JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Possible association between expression of chemokine receptor-2 (CCR2) and amyotrophic lateral sclerosis (ALS) patients of North India.
We earlier reported elevated chemokine ligand-2 (CCL2) in Indian amyotrophic lateral sclerosis (ALS) patients. We now analysed chemokine receptor-2 (CCR2), the receptor of CCL2, in these ALS patients.
The split hand phenomenon refers to predominant wasting of thenar muscles and is an early and specific feature of amyotrophic lateral sclerosis (ALS). A novel split hand index (SI) was developed to quantify the split hand phenomenon, and its diagnostic utility was assessed in ALS patients. The split hand index was derived by dividing the product of the compound muscle action potential (CMAP) amplitude recorded over the abductor pollicis brevis and first dorsal interosseous muscles by the CMAP amplitude recorded over the abductor digiti minimi muscle. In order to assess the diagnostic utility of the split hand index, ALS patients were prospectively assessed and their results were compared to neuromuscular disorder patients. The split hand index was significantly reduced in ALS when compared to neuromuscular disorder patients (P<0.0001). Limb-onset ALS patients exhibited the greatest reduction in the split hand index, and a value of 5.2 or less reliably differentiated ALS from other neuromuscular disorders. Consequently, the split hand index appears to be a novel diagnostic biomarker for ALS, perhaps facilitating an earlier diagnosis.
14 Related JoVE Articles!
Play Button
Clinical Testing and Spinal Cord Removal in a Mouse Model for Amyotrophic Lateral Sclerosis (ALS)
Authors: René Günther, Martin Suhr, Jan C. Koch, Mathias Bähr, Paul Lingor, Lars Tönges.
Institutions: University Medicine Göttingen, Göttingen, Germany.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder resulting in progressive degeneration of motoneurons. Peak of onset is around 60 years for the sporadic disease and around 50 years for the familial disease. Due to its progressive course, 50% of the patients die within 30 months of symptom onset. In order to evaluate novel treatment options for this disease, genetic mouse models of ALS have been generated based on human familial mutations in the SOD gene, such as the SOD1 (G93A) mutation. Most important aspects that have to be evaluated in the model are overall survival, clinical course and motor function. Here, we demonstrate the clinical evaluation, show the conduction of two behavioural motor tests and provide quantitative scoring systems for all parameters. Because an in depth analysis of the ALS mouse model usually requires an immunohistochemical examination of the spinal cord, we demonstrate its preparation in detail applying the dorsal laminectomy method. Exemplary histological findings are demonstrated. The comprehensive application of the depicted examination methods in studies on the mouse model of ALS will enable the researcher to reliably test future therapeutic options which can provide a basis for later human clinical trials.
Medicine, Issue 61, neuroscience, amyotrophic lateral sclerosis, ALS, spinal cord, mouse, rotarod, hanging wire
Play Button
Intraspinal Cell Transplantation for Targeting Cervical Ventral Horn in Amyotrophic Lateral Sclerosis and Traumatic Spinal Cord Injury
Authors: Angelo C. Lepore.
Institutions: Thomas Jefferson University Medical College.
Respiratory compromise due to phrenic motor neuron loss is a debilitating consequence of a large proportion of human traumatic spinal cord injury (SCI) cases 1 and is the ultimate cause of death in patients with the motor neuron disorder, amyotrophic laterals sclerosis (ALS) 2. ALS is a devastating neurological disorder that is characterized by relatively rapid degeneration of upper and lower motor neurons. Patients ultimately succumb to the disease on average 2-5 years following diagnosis because of respiratory paralysis due to loss of phrenic motor neuron innnervation of the diaphragm 3. The vast majority of cases are sporadic, while 10% are of the familial form. Approximately twenty percent of familial cases are linked to various point mutations in the Cu/Zn superoxide dismutase 1 (SOD1) gene on chromosome 21 4. Transgenic mice 4,5 and rats 6 carrying mutant human SOD1 genes (G93A, G37R, G86R, G85R) have been generated, and, despite the existence of other animal models of motor neuron loss, are currently the most highly used models of the disease. Spinal cord injury (SCI) is a heterogeneous set of conditions resulting from physical trauma to the spinal cord, with functional outcome varying according to the type, location and severity of the injury 7. Nevertheless, approximately half of human SCI cases affect cervical regions, resulting in debilitating respiratory dysfunction due to phrenic motor neuron loss and injury to descending bulbospinal respiratory axons 1. A number of animal models of SCI have been developed, with the most commonly used and clinically-relevant being the contusion 8. Transplantation of various classes of neural precursor cells (NPCs) is a promising therapeutic strategy for treatment of traumatic CNS injuries and neurodegeneration, including ALS and SCI, because of the ability to replace lost or dysfunctional CNS cell types, provide neuroprotection, and deliver gene factors of interest 9. Animal models of both ALS and SCI can model many clinically-relevant aspects of these diseases, including phrenic motor neuron loss and consequent respiratory compromise 10,11. In order to evaluate the efficacy of NPC-based strategies on respiratory function in these animal models of ALS and SCI, cellular interventions must be specifically directed to regions containing therapeutically relevant targets such as phrenic motor neurons. We provide a detailed protocol for multi-segmental, intraspinal transplantation of NPCs into the cervical spinal cord ventral gray matter of neurodegenerative models such as SOD1G93A mice and rats, as well as spinal cord injured rats and mice 11.
Medicine, Issue 55, cell transplantation, engraftment, graft, spinal cord, stem cells, precursors, ALS, amyotrophic lateral sclerosis, motor neuron, SCI, spinal cord injury
Play Button
A Protocol for Comprehensive Assessment of Bulbar Dysfunction in Amyotrophic Lateral Sclerosis (ALS)
Authors: Yana Yunusova, Jordan R. Green, Jun Wang, Gary Pattee, Lorne Zinman.
Institutions: University of Toronto, Sunnybrook Health Science Centre, University of Nebraska-Lincoln, University of Nebraska Medical Center, University of Toronto.
Improved methods for assessing bulbar impairment are necessary for expediting diagnosis of bulbar dysfunction in ALS, for predicting disease progression across speech subsystems, and for addressing the critical need for sensitive outcome measures for ongoing experimental treatment trials. To address this need, we are obtaining longitudinal profiles of bulbar impairment in 100 individuals based on a comprehensive instrumentation-based assessment that yield objective measures. Using instrumental approaches to quantify speech-related behaviors is very important in a field that has primarily relied on subjective, auditory-perceptual forms of speech assessment1. Our assessment protocol measures performance across all of the speech subsystems, which include respiratory, phonatory (laryngeal), resonatory (velopharyngeal), and articulatory. The articulatory subsystem is divided into the facial components (jaw and lip), and the tongue. Prior research has suggested that each speech subsystem responds differently to neurological diseases such as ALS. The current protocol is designed to test the performance of each speech subsystem as independently from other subsystems as possible. The speech subsystems are evaluated in the context of more global changes to speech performance. These speech system level variables include speaking rate and intelligibility of speech. The protocol requires specialized instrumentation, and commercial and custom software. The respiratory, phonatory, and resonatory subsystems are evaluated using pressure-flow (aerodynamic) and acoustic methods. The articulatory subsystem is assessed using 3D motion tracking techniques. The objective measures that are used to quantify bulbar impairment have been well established in the speech literature and show sensitivity to changes in bulbar function with disease progression. The result of the assessment is a comprehensive, across-subsystem performance profile for each participant. The profile, when compared to the same measures obtained from healthy controls, is used for diagnostic purposes. Currently, we are testing the sensitivity and specificity of these measures for diagnosis of ALS and for predicting the rate of disease progression. In the long term, the more refined endophenotype of bulbar ALS derived from this work is expected to strengthen future efforts to identify the genetic loci of ALS and improve diagnostic and treatment specificity of the disease as a whole. The objective assessment that is demonstrated in this video may be used to assess a broad range of speech motor impairments, including those related to stroke, traumatic brain injury, multiple sclerosis, and Parkinson disease.
Medicine, Issue 48, speech, assessment, subsystems, bulbar function, amyotrophic lateral sclerosis
Play Button
Isolating Potentiated Hsp104 Variants Using Yeast Proteinopathy Models
Authors: Meredith E. Jackrel, Amber Tariq, Keolamau Yee, Rachel Weitzman, James Shorter.
Institutions: Perelman School of Medicine at the University of Pennsylvania.
Many protein-misfolding disorders can be modeled in the budding yeast Saccharomyces cerevisiae. Proteins such as TDP-43 and FUS, implicated in amyotrophic lateral sclerosis, and α-synuclein, implicated in Parkinson’s disease, are toxic and form cytoplasmic aggregates in yeast. These features recapitulate protein pathologies observed in patients with these disorders. Thus, yeast are an ideal platform for isolating toxicity suppressors from libraries of protein variants. We are interested in applying protein disaggregases to eliminate misfolded toxic protein conformers. Specifically, we are engineering Hsp104, a hexameric AAA+ protein from yeast that is uniquely capable of solubilizing both disordered aggregates and amyloid and returning the proteins to their native conformations. While Hsp104 is highly conserved in eukaryotes and eubacteria, it has no known metazoan homologue. Hsp104 has only limited ability to eliminate disordered aggregates and amyloid fibers implicated in human disease. Thus, we aim to engineer Hsp104 variants to reverse the protein misfolding implicated in neurodegenerative disorders. We have developed methods to screen large libraries of Hsp104 variants for suppression of proteotoxicity in yeast. As yeast are prone to spontaneous nonspecific suppression of toxicity, a two-step screening process has been developed to eliminate false positives. Using these methods, we have identified a series of potentiated Hsp104 variants that potently suppress the toxicity and aggregation of TDP-43, FUS, and α-synuclein. Here, we describe this optimized protocol, which could be adapted to screen libraries constructed using any protein backbone for suppression of toxicity of any protein that is toxic in yeast.
Microbiology, Issue 93, Protein-misfolding disorders, yeast proteinopathy models, Hsp104, proteotoxicity, amyloid, disaggregation
Play Button
Surgical Technique for Spinal Cord Delivery of Therapies: Demonstration of Procedure in Gottingen Minipigs
Authors: Thais Federici, Carl V. Hurtig, Kentrell L. Burks, Jonathan P. Riley, Vibhor Krishna, Brandon A. Miller, Eric A. Sribnick, Joseph H. Miller, Natalia Grin, Jason J. Lamanna, Nicholas M. Boulis.
Institutions: Emory University, Medical University of South Carolina, University of Alabama, Birmingham, Georgia Institute of Technology , Emory University.
This is a compact visual description of a combination of surgical technique and device for the delivery of (gene and cell) therapies into the spinal cord. While the technique is demonstrated in the animal, the procedure is FDA-approved and currently being used for stem cell transplantation into the spinal cords of patients with ALS. While the FDA has recognized proof-of-principle data on therapeutic efficacy in highly characterized rodent models, the use of large animals is considered critical for validating the combination of a surgical procedure, a device, and the safety of a final therapy for human use. The size, anatomy, and general vulnerability of the spine and spinal cord of the swine are recognized to better model the human. Moreover, the surgical process of exposing and manipulating the spinal cord as well as closing the wound in the pig is virtually indistinguishable from the human. We believe that the healthy pig model represents a critical first step in the study of procedural safety.
Medicine, Issue 70, Neuroscience, Neurobiology, Anatomy, Physiology, Surgery, accuracy, delivery, safety, spinal cord, CNS, target, therapy, transplantation, swine, animal model
Play Button
High-throughput Yeast Plasmid Overexpression Screen
Authors: Michael S. Fleming, Aaron D. Gitler.
Institutions: University of Pennsylvania School of Medicine , University of Pennsylvania School of Medicine .
The budding yeast, Saccharomyces cerevisiae, is a powerful model system for defining fundamental mechanisms of many important cellular processes, including those with direct relevance to human disease. Because of its short generation time and well-characterized genome, a major experimental advantage of the yeast model system is the ability to perform genetic screens to identify genes and pathways that are involved in a given process. Over the last thirty years such genetic screens have been used to elucidate the cell cycle, secretory pathway, and many more highly conserved aspects of eukaryotic cell biology 1-5. In the last few years, several genomewide libraries of yeast strains and plasmids have been generated 6-10. These collections now allow for the systematic interrogation of gene function using gain- and loss-of-function approaches 11-16. Here we provide a detailed protocol for the use of a high-throughput yeast transformation protocol with a liquid handling robot to perform a plasmid overexpression screen, using an arrayed library of 5,500 yeast plasmids. We have been using these screens to identify genetic modifiers of toxicity associated with the accumulation of aggregation-prone human neurodegenerative disease proteins. The methods presented here are readily adaptable to the study of other cellular phenotypes of interest.
Cell Biology, Issue 53, Yeast, plasmid, transformation, PEG/LioAc, high-throughput screen
Play Button
Direct Intraventricular Delivery of Drugs to the Rodent Central Nervous System
Authors: Sarah L. DeVos, Timothy M. Miller.
Institutions: Washington University in St. Louis School of Medicine.
Due to an inability to cross the blood brain barrier, certain drugs need to be directly delivered into the central nervous system (CNS). Our lab focuses specifically on antisense oligonucleotides (ASOs), though the techniques shown in the video here can also be used to deliver a plethora of other drugs to the CNS. Antisense oligonucleotides (ASOs) have the capability to knockdown sequence-specific targets 1 as well as shift isoform ratios of specific genes 2. To achieve widespread gene knockdown or splicing in the CNS of mice, the ASOs can be delivered into the brain using two separate routes of administration, both of which we demonstrate in the video. The first uses Alzet osmotic pumps, connected to a catheter that is surgically implanted into the lateral ventricle. This allows the ASOs to be continuously infused into the CNS for a designated period of time. The second involves a single bolus injection of a high concentration of ASO into the right lateral ventricle. Both methods use the mouse cerebral ventricular system to deliver the ASO to the entire brain and spinal cord, though depending on the needs of the study, one method may be preferred over the other.
Neurobiology, Issue 75, Neuroscience, Medicine, Biomedical Engineering, Genetics, Anatomy, Physiology, Surgery, Pharmacology, Cerebrospinal Fluid, Rodentia, Oligonucleotides, Antisense, Drug Administration Routes, Injections, Intraventricular, Drug Delivery Systems, mouse, rat, brain, antisense oligonucleotide, osmotic pump, Bolus, Ventricle, Neurosciences, Translational, Cerebrospinal fluid, CNS, cannula, catheter, animal model, surgical techniques
Play Button
Assessment of Calcium Sparks in Intact Skeletal Muscle Fibers
Authors: Ki Ho Park, Noah Weisleder, Jingsong Zhou, Kristyn Gumpper, Xinyu Zhou, Pu Duann, Jianjie Ma, Pei-Hui Lin.
Institutions: The Ohio State University Wexner Medical Center, The Ohio State University Wexner Medical Center, Rush University Medical Center, The Ohio State University Wexner Medical Center.
Maintaining homeostatic Ca2+ signaling is a fundamental physiological process in living cells. Ca2+ sparks are the elementary units of Ca2+ signaling in the striated muscle fibers that appear as highly localized Ca2+ release events mediated by ryanodine receptor (RyR) Ca2+ release channels on the sarcoplasmic reticulum (SR) membrane. Proper assessment of muscle Ca2+ sparks could provide information on the intracellular Ca2+ handling properties of healthy and diseased striated muscles. Although Ca2+ sparks events are commonly seen in resting cardiomyocytes, they are rarely observed in resting skeletal muscle fibers; thus there is a need for methods to generate and analyze sparks in skeletal muscle fibers. Detailed here is an experimental protocol for measuring Ca2+ sparks in isolated flexor digitorm brevis (FDB) muscle fibers using fluorescent Ca2+ indictors and laser scanning confocal microscopy. In this approach, isolated FDB fibers are exposed to transient hypoosmotic stress followed by a return to isotonic physiological solution. Under these conditions, a robust Ca2+ sparks response is detected adjacent to the sarcolemmal membrane in young healthy FDB muscle fibers. Altered Ca2+ sparks response is detected in dystrophic or aged skeletal muscle fibers. This approach has recently demonstrated that membrane-delimited signaling involving cross-talk between inositol (1,4,5)-triphosphate receptor (IP3R) and RyR contributes to Ca2+ spark activation in skeletal muscle. In summary, our studies using osmotic stress induced Ca2+ sparks showed that this intracellular response reflects a muscle signaling mechanism in physiology and aging/disease states, including mouse models of muscle dystrophy (mdx mice) or amyotrophic lateral sclerosis (ALS model).
Physiology, Issue 84, flexor digitorm brevis (FDB), sarcoplasmic reticulum, SR Ca2+ release, calcium signaling, ryanodine receptor, confocal imaging, muscle physiology
Play Button
Intravital Imaging of Axonal Interactions with Microglia and Macrophages in a Mouse Dorsal Column Crush Injury
Authors: Teresa A. Evans, Deborah S. Barkauskas, Jay T. Myers, Alex Y. Huang.
Institutions: Case Western Reserve University, Case Western Reserve University, Case Western Reserve University.
Traumatic spinal cord injury causes an inflammatory reaction involving blood-derived macrophages and central nervous system (CNS)-resident microglia. Intra-vital two-photon microscopy enables the study of macrophages and microglia in the spinal cord lesion in the living animal. This can be performed in adult animals with a traumatic injury to the dorsal column. Here, we describe methods for distinguishing macrophages from microglia in the CNS using an irradiation bone marrow chimera to obtain animals in which only macrophages or microglia are labeled with a genetically encoded green fluorescent protein. We also describe a injury model that crushes the dorsal column of the spinal cord, thereby producing a simple, easily accessible, rectangular lesion that is easily visualized in an animal through a laminectomy. Furthermore, we will outline procedures to sequentially image the animals at the anatomical site of injury for the study of cellular interactions during the first few days to weeks after injury.
Cellular Biology, Issue 93, Intravital, spinal cord crush injury, chimera, microglia, macrophages, dorsal column crush, axonal dieback
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
Play Button
Diffusion Tensor Magnetic Resonance Imaging in the Analysis of Neurodegenerative Diseases
Authors: Hans-Peter Müller, Jan Kassubek.
Institutions: University of Ulm.
Diffusion tensor imaging (DTI) techniques provide information on the microstructural processes of the cerebral white matter (WM) in vivo. The present applications are designed to investigate differences of WM involvement patterns in different brain diseases, especially neurodegenerative disorders, by use of different DTI analyses in comparison with matched controls. DTI data analysis is performed in a variate fashion, i.e. voxelwise comparison of regional diffusion direction-based metrics such as fractional anisotropy (FA), together with fiber tracking (FT) accompanied by tractwise fractional anisotropy statistics (TFAS) at the group level in order to identify differences in FA along WM structures, aiming at the definition of regional patterns of WM alterations at the group level. Transformation into a stereotaxic standard space is a prerequisite for group studies and requires thorough data processing to preserve directional inter-dependencies. The present applications show optimized technical approaches for this preservation of quantitative and directional information during spatial normalization in data analyses at the group level. On this basis, FT techniques can be applied to group averaged data in order to quantify metrics information as defined by FT. Additionally, application of DTI methods, i.e. differences in FA-maps after stereotaxic alignment, in a longitudinal analysis at an individual subject basis reveal information about the progression of neurological disorders. Further quality improvement of DTI based results can be obtained during preprocessing by application of a controlled elimination of gradient directions with high noise levels. In summary, DTI is used to define a distinct WM pathoanatomy of different brain diseases by the combination of whole brain-based and tract-based DTI analysis.
Medicine, Issue 77, Neuroscience, Neurobiology, Molecular Biology, Biomedical Engineering, Anatomy, Physiology, Neurodegenerative Diseases, nuclear magnetic resonance, NMR, MR, MRI, diffusion tensor imaging, fiber tracking, group level comparison, neurodegenerative diseases, brain, imaging, clinical techniques
Play Button
A Functional Motor Unit in the Culture Dish: Co-culture of Spinal Cord Explants and Muscle Cells
Authors: Anne-Sophie Arnold, Martine Christe, Christoph Handschin.
Institutions: University of Basel.
Human primary muscle cells cultured aneurally in monolayer rarely contract spontaneously because, in the absence of a nerve component, cell differentiation is limited and motor neuron stimulation is missing1. These limitations hamper the in vitro study of many neuromuscular diseases in cultured muscle cells. Importantly, the experimental constraints of monolayered, cultured muscle cells can be overcome by functional innervation of myofibers with spinal cord explants in co-cultures. Here, we show the different steps required to achieve an efficient, proper innervation of human primary muscle cells, leading to complete differentiation and fiber contraction according to the method developed by Askanas2. To do so, muscle cells are co-cultured with spinal cord explants of rat embryos at ED 13.5, with the dorsal root ganglia still attached to the spinal cord slices. After a few days, the muscle fibers start to contract and eventually become cross-striated through innervation by functional neurites projecting from the spinal cord explants that connecting to the muscle cells. This structure can be maintained for many months, simply by regular exchange of the culture medium. The applications of this invaluable tool are numerous, as it represents a functional model for multidisciplinary analyses of human muscle development and innervation. In fact, a complete de novo neuromuscular junction installation occurs in a culture dish, allowing an easy measurement of many parameters at each step, in a fundamental and physiological context. Just to cite a few examples, genomic and/or proteomic studies can be performed directly on the co-cultures. Furthermore, pre- and post-synaptic effects can be specifically and separately assessed at the neuromuscular junction, because both components come from different species, rat and human, respectively. The nerve-muscle co-culture can also be performed with human muscle cells isolated from patients suffering from muscle or neuromuscular diseases3, and thus can be used as a screening tool for candidate drugs. Finally, no special equipment but a regular BSL2 facility is needed to reproduce a functional motor unit in a culture dish. This method thus is valuable for both the muscle as well as the neuromuscular research communities for physiological and mechanistic studies of neuromuscular function, in a normal and disease context.
Neuroscience, Issue 62, Human primary muscle cells, embryonic spinal cord explants, neurites, innervation, contraction, cell culture
Play Button
ALS - Motor Neuron Disease: Mechanism and Development of New Therapies
Authors: Jeffrey D. Rothstein.
Institutions: Johns Hopkins University.
Medicine, Issue 6, Translational Research, Neuroscience, ALS, stem cells, brain, neuron, upper motor neuron, transplantation
Play Button
Manual Muscle Testing: A Method of Measuring Extremity Muscle Strength Applied to Critically Ill Patients
Authors: Nancy Ciesla, Victor Dinglas, Eddy Fan, Michelle Kho, Jill Kuramoto, Dale Needham.
Institutions: Johns Hopkins University, Johns Hopkins Hospital , Johns Hopkins University, University of Maryland Medical System.
Survivors of acute respiratory distress syndrome (ARDS) and other causes of critical illness often have generalized weakness, reduced exercise tolerance, and persistent nerve and muscle impairments after hospital discharge.1-6 Using an explicit protocol with a structured approach to training and quality assurance of research staff, manual muscle testing (MMT) is a highly reliable method for assessing strength, using a standardized clinical examination, for patients following ARDS, and can be completed with mechanically ventilated patients who can tolerate sitting upright in bed and are able to follow two-step commands. 7, 8 This video demonstrates a protocol for MMT, which has been taught to ≥43 research staff who have performed >800 assessments on >280 ARDS survivors. Modifications for the bedridden patient are included. Each muscle is tested with specific techniques for positioning, stabilization, resistance, and palpation for each score of the 6-point ordinal Medical Research Council scale.7,9-11 Three upper and three lower extremity muscles are graded in this protocol: shoulder abduction, elbow flexion, wrist extension, hip flexion, knee extension, and ankle dorsiflexion. These muscles were chosen based on the standard approach for evaluating patients for ICU-acquired weakness used in prior publications. 1,2.
Medicine, Issue 50, Muscle Strength, Critical illness, Intensive Care Units, Reproducibility of Results, Clinical Protocols.
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.