a specific role for menin in the regulation of genes implicated in MEN1-like tumors.
Inactivating mutations in the MEN1 gene predisposing to the multiple endocrine neoplasia type 1 (MEN1) syndrome can also cause sporadic pancreatic endocrine tumors. MEN1 encodes menin, a subunit of MLL1/MLL2-containing histone methyltransferase complexes that trimethylate histone H3 at lysine 4 (H3K4me3). The importance of menin-dependent H3K4me3 in normal and transformed pancreatic endocrine cells is unclear. To study the role of menin-dependent H3K4me3, we performed in vitro differentiation of wild-type as well as menin-null mouse embryonic stem cells (mESCs) into pancreatic islet-like endocrine cells (PILECs). Gene expression analysis and genome-wide H3K4me3 ChIP-Seq profiling in wild-type and menin-null mESCs and PILECs revealed menin-dependent H3K4me3 at the imprinted Dlk1-Meg3 locus in mESCs, and all four Hox loci in differentiated PILECs. Specific and significant loss of H3K4me3 and gene expression was observed for genes within the imprinted Dlk1-Meg3 locus in menin-null mESCs and the Hox loci in menin-null PILECs. Given that the reduced expression of genes within the DLK1-MEG3 locus and the HOX loci is associated with MEN1-like sporadic tumors, our data suggests a possible role for menin-dependent H3K4me3 at these genes in the initiation and progression of sporadic pancreatic endocrine tumors. Furthermore, our investigation also demonstrates that menin-null mESCs can be differentiated in vitro into islet-like endocrine cells, underscoring the utility of menin-null mESC-derived specialized cell types for genome-wide high-throughput studies.
Authors: Vuong Tran, Qiang Gan, Xin Chen.
Published: 03-23-2012
Epigenetics remains a rapidly developing field that studies how the chromatin state contributes to differential gene expression in distinct cell types at different developmental stages. Epigenetic regulation contributes to a broad spectrum of biological processes, including cellular differentiation during embryonic development and homeostasis in adulthood. A critical strategy in epigenetic studies is to examine how various histone modifications and chromatin factors regulate gene expression. To address this, Chromatin Immunoprecipitation (ChIP) is used widely to obtain a snapshot of the association of particular factors with DNA in the cells of interest. ChIP technique commonly uses cultured cells as starting material, which can be obtained in abundance and homogeneity to generate reproducible data. However, there are several caveats: First, the environment to grow cells in Petri dish is different from that in vivo, thus may not reflect the endogenous chromatin state of cells in a living organism. Second, not all types of cells can be cultured ex vivo. There are only a limited number of cell lines, from which people can obtain enough material for ChIP assay. Here we describe a method to do ChIP experiment using Drosophila tissues. The starting material is dissected tissue from a living animal, thus can accurately reflect the endogenous chromatin state. The adaptability of this method with many different types of tissue will allow researchers to address a lot more biologically relevant questions regarding epigenetic regulation in vivo1, 2. Combining this method with high-throughput sequencing (ChIP-seq) will further allow researchers to obtain an epigenomic landscape.
22 Related JoVE Articles!
Play Button
A Novel Bayesian Change-point Algorithm for Genome-wide Analysis of Diverse ChIPseq Data Types
Authors: Haipeng Xing, Willey Liao, Yifan Mo, Michael Q. Zhang.
Institutions: Stony Brook University, Cold Spring Harbor Laboratory, University of Texas at Dallas.
ChIPseq is a widely used technique for investigating protein-DNA interactions. Read density profiles are generated by using next-sequencing of protein-bound DNA and aligning the short reads to a reference genome. Enriched regions are revealed as peaks, which often differ dramatically in shape, depending on the target protein1. For example, transcription factors often bind in a site- and sequence-specific manner and tend to produce punctate peaks, while histone modifications are more pervasive and are characterized by broad, diffuse islands of enrichment2. Reliably identifying these regions was the focus of our work. Algorithms for analyzing ChIPseq data have employed various methodologies, from heuristics3-5 to more rigorous statistical models, e.g. Hidden Markov Models (HMMs)6-8. We sought a solution that minimized the necessity for difficult-to-define, ad hoc parameters that often compromise resolution and lessen the intuitive usability of the tool. With respect to HMM-based methods, we aimed to curtail parameter estimation procedures and simple, finite state classifications that are often utilized. Additionally, conventional ChIPseq data analysis involves categorization of the expected read density profiles as either punctate or diffuse followed by subsequent application of the appropriate tool. We further aimed to replace the need for these two distinct models with a single, more versatile model, which can capably address the entire spectrum of data types. To meet these objectives, we first constructed a statistical framework that naturally modeled ChIPseq data structures using a cutting edge advance in HMMs9, which utilizes only explicit formulas-an innovation crucial to its performance advantages. More sophisticated then heuristic models, our HMM accommodates infinite hidden states through a Bayesian model. We applied it to identifying reasonable change points in read density, which further define segments of enrichment. Our analysis revealed how our Bayesian Change Point (BCP) algorithm had a reduced computational complexity-evidenced by an abridged run time and memory footprint. The BCP algorithm was successfully applied to both punctate peak and diffuse island identification with robust accuracy and limited user-defined parameters. This illustrated both its versatility and ease of use. Consequently, we believe it can be implemented readily across broad ranges of data types and end users in a manner that is easily compared and contrasted, making it a great tool for ChIPseq data analysis that can aid in collaboration and corroboration between research groups. Here, we demonstrate the application of BCP to existing transcription factor10,11 and epigenetic data12 to illustrate its usefulness.
Genetics, Issue 70, Bioinformatics, Genomics, Molecular Biology, Cellular Biology, Immunology, Chromatin immunoprecipitation, ChIP-Seq, histone modifications, segmentation, Bayesian, Hidden Markov Models, epigenetics
Play Button
Endothelial Cell Co-culture Mediates Maturation of Human Embryonic Stem Cell to Pancreatic Insulin Producing Cells in a Directed Differentiation Approach
Authors: Maria Jaramillo, Ipsita Banerjee.
Institutions: University of Pittsburgh, University of Pittsburgh.
Embryonic stem cells (ESC) have two main characteristics: they can be indefinitely propagated in vitro in an undifferentiated state and they are pluripotent, thus having the potential to differentiate into multiple lineages. Such properties make ESCs extremely attractive for cell based therapy and regenerative treatment applications 1. However for its full potential to be realized the cells have to be differentiated into mature and functional phenotypes, which is a daunting task. A promising approach in inducing cellular differentiation is to closely mimic the path of organogenesis in the in vitro setting. Pancreatic development is known to occur in specific stages 2, starting with endoderm, which can develop into several organs, including liver and pancreas. Endoderm induction can be achieved by modulation of the nodal pathway through addition of Activin A 3 in combination with several growth factors 4-7. Definitive endoderm cells then undergo pancreatic commitment by inhibition of sonic hedgehog inhibition, which can be achieved in vitro by addition of cyclopamine 8. Pancreatic maturation is mediated by several parallel events including inhibition of notch signaling; aggregation of pancreatic progenitors into 3-dimentional clusters; induction of vascularization; to name a few. By far the most successful in vitro maturation of ESC derived pancreatic progenitor cells have been achieved through inhibition of notch signaling by DAPT supplementation 9. Although successful, this results in low yield of the mature phenotype with reduced functionality. A less studied area is the effect of endothelial cell signaling in pancreatic maturation, which is increasingly being appreciated as an important contributing factor in in-vivo pancreatic islet maturation 10,11. The current study explores such effect of endothelial cell signaling in maturation of human ESC derived pancreatic progenitor cells into insulin producing islet-like cells. We report a multi-stage directed differentiation protocol where the human ESCs are first induced towards endoderm by Activin A along with inhibition of PI3K pathway. Pancreatic specification of endoderm cells is achieved by inhibition of sonic hedgehog signaling by Cyclopamine along with retinoid induction by addition of Retinoic Acid. The final stage of maturation is induced by endothelial cell signaling achieved by a co-culture configuration. While several endothelial cells have been tested in the co-culture, herein we present our data with rat heart microvascular endothelial Cells (RHMVEC), primarily for the ease of analysis.
Stem Cell Biology, Issue 61, Human embryonic stem cells, Endothelial cells, Pancreatic differentiation, Co-culture
Play Button
Computer-assisted Large-scale Visualization and Quantification of Pancreatic Islet Mass, Size Distribution and Architecture
Authors: Abraham Kim, German Kilimnik, Charles Guo, Joshua Sung, Junghyo Jo, Vipul Periwal, Piotr Witkowski, Philip Dilorio, Manami Hara.
Institutions: University of Chicago, National Institutes of Health, University of Chicago, University of Massachusetts.
The pancreatic islet is a unique micro-organ composed of several hormone secreting endocrine cells such as beta-cells (insulin), alpha-cells (glucagon), and delta-cells (somatostatin) that are embedded in the exocrine tissues and comprise 1-2% of the entire pancreas. There is a close correlation between body and pancreas weight. Total beta-cell mass also increases proportionately to compensate for the demand for insulin in the body. What escapes this proportionate expansion is the size distribution of islets. Large animals such as humans share similar islet size distributions with mice, suggesting that this micro-organ has a certain size limit to be functional. The inability of large animal pancreata to generate proportionately larger islets is compensated for by an increase in the number of islets and by an increase in the proportion of larger islets in their overall islet size distribution. Furthermore, islets exhibit a striking plasticity in cellular composition and architecture among different species and also within the same species under various pathophysiological conditions. In the present study, we describe novel approaches for the analysis of biological image data in order to facilitate the automation of analytic processes, which allow for the analysis of large and heterogeneous data collections in the study of such dynamic biological processes and complex structures. Such studies have been hampered due to technical difficulties of unbiased sampling and generating large-scale data sets to precisely capture the complexity of biological processes of islet biology. Here we show methods to collect unbiased "representative" data within the limited availability of samples (or to minimize the sample collection) and the standard experimental settings, and to precisely analyze the complex three-dimensional structure of the islet. Computer-assisted automation allows for the collection and analysis of large-scale data sets and also assures unbiased interpretation of the data. Furthermore, the precise quantification of islet size distribution and spatial coordinates (i.e. X, Y, Z-positions) not only leads to an accurate visualization of pancreatic islet structure and composition, but also allows us to identify patterns during development and adaptation to altering conditions through mathematical modeling. The methods developed in this study are applicable to studies of many other systems and organisms as well.
Cellular Biology, Issue 49, beta-cells, islets, large-scale analysis, pancreas
Play Button
Profiling of Estrogen-regulated MicroRNAs in Breast Cancer Cells
Authors: Anne Katchy, Cecilia Williams.
Institutions: University of Houston.
Estrogen plays vital roles in mammary gland development and breast cancer progression. It mediates its function by binding to and activating the estrogen receptors (ERs), ERα, and ERβ. ERα is frequently upregulated in breast cancer and drives the proliferation of breast cancer cells. The ERs function as transcription factors and regulate gene expression. Whereas ERα's regulation of protein-coding genes is well established, its regulation of noncoding microRNA (miRNA) is less explored. miRNAs play a major role in the post-transcriptional regulation of genes, inhibiting their translation or degrading their mRNA. miRNAs can function as oncogenes or tumor suppressors and are also promising biomarkers. Among the miRNA assays available, microarray and quantitative real-time polymerase chain reaction (qPCR) have been extensively used to detect and quantify miRNA levels. To identify miRNAs regulated by estrogen signaling in breast cancer, their expression in ERα-positive breast cancer cell lines were compared before and after estrogen-activation using both the µParaflo-microfluidic microarrays and Dual Labeled Probes-low density arrays. Results were validated using specific qPCR assays, applying both Cyanine dye-based and Dual Labeled Probes-based chemistry. Furthermore, a time-point assay was used to identify regulations over time. Advantages of the miRNA assay approach used in this study is that it enables a fast screening of mature miRNA regulations in numerous samples, even with limited sample amounts. The layout, including the specific conditions for cell culture and estrogen treatment, biological and technical replicates, and large-scale screening followed by in-depth confirmations using separate techniques, ensures a robust detection of miRNA regulations, and eliminates false positives and other artifacts. However, mutated or unknown miRNAs, or regulations at the primary and precursor transcript level, will not be detected. The method presented here represents a thorough investigation of estrogen-mediated miRNA regulation.
Medicine, Issue 84, breast cancer, microRNA, estrogen, estrogen receptor, microarray, qPCR
Play Button
Polysome Fractionation and Analysis of Mammalian Translatomes on a Genome-wide Scale
Authors: Valentina Gandin, Kristina Sikström, Tommy Alain, Masahiro Morita, Shannon McLaughlan, Ola Larsson, Ivan Topisirovic.
Institutions: McGill University, Karolinska Institutet, McGill University.
mRNA translation plays a central role in the regulation of gene expression and represents the most energy consuming process in mammalian cells. Accordingly, dysregulation of mRNA translation is considered to play a major role in a variety of pathological states including cancer. Ribosomes also host chaperones, which facilitate folding of nascent polypeptides, thereby modulating function and stability of newly synthesized polypeptides. In addition, emerging data indicate that ribosomes serve as a platform for a repertoire of signaling molecules, which are implicated in a variety of post-translational modifications of newly synthesized polypeptides as they emerge from the ribosome, and/or components of translational machinery. Herein, a well-established method of ribosome fractionation using sucrose density gradient centrifugation is described. In conjunction with the in-house developed “anota” algorithm this method allows direct determination of differential translation of individual mRNAs on a genome-wide scale. Moreover, this versatile protocol can be used for a variety of biochemical studies aiming to dissect the function of ribosome-associated protein complexes, including those that play a central role in folding and degradation of newly synthesized polypeptides.
Biochemistry, Issue 87, Cells, Eukaryota, Nutritional and Metabolic Diseases, Neoplasms, Metabolic Phenomena, Cell Physiological Phenomena, mRNA translation, ribosomes, protein synthesis, genome-wide analysis, translatome, mTOR, eIF4E, 4E-BP1
Play Button
Monitoring Cell-autonomous Circadian Clock Rhythms of Gene Expression Using Luciferase Bioluminescence Reporters
Authors: Chidambaram Ramanathan, Sanjoy K. Khan, Nimish D. Kathale, Haiyan Xu, Andrew C. Liu.
Institutions: The University of Memphis.
In mammals, many aspects of behavior and physiology such as sleep-wake cycles and liver metabolism are regulated by endogenous circadian clocks (reviewed1,2). The circadian time-keeping system is a hierarchical multi-oscillator network, with the central clock located in the suprachiasmatic nucleus (SCN) synchronizing and coordinating extra-SCN and peripheral clocks elsewhere1,2. Individual cells are the functional units for generation and maintenance of circadian rhythms3,4, and these oscillators of different tissue types in the organism share a remarkably similar biochemical negative feedback mechanism. However, due to interactions at the neuronal network level in the SCN and through rhythmic, systemic cues at the organismal level, circadian rhythms at the organismal level are not necessarily cell-autonomous5-7. Compared to traditional studies of locomotor activity in vivo and SCN explants ex vivo, cell-based in vitro assays allow for discovery of cell-autonomous circadian defects5,8. Strategically, cell-based models are more experimentally tractable for phenotypic characterization and rapid discovery of basic clock mechanisms5,8-13. Because circadian rhythms are dynamic, longitudinal measurements with high temporal resolution are needed to assess clock function. In recent years, real-time bioluminescence recording using firefly luciferase as a reporter has become a common technique for studying circadian rhythms in mammals14,15, as it allows for examination of the persistence and dynamics of molecular rhythms. To monitor cell-autonomous circadian rhythms of gene expression, luciferase reporters can be introduced into cells via transient transfection13,16,17 or stable transduction5,10,18,19. Here we describe a stable transduction protocol using lentivirus-mediated gene delivery. The lentiviral vector system is superior to traditional methods such as transient transfection and germline transmission because of its efficiency and versatility: it permits efficient delivery and stable integration into the host genome of both dividing and non-dividing cells20. Once a reporter cell line is established, the dynamics of clock function can be examined through bioluminescence recording. We first describe the generation of P(Per2)-dLuc reporter lines, and then present data from this and other circadian reporters. In these assays, 3T3 mouse fibroblasts and U2OS human osteosarcoma cells are used as cellular models. We also discuss various ways of using these clock models in circadian studies. Methods described here can be applied to a great variety of cell types to study the cellular and molecular basis of circadian clocks, and may prove useful in tackling problems in other biological systems.
Genetics, Issue 67, Molecular Biology, Cellular Biology, Chemical Biology, Circadian clock, firefly luciferase, real-time bioluminescence technology, cell-autonomous model, lentiviral vector, RNA interference (RNAi), high-throughput screening (HTS)
Play Button
Fluorescence-based Monitoring of PAD4 Activity via a Pro-fluorescence Substrate Analog
Authors: Mary J. Sabulski, Jonathan M. Fura, Marcos M. Pires.
Institutions: Lehigh University.
Post-translational modifications may lead to altered protein functional states by increasing the covalent variations on the side chains of many protein substrates. The histone tails represent one of the most heavily modified stretches within all human proteins. Peptidyl-arginine deiminase 4 (PAD4) has been shown to convert arginine residues into the non-genetically encoded citrulline residue. Few assays described to date have been operationally facile with satisfactory sensitivity. Thus, the lack of adequate assays has likely contributed to the absence of potent non-covalent PAD4 inhibitors. Herein a novel fluorescence-based assay that allows for the monitoring of PAD4 activity is described. A pro-fluorescent substrate analog was designed to link PAD4 enzymatic activity to fluorescence liberation upon the addition of the protease trypsin. It was shown that the assay is compatible with high-throughput screening conditions and has a strong signal-to-noise ratio. Furthermore, the assay can also be performed with crude cell lysates containing over-expressed PAD4.
Chemistry, Issue 93, PAD4, PADI4, citrullination, arginine, post-translational modification, HTS, assay, fluorescence, citrulline
Play Button
Identification of Key Factors Regulating Self-renewal and Differentiation in EML Hematopoietic Precursor Cells by RNA-sequencing Analysis
Authors: Shan Zong, Shuyun Deng, Kenian Chen, Jia Qian Wu.
Institutions: The University of Texas Graduate School of Biomedical Sciences at Houston.
Hematopoietic stem cells (HSCs) are used clinically for transplantation treatment to rebuild a patient's hematopoietic system in many diseases such as leukemia and lymphoma. Elucidating the mechanisms controlling HSCs self-renewal and differentiation is important for application of HSCs for research and clinical uses. However, it is not possible to obtain large quantity of HSCs due to their inability to proliferate in vitro. To overcome this hurdle, we used a mouse bone marrow derived cell line, the EML (Erythroid, Myeloid, and Lymphocytic) cell line, as a model system for this study. RNA-sequencing (RNA-Seq) has been increasingly used to replace microarray for gene expression studies. We report here a detailed method of using RNA-Seq technology to investigate the potential key factors in regulation of EML cell self-renewal and differentiation. The protocol provided in this paper is divided into three parts. The first part explains how to culture EML cells and separate Lin-CD34+ and Lin-CD34- cells. The second part of the protocol offers detailed procedures for total RNA preparation and the subsequent library construction for high-throughput sequencing. The last part describes the method for RNA-Seq data analysis and explains how to use the data to identify differentially expressed transcription factors between Lin-CD34+ and Lin-CD34- cells. The most significantly differentially expressed transcription factors were identified to be the potential key regulators controlling EML cell self-renewal and differentiation. In the discussion section of this paper, we highlight the key steps for successful performance of this experiment. In summary, this paper offers a method of using RNA-Seq technology to identify potential regulators of self-renewal and differentiation in EML cells. The key factors identified are subjected to downstream functional analysis in vitro and in vivo.
Genetics, Issue 93, EML Cells, Self-renewal, Differentiation, Hematopoietic precursor cell, RNA-Sequencing, Data analysis
Play Button
DNA-affinity-purified Chip (DAP-chip) Method to Determine Gene Targets for Bacterial Two component Regulatory Systems
Authors: Lara Rajeev, Eric G. Luning, Aindrila Mukhopadhyay.
Institutions: Lawrence Berkeley National Laboratory.
In vivo methods such as ChIP-chip are well-established techniques used to determine global gene targets for transcription factors. However, they are of limited use in exploring bacterial two component regulatory systems with uncharacterized activation conditions. Such systems regulate transcription only when activated in the presence of unique signals. Since these signals are often unknown, the in vitro microarray based method described in this video article can be used to determine gene targets and binding sites for response regulators. This DNA-affinity-purified-chip method may be used for any purified regulator in any organism with a sequenced genome. The protocol involves allowing the purified tagged protein to bind to sheared genomic DNA and then affinity purifying the protein-bound DNA, followed by fluorescent labeling of the DNA and hybridization to a custom tiling array. Preceding steps that may be used to optimize the assay for specific regulators are also described. The peaks generated by the array data analysis are used to predict binding site motifs, which are then experimentally validated. The motif predictions can be further used to determine gene targets of orthologous response regulators in closely related species. We demonstrate the applicability of this method by determining the gene targets and binding site motifs and thus predicting the function for a sigma54-dependent response regulator DVU3023 in the environmental bacterium Desulfovibrio vulgaris Hildenborough.
Genetics, Issue 89, DNA-Affinity-Purified-chip, response regulator, transcription factor binding site, two component system, signal transduction, Desulfovibrio, lactate utilization regulator, ChIP-chip
Play Button
Differentiation of Embryonic Stem Cells into Oligodendrocyte Precursors
Authors: Peng Jiang, Vimal Selvaraj, Wenbin Deng.
Institutions: School of Medicine, University of California, Davis.
Oligodendrocytes are the myelinating cells of the central nervous system. For regenerative cell therapy in demyelinating diseases, there is significant interest in deriving a pure population of lineage-committed oligodendrocyte precursor cells (OPCs) for transplantation. OPCs are characterized by the activity of the transcription factor Olig2 and surface expression of a proteoglycan NG2. Using the GFP-Olig2 (G-Olig2) mouse embryonic stem cell (mESC) reporter line, we optimized conditions for the differentiation of mESCs into GFP+Olig2+NG2+ OPCs. In our protocol, we first describe the generation of embryoid bodies (EBs) from mESCs. Second, we describe treatment of mESC-derived EBs with small molecules: (1) retinoic acid (RA) and (2) a sonic hedgehog (Shh) agonist purmorphamine (Pur) under defined culture conditions to direct EB differentiation into the oligodendroglial lineage. By this approach, OPCs can be obtained with high efficiency (>80%) in a time period of 30 days. Cells derived from mESCs in this protocol are phenotypically similar to OPCs derived from primary tissue culture. The mESC-derived OPCs do not show the spiking property described for a subpopulation of brain OPCs in situ. To study this electrophysiological property, we describe the generation of spiking mESC-derived OPCs by ectopically expressing NaV1.2 subunit. The spiking and nonspiking cells obtained from this protocol will help advance functional studies on the two subpopulations of OPCs.
Neurobiology, Issue 39, pluripotent stem cell, oligodendrocyte precursor cells, differentiation, myelin, neuroscience, brain
Play Button
Genetic Manipulation in Δku80 Strains for Functional Genomic Analysis of Toxoplasma gondii
Authors: Leah M. Rommereim, Miryam A. Hortua Triana, Alejandra Falla, Kiah L. Sanders, Rebekah B. Guevara, David J. Bzik, Barbara A. Fox.
Institutions: The Geisel School of Medicine at Dartmouth.
Targeted genetic manipulation using homologous recombination is the method of choice for functional genomic analysis to obtain a detailed view of gene function and phenotype(s). The development of mutant strains with targeted gene deletions, targeted mutations, complemented gene function, and/or tagged genes provides powerful strategies to address gene function, particularly if these genetic manipulations can be efficiently targeted to the gene locus of interest using integration mediated by double cross over homologous recombination. Due to very high rates of nonhomologous recombination, functional genomic analysis of Toxoplasma gondii has been previously limited by the absence of efficient methods for targeting gene deletions and gene replacements to specific genetic loci. Recently, we abolished the major pathway of nonhomologous recombination in type I and type II strains of T. gondii by deleting the gene encoding the KU80 protein1,2. The Δku80 strains behave normally during tachyzoite (acute) and bradyzoite (chronic) stages in vitro and in vivo and exhibit essentially a 100% frequency of homologous recombination. The Δku80 strains make functional genomic studies feasible on the single gene as well as on the genome scale1-4. Here, we report methods for using type I and type II Δku80Δhxgprt strains to advance gene targeting approaches in T. gondii. We outline efficient methods for generating gene deletions, gene replacements, and tagged genes by targeted insertion or deletion of the hypoxanthine-xanthine-guanine phosphoribosyltransferase (HXGPRT) selectable marker. The described gene targeting protocol can be used in a variety of ways in Δku80 strains to advance functional analysis of the parasite genome and to develop single strains that carry multiple targeted genetic manipulations. The application of this genetic method and subsequent phenotypic assays will reveal fundamental and unique aspects of the biology of T. gondii and related significant human pathogens that cause malaria (Plasmodium sp.) and cryptosporidiosis (Cryptosporidium).
Infectious Diseases, Issue 77, Genetics, Microbiology, Infection, Medicine, Immunology, Molecular Biology, Cellular Biology, Biomedical Engineering, Bioengineering, Genomics, Parasitology, Pathology, Apicomplexa, Coccidia, Toxoplasma, Genetic Techniques, Gene Targeting, Eukaryota, Toxoplasma gondii, genetic manipulation, gene targeting, gene deletion, gene replacement, gene tagging, homologous recombination, DNA, sequencing
Play Button
Isolation, Culture, and Imaging of Human Fetal Pancreatic Cell Clusters
Authors: Ana D. Lopez, Ayse G. Kayali, Alberto Hayek, Charles C. King.
Institutions: University of California, San Diego.
For almost 30 years, scientists have demonstrated that human fetal ICCs transplanted under the kidney capsule of nude mice matured into functioning endocrine cells, as evidenced by a significant increase in circulating human C-peptide following glucose stimulation1-9. However in vitro, genesis of insulin producing cells from human fetal ICCs is low10; results reminiscent of recent experiments performed with human embryonic stem cells (hESC), a renewable source of cells that hold great promise as a potential therapeutic treatment for type 1 diabetes. Like ICCs, transplantation of partially differentiated hESC generate glucose responsive, insulin producing cells, but in vitro genesis of insulin producing cells from hESC is much less robust11-17. A complete understanding of the factors that influence the growth and differentiation of endocrine precursor cells will likely require data generated from both ICCs and hESC. While a number of protocols exist to generate insulin producing cells from hESC in vitro11-22, far fewer exist for ICCs10,23,24. Part of that discrepancy likely comes from the difficulty of working with human fetal pancreas. Towards that end, we have continued to build upon existing methods to isolate fetal islets from human pancreases with gestational ages ranging from 12 to 23 weeks, grow the cells as a monolayer or in suspension, and image for cell proliferation, pancreatic markers and human hormones including glucagon and C-peptide. ICCs generated by the protocol described below result in C-peptide release after transplantation under the kidney capsule of nude mice that are similar to C-peptide levels obtained by transplantation of fresh tissue6. Although the examples presented here focus upon the pancreatic endoderm proliferation and β cell genesis, the protocol can be employed to study other aspects of pancreatic development, including exocrine, ductal, and other hormone producing cells.
Medicine, Issue 87, human fetal pancreas, islet cell cluster (ICC), transplantation, immunofluorescence, endocrine cell proliferation, differentiation, C-peptide
Play Button
A Quantitative Assay for Insulin-expressing Colony-forming Progenitors
Authors: Michael Winkler, Nancy Trieu, Tao Feng, Liang Jin, Stephanie Walker, Lipi Singh, Hsun Teresa Ku.
Institutions: California State University Channel Islands, Beckman Research Institute of City of Hope, Beckman Research Institute of City of Hope.
The field of pancreatic stem and progenitor cell biology has been hampered by a lack of in vitro functional and quantitative assays that allow for the analysis of the single cell. Analyses of single progenitors are of critical importance because they provide definitive ways to unequivocally demonstrate the lineage potential of individual progenitors. Although methods have been devised to generate "pancreatospheres" in suspension culture from single cells, several limitations exist. First, it is time-consuming to perform single cell deposition for a large number of cells, which in turn commands large volumes of culture media and space. Second, numeration of the resulting pancreatospheres is labor-intensive, especially when the frequency of the pancreatosphere-initiating progenitors is low. Third, the pancreatosphere assay is not an efficient method to allow both the proliferation and differentiation of pancreatic progenitors in the same culture well, restricting the usefulness of the assay. To overcome these limitations, a semi-solid media based colony assay for pancreatic progenitors has been developed and is presented in this report. This method takes advantage of an existing concept from the hematopoietic colony assay, in which methylcellulose is used to provide viscosity to the media, allowing the progenitor cells to stay in three-dimensional space as they undergo proliferation as well as differentiation. To enrich insulin-expressing colony-forming progenitors from a heterogeneous population, we utilized cells that express neurogenin (Ngn) 3, a pancreatic endocrine progenitor cell marker. Murine embryonic stem (ES) cell-derived Ngn3 expressing cells tagged with the enhanced green fluorescent protein reporter were sorted and as many as 25,000 cells per well were plated into low-attachment 24-well culture dishes. Each well contained 500 μL of semi-solid media with the following major components: methylcellulose, Matrigel, nicotinamide, exendin-4, activin βB, and conditioned media collected from murine ES cell-derived pancreatic-like cells. After 8 to 12 days of culture, insulin-expressing colonies with distinctive morphology were formed and could be further analyzed for pancreatic gene expression using quantitative RT-PCR and immunoflourescent staining to determine the lineage composition of each colony. In summary, our colony assay allows easy detection and quantification of functional progenitors within a heterogeneous population of cells. In addition, the semi-solid media format allows uniform presentation of extracellular matrix components and growth factors to cells, enabling progenitors to proliferate and differentiate in vitro. This colony assay provides unique opportunities for mechanistic studies of pancreatic progenitor cells at the single cell level.
Developmental Biology, Issue 57, Pancreas, insulin-expressing cells, embryonic stem cells, colony assay, progenitor cells, 3-dimensional culture, semi-solid media, Matrigel, methylcellulose
Play Button
In Vitro Pancreas Organogenesis from Dispersed Mouse Embryonic Progenitors
Authors: Chiara Greggio, Filippo De Franceschi, Manuel Figueiredo-Larsen, Anne Grapin-Botton.
Institutions: Swiss Institute for Experimental Cancer Research, University of Copenhagen.
The pancreas is an essential organ that regulates glucose homeostasis and secretes digestive enzymes. Research on pancreas embryogenesis has led to the development of protocols to produce pancreatic cells from stem cells 1. The whole embryonic organ can be cultured at multiple stages of development 2-4. These culture methods have been useful to test drugs and to image developmental processes. However the expansion of the organ is very limited and morphogenesis is not faithfully recapitulated since the organ flattens. We propose three-dimensional (3D) culture conditions that enable the efficient expansion of dissociated mouse embryonic pancreatic progenitors. By manipulating the composition of the culture medium it is possible to generate either hollow spheres, mainly composed of pancreatic progenitors expanding in their initial state, or, complex organoids which progress to more mature expanding progenitors and differentiate into endocrine, acinar and ductal cells and which spontaneously self-organize to resemble the embryonic pancreas. We show here that the in vitro process recapitulates many aspects of natural pancreas development. This culture system is suitable to investigate how cells cooperate to form an organ by reducing its initial complexity to few progenitors. It is a model that reproduces the 3D architecture of the pancreas and that is therefore useful to study morphogenesis, including polarization of epithelial structures and branching. It is also appropriate to assess the response to mechanical cues of the niche such as stiffness and the effects on cell´s tensegrity.
Developmental Biology, Issue 89, Pancreas, Progenitors, Branching Epithelium, Development, Organ Culture, 3D Culture, Diabetes, Differentiation, Morphogenesis, Cell organization, Beta Cell.
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
Play Button
Genome-wide Analysis using ChIP to Identify Isoform-specific Gene Targets
Authors: Michael L. Beshiri, Abul Islam, Dannielle C. DeWaal, William F. Richter, Jennifer Love, Nuria Lopez-Bigas, Elizaveta V. Benevolenskaya.
Institutions: University of Illinois Chicago - UIC, Universitat Pompeu Fabra, Whitehead Institute for Biomedical Research.
Recruitment of transcriptional and epigenetic factors to their targets is a key step in their regulation. Prominently featured in recruitment are the protein domains that bind to specific histone modifications. One such domain is the plant homeodomain (PHD), found in several chromatin-binding proteins. The epigenetic factor RBP2 has multiple PHD domains, however, they have different functions (Figure 4). In particular, the C-terminal PHD domain, found in a RBP2 oncogenic fusion in human leukemia, binds to trimethylated lysine 4 in histone H3 (H3K4me3)1. The transcript corresponding to the RBP2 isoform containing the C-terminal PHD accumulates during differentiation of promonocytic, lymphoma-derived, U937 cells into monocytes2. Consistent with both sets of data, genome-wide analysis showed that in differentiated U937 cells, the RBP2 protein gets localized to genomic regions highly enriched for H3K4me33. Localization of RBP2 to its targets correlates with a decrease in H3K4me3 due to RBP2 histone demethylase activity and a decrease in transcriptional activity. In contrast, two other PHDs of RBP2 are unable to bind H3K4me3. Notably, the C-terminal domain PHD of RBP2 is absent in the smaller RBP2 isoform4. It is conceivable that the small isoform of RBP2, which lacks interaction with H3K4me3, differs from the larger isoform in genomic location. The difference in genomic location of RBP2 isoforms may account for the observed diversity in RBP2 function. Specifically, RBP2 is a critical player in cellular differentiation mediated by the retinoblastoma protein (pRB). Consistent with these data, previous genome-wide analysis, without distinction between isoforms, identified two distinct groups of RBP2 target genes: 1) genes bound by RBP2 in a manner that is independent of differentiation; 2) genes bound by RBP2 in a differentiation-dependent manner. To identify differences in localization between the isoforms we performed genome-wide location analysis by ChIP-Seq. Using antibodies that detect both RBP2 isoforms we have located all RBP2 targets. Additionally we have antibodies that only bind large, and not small RBP2 isoform (Figure 4). After identifying the large isoform targets, one can then subtract them from all RBP2 targets to reveal the targets of small isoform. These data show the contribution of chromatin-interacting domain in protein recruitment to its binding sites in the genome.
Biochemistry, Issue 41, chromatin immunoprecipitation, ChIP-Seq, RBP2, JARID1A, KDM5A, isoform-specific recruitment
Play Button
Derivation of T Cells In Vitro from Mouse Embryonic Stem Cells
Authors: Martina Kučerová-Levisohn, Jordana Lovett, Armin Lahiji, Roxanne Holmes, Juan Carlos Zúñiga-Pflücker, Benjamin D. Ortiz.
Institutions: City University of New York, University of Toronto.
The OP9/OP9-DL1 co-culture system has become a well-established method for deriving differentiated blood cell types from embryonic and hematopoietic progenitors of both mouse and human origin. It is now used to address a growing variety of complex genetic, cellular and molecular questions related to hematopoiesis, and is at the cutting edge of efforts to translate these basic findings to therapeutic applications. The procedures are straightforward and routinely yield robust results. However, achieving successful hematopoietic differentiation in vitro requires special attention to the details of reagent and cell culture maintenance. Furthermore, the protocol features technique sensitive steps that, while not difficult, take care and practice to master. Here we focus on the procedures for differentiation of T lymphocytes from mouse embryonic stem cells (mESC). We provide a detailed protocol with discussions of the critical steps and parameters that enable reproducibly robust cellular differentiation in vitro. It is in the interest of the field to consider wider adoption of this technology, as it has the potential to reduce animal use, lower the cost and shorten the timelines of both basic and translational experimentation.
Immunology, Issue 92, mouse, embryonic stem cells, in vitro differentiation, OP9 cells, Delta-like 1 (Dll-1) ligand, Notch, hematopoiesis, lymphocytes, T cells
Play Button
In Vivo Modeling of the Morbid Human Genome using Danio rerio
Authors: Adrienne R. Niederriter, Erica E. Davis, Christelle Golzio, Edwin C. Oh, I-Chun Tsai, Nicholas Katsanis.
Institutions: Duke University Medical Center, Duke University, Duke University Medical Center.
Here, we present methods for the development of assays to query potentially clinically significant nonsynonymous changes using in vivo complementation in zebrafish. Zebrafish (Danio rerio) are a useful animal system due to their experimental tractability; embryos are transparent to enable facile viewing, undergo rapid development ex vivo, and can be genetically manipulated.1 These aspects have allowed for significant advances in the analysis of embryogenesis, molecular processes, and morphogenetic signaling. Taken together, the advantages of this vertebrate model make zebrafish highly amenable to modeling the developmental defects in pediatric disease, and in some cases, adult-onset disorders. Because the zebrafish genome is highly conserved with that of humans (~70% orthologous), it is possible to recapitulate human disease states in zebrafish. This is accomplished either through the injection of mutant human mRNA to induce dominant negative or gain of function alleles, or utilization of morpholino (MO) antisense oligonucleotides to suppress genes to mimic loss of function variants. Through complementation of MO-induced phenotypes with capped human mRNA, our approach enables the interpretation of the deleterious effect of mutations on human protein sequence based on the ability of mutant mRNA to rescue a measurable, physiologically relevant phenotype. Modeling of the human disease alleles occurs through microinjection of zebrafish embryos with MO and/or human mRNA at the 1-4 cell stage, and phenotyping up to seven days post fertilization (dpf). This general strategy can be extended to a wide range of disease phenotypes, as demonstrated in the following protocol. We present our established models for morphogenetic signaling, craniofacial, cardiac, vascular integrity, renal function, and skeletal muscle disorder phenotypes, as well as others.
Molecular Biology, Issue 78, Genetics, Biomedical Engineering, Medicine, Developmental Biology, Biochemistry, Anatomy, Physiology, Bioengineering, Genomics, Medical, zebrafish, in vivo, morpholino, human disease modeling, transcription, PCR, mRNA, DNA, Danio rerio, animal model
Play Button
The ChroP Approach Combines ChIP and Mass Spectrometry to Dissect Locus-specific Proteomic Landscapes of Chromatin
Authors: Monica Soldi, Tiziana Bonaldi.
Institutions: European Institute of Oncology.
Chromatin is a highly dynamic nucleoprotein complex made of DNA and proteins that controls various DNA-dependent processes. Chromatin structure and function at specific regions is regulated by the local enrichment of histone post-translational modifications (hPTMs) and variants, chromatin-binding proteins, including transcription factors, and DNA methylation. The proteomic characterization of chromatin composition at distinct functional regions has been so far hampered by the lack of efficient protocols to enrich such domains at the appropriate purity and amount for the subsequent in-depth analysis by Mass Spectrometry (MS). We describe here a newly designed chromatin proteomics strategy, named ChroP (Chromatin Proteomics), whereby a preparative chromatin immunoprecipitation is used to isolate distinct chromatin regions whose features, in terms of hPTMs, variants and co-associated non-histonic proteins, are analyzed by MS. We illustrate here the setting up of ChroP for the enrichment and analysis of transcriptionally silent heterochromatic regions, marked by the presence of tri-methylation of lysine 9 on histone H3. The results achieved demonstrate the potential of ChroP in thoroughly characterizing the heterochromatin proteome and prove it as a powerful analytical strategy for understanding how the distinct protein determinants of chromatin interact and synergize to establish locus-specific structural and functional configurations.
Biochemistry, Issue 86, chromatin, histone post-translational modifications (hPTMs), epigenetics, mass spectrometry, proteomics, SILAC, chromatin immunoprecipitation , histone variants, chromatome, hPTMs cross-talks
Play Button
A Method for Mouse Pancreatic Islet Isolation and Intracellular cAMP Determination
Authors: Joshua C. Neuman, Nathan A. Truchan, Jamie W. Joseph, Michelle E. Kimple.
Institutions: University of Wisconsin-Madison, University of Wisconsin-Madison, University of Waterloo.
Uncontrolled glycemia is a hallmark of diabetes mellitus and promotes morbidities like neuropathy, nephropathy, and retinopathy. With the increasing prevalence of diabetes, both immune-mediated type 1 and obesity-linked type 2, studies aimed at delineating diabetes pathophysiology and therapeutic mechanisms are of critical importance. The β-cells of the pancreatic islets of Langerhans are responsible for appropriately secreting insulin in response to elevated blood glucose concentrations. In addition to glucose and other nutrients, the β-cells are also stimulated by specific hormones, termed incretins, which are secreted from the gut in response to a meal and act on β-cell receptors that increase the production of intracellular cyclic adenosine monophosphate (cAMP). Decreased β-cell function, mass, and incretin responsiveness are well-understood to contribute to the pathophysiology of type 2 diabetes, and are also being increasingly linked with type 1 diabetes. The present mouse islet isolation and cAMP determination protocol can be a tool to help delineate mechanisms promoting disease progression and therapeutic interventions, particularly those that are mediated by the incretin receptors or related receptors that act through modulation of intracellular cAMP production. While only cAMP measurements will be described, the described islet isolation protocol creates a clean preparation that also allows for many other downstream applications, including glucose stimulated insulin secretion, [3H]-thymidine incorporation, protein abundance, and mRNA expression.
Physiology, Issue 88, islet, isolation, insulin secretion, β-cell, diabetes, cAMP production, mouse
Play Button
Modeling The Lifecycle Of Ebola Virus Under Biosafety Level 2 Conditions With Virus-like Particles Containing Tetracistronic Minigenomes
Authors: Thomas Hoenen, Ari Watt, Anita Mora, Heinz Feldmann.
Institutions: National Institute of Allergy and Infectious Diseases, National Institutes of Health, National Institute of Allergy and Infectious Diseases, National Institutes of Health.
Ebola viruses cause severe hemorrhagic fevers in humans and non-human primates, with case fatality rates as high as 90%. There are no approved vaccines or specific treatments for the disease caused by these viruses, and work with infectious Ebola viruses is restricted to biosafety level 4 laboratories, significantly limiting the research on these viruses. Lifecycle modeling systems model the virus lifecycle under biosafety level 2 conditions; however, until recently such systems have been limited to either individual aspects of the virus lifecycle, or a single infectious cycle. Tetracistronic minigenomes, which consist of Ebola virus non-coding regions, a reporter gene, and three Ebola virus genes involved in morphogenesis, budding, and entry (VP40, GP1,2, and VP24), can be used to produce replication and transcription-competent virus-like particles (trVLPs) containing these minigenomes. These trVLPs can continuously infect cells expressing the Ebola virus proteins responsible for genome replication and transcription, allowing us to safely model multiple infectious cycles under biosafety level 2 conditions. Importantly, the viral components of this systems are solely derived from Ebola virus and not from other viruses (as is, for example, the case in systems using pseudotyped viruses), and VP40, GP1,2 and VP24 are not overexpressed in this system, making it ideally suited for studying morphogenesis, budding and entry, although other aspects of the virus lifecycle such as genome replication and transcription can also be modeled with this system. Therefore, the tetracistronic trVLP assay represents the most comprehensive lifecycle modeling system available for Ebola viruses, and has tremendous potential for use in investigating the biology of Ebola viruses in future. Here, we provide detailed information on the use of this system, as well as on expected results.
Infectious Diseases, Issue 91, hemorrhagic Fevers, Viral, Mononegavirales Infections, Ebola virus, filovirus, lifecycle modeling system, minigenome, reverse genetics, virus-like particles, replication, transcription, budding, morphogenesis, entry
Play Button
A Rapid Technique for the Visualization of Live Immobilized Yeast Cells
Authors: Karl Zawadzki, James Broach.
Institutions: Princeton University.
We present here a simple, rapid, and extremely flexible technique for the immobilization and visualization of growing yeast cells by epifluorescence microscopy. The technique is equally suited for visualization of static yeast populations, or time courses experiments up to ten hours in length. My microscopy investigates epigenetic inheritance at the silent mating loci in S. cerevisiae. There are two silent mating loci, HML and HMR, which are normally not expressed as they are packaged in heterochromatin. In the sir1 mutant background silencing is weakened such that each locus can either be in the expressed or silenced epigenetic state, so in the population as a whole there is a mix of cells of different epigenetic states for both HML and HMR. My microscopy demonstrated that there is no relationship between the epigenetic state of HML and HMR in an individual cell. sir1 cells stochastically switch epigenetic states, establishing silencing at a previously expressed locus or expressing a previously silenced locus. My time course microscopy tracked individual sir1 cells and their offspring to score the frequency of each of the four possible epigenetic switches, and thus the stability of each of the epigenetic states in sir1 cells. See also Xu et al., Mol. Cell 2006.
Microbiology, Issue 1, yeast, HML, HMR, epigenetic, loci, silencing, cerevisiae
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.