JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
BTN3A2 expression in epithelial ovarian cancer is associated with higher tumor infiltrating T cells and a better prognosis.
BTN3A2/BT3.2 butyrophilin mRNA expression by tumoral cells was previously identified as a prognostic factor in a small cohort of high grade serous epithelial ovarian cancer (HG-EOC). Here, we evaluated the prognostic value of BT3.2 at the protein level in specimen from 199 HG-EOC patients. As the only known role of butyrophilin proteins is in immune regulation, we evaluated the association between BT3.2 expression and intratumoral infiltration of immune cells by immunohistochemistry with specific antibodies against BT3.2, CD3, CD4, CD8, CD20, CD68 and CD206. Epithelial BT3.2 expression was significantly associated with longer overall survival and lower risk of disease progression (HR=0.651, p=0.006 and HR=0.642, p=0.002, respectively) and significantly associated with a higher density of infiltrating T cells, particularly CD4+ cells (0.272, p<0.001). We also observed a strong association between the relative density of CD206+ cells, as evaluated by the ratio of intratumoral CD206+/CD68+ expression, and risk of disease progression (HR=1.355 p=0.044, respectively). In conclusion, BT3.2 protein is a potential prognostic biomarker for the identification of HG-EOC patients with better outcome. In contrast, high CD206+/CD68+ expression is associated with high risk of disease progression. While the role of BT3.2 is still unknown, our result suggest that BT3.2 expression by epithelial cells may modulates the intratumoral infiltration of immune cells.
Epithelial ovarian cancers (EOCs) are the leading cause of death from gynecological malignancy in Western societies. Despite advances in surgical treatments and improved platinum-based chemotherapies, there has been little improvement in EOC survival rates for more than four decades 1,2. Whilst stage I tumors have 5-year survival rates >85%, survival rates for stage III/IV disease are <40%. Thus, the high rates of mortality for EOC could be significantly decreased if tumors were detected at earlier, more treatable, stages 3-5. At present, the molecular genetic and biological basis of early stage disease development is poorly understood. More specifically, little is known about the role of the microenvironment during tumor initiation; but known risk factors for EOCs (e.g. age and parity) suggest that the microenvironment plays a key role in the early genesis of EOCs. We therefore developed three-dimensional heterotypic models of both the normal ovary and of early stage ovarian cancers. For the normal ovary, we co-cultured normal ovarian surface epithelial (IOSE) and normal stromal fibroblast (INOF) cells, immortalized by retrovrial transduction of the catalytic subunit of human telomerase holoenzyme (hTERT) to extend the lifespan of these cells in culture. To model the earliest stages of ovarian epithelial cell transformation, overexpression of the CMYC oncogene in IOSE cells, again co-cultured with INOF cells. These heterotypic models were used to investigate the effects of aging and senescence on the transformation and invasion of epithelial cells. Here we describe the methodological steps in development of these three-dimensional model; these methodologies aren't specific to the development of normal ovary and ovarian cancer tissues, and could be used to study other tissue types where stromal and epithelial cell interactions are a fundamental aspect of the tissue maintenance and disease development.
21 Related JoVE Articles!
Play Button
A Simple and Rapid Protocol to Non-enzymatically Dissociate Fresh Human Tissues for the Analysis of Infiltrating Lymphocytes
Authors: Soizic Garaud, Chunyan Gu-Trantien, Jean-Nicolas Lodewyckx, Anaïs Boisson, Pushpamali De Silva, Laurence Buisseret, Edoardo Migliori, Myriam Libin, Céline Naveaux, Hugues Duvillier, Karen Willard-Gallo.
Institutions: Université Libre de Bruxelles, Université Libre de Bruxelles, Université Libre de Bruxelles, Université Libre de Bruxelles.
The ability of malignant cells to evade the immune system, characterized by tumor escape from both innate and adaptive immune responses, is now accepted as an important hallmark of cancer. Our research on breast cancer focuses on the active role that tumor infiltrating lymphocytes play in tumor progression and patient outcome. Toward this goal, we developed a methodology for the rapid isolation of intact lymphoid cells from normal and abnormal tissues in an effort to evaluate them proximate to their native state. Homogenates prepared using a mechanical dissociator show both increased viability and cell recovery while preserving surface receptor expression compared to enzyme-digested tissues. Furthermore, enzymatic digestion of the remaining insoluble material did not recover additional CD45+ cells indicating that quantitative and qualitative measurements in the primary homogenate likely genuinely reflect infiltrating subpopulations in the tissue fragment. The lymphoid cells in these homogenates can be easily characterized using immunological (phenotype, proliferation, etc.) or molecular (DNA, RNA and/or protein) approaches. CD45+ cells can also be used for subpopulation purification, in vitro expansion or cryopreservation. An additional benefit of this approach is that the primary tissue supernatant from the homogenates can be used to characterize and compare cytokines, chemokines, immunoglobulins and antigens present in normal and malignant tissues. This protocol functions extremely well for human breast tissues and should be applicable to a wide variety of normal and abnormal tissues.
Immunology, Issue 94, Tumor immunology, tumor infiltrating lymphocytes, CD45+, breast cancer, fresh tissue homogenate, non-enzymatic dissociation, primary tissue supernatant
Play Button
Method for Obtaining Primary Ovarian Cancer Cells From Solid Specimens
Authors: Lee J. Pribyl, Kathleen A. Coughlin, Thanasak Sueblinvong, Kristin Shields, Yoshie Iizuka, Levi S. Downs, Rahel G. Ghebre, Martina Bazzaro.
Institutions: University of Minnesota, Maricopa Medical Center and St Josephs Hospital and Medical Center, University of Minnesota.
Reliable tools for investigating ovarian cancer initiation and progression are urgently needed. While the use of ovarian cancer cell lines remains a valuable tool for understanding ovarian cancer, their use has many limitations. These include the lack of heterogeneity and the plethora of genetic alterations associated with extended in vitro passaging. Here we describe a method that allows for rapid establishment of primary ovarian cancer cells form solid clinical specimens collected at the time of surgery. The method consists of subjecting clinical specimens to enzymatic digestion for 30 min. The isolated cell suspension is allowed to grow and can be used for downstream application including drug screening. The advantage of primary ovarian cancer cell lines over established ovarian cancer cell lines is that they are representative of the original specific clinical specimens they are derived from and can be derived from different sites whether primary or metastatic ovarian cancer.
Medicine, Issue 84, Neoplasms, Ovarian Cancer, Primary cell lines, Clinical Specimens, Downstream Applications, Targeted Therapies, Epithelial Cultures
Play Button
Ex vivo Expansion of Tumor-reactive T Cells by Means of Bryostatin 1/Ionomycin and the Common Gamma Chain Cytokines Formulation
Authors: Maciej Kmieciak, Amir Toor, Laura Graham, Harry D. Bear, Masoud H. Manjili.
Institutions: Virginia Commonwealth University- Massey Cancer Center, Virginia Commonwealth University- Massey Cancer Center, Virginia Commonwealth University- Massey Cancer Center.
It was reported that breast cancer patients have pre-existing immune responses against their tumors1,2. However, such immune responses fail to provide complete protection against the development or recurrence of breast cancer. To overcome this problem by increasing the frequency of tumor-reactive T cells, adoptive immunotherapy has been employed. A variety of protocols have been used for the expansion of tumor-specific T cells. These protocols, however, are restricted to the use of tumor antigens ex vivo for the activation of antigen-specific T cells. Very recently, common gamma chain cytokines such as IL-2, IL-7, IL-15, and IL-21 have been used alone or in combination for the enhancement of anti-tumor immune responses3. However, it is not clear what formulation would work best for the expansion of tumor-reactive T cells. Here we present a protocol for the selective activation and expansion of tumor-reactive T cells from the FVBN202 transgenic mouse model of HER-2/neu positive breast carcinoma for use in adoptive T cell therapy of breast cancer. The protocol includes activation of T cells with bryostatin-1/ionomycin (B/I) and IL-2 in the absence of tumor antigens for 16 hours. B/I activation mimics intracellular signals that result in T cell activation by increasing protein kinase C activity and intracellular calcium, respectively4. This protocol specifically activates tumor-specific T cells while killing irrelevant T cells. The B/I-activated T cells are cultured with IL-7 and IL-15 for 24 hours and then pulsed with IL-2. After 24 hours, T cells are washed, split, and cultured with IL-7 + IL-15 for additional 4 days. Tumor-specificity and anti-tumor efficacy of the ex vivo expanded T cells is determined.
Immunology, Issue 47, Adoptive T cell therapy, Breast Cancer, HER-2/neu, common gamma chain cytokines, Bryostatin 1, Ionomycin
Play Button
Measuring Frailty in HIV-infected Individuals. Identification of Frail Patients is the First Step to Amelioration and Reversal of Frailty
Authors: Hilary C. Rees, Voichita Ianas, Patricia McCracken, Shannon Smith, Anca Georgescu, Tirdad Zangeneh, Jane Mohler, Stephen A. Klotz.
Institutions: University of Arizona, University of Arizona.
A simple, validated protocol consisting of a battery of tests is available to identify elderly patients with frailty syndrome. This syndrome of decreased reserve and resistance to stressors increases in incidence with increasing age. In the elderly, frailty may pursue a step-wise loss of function from non-frail to pre-frail to frail. We studied frailty in HIV-infected patients and found that ~20% are frail using the Fried phenotype using stringent criteria developed for the elderly1,2. In HIV infection the syndrome occurs at a younger age. HIV patients were checked for 1) unintentional weight loss; 2) slowness as determined by walking speed; 3) weakness as measured by a grip dynamometer; 4) exhaustion by responses to a depression scale; and 5) low physical activity was determined by assessing kilocalories expended in a week's time. Pre-frailty was present with any two of five criteria and frailty was present if any three of the five criteria were abnormal. The tests take approximately 10-15 min to complete and they can be performed by medical assistants during routine clinic visits. Test results are scored by referring to standard tables. Understanding which of the five components contribute to frailty in an individual patient can allow the clinician to address relevant underlying problems, many of which are not evident in routine HIV clinic visits.
Medicine, Issue 77, Infection, Virology, Infectious Diseases, Anatomy, Physiology, Molecular Biology, Biomedical Engineering, Retroviridae Infections, Body Weight Changes, Diagnostic Techniques and Procedures, Physical Examination, Muscle Strength, Behavior, Virus Diseases, Pathological Conditions, Signs and Symptoms, Diagnosis, Musculoskeletal and Neural Physiological Phenomena, HIV, HIV-1, AIDS, Frailty, Depression, Weight Loss, Weakness, Slowness, Exhaustion, Aging, clinical techniques
Play Button
Heterogeneity Mapping of Protein Expression in Tumors using Quantitative Immunofluorescence
Authors: Dana Faratian, Jason Christiansen, Mark Gustavson, Christine Jones, Christopher Scott, InHwa Um, David J. Harrison.
Institutions: University of Edinburgh, HistoRx Inc..
Morphologic heterogeneity within an individual tumor is well-recognized by histopathologists in surgical practice. While this often takes the form of areas of distinct differentiation into recognized histological subtypes, or different pathological grade, often there are more subtle differences in phenotype which defy accurate classification (Figure 1). Ultimately, since morphology is dictated by the underlying molecular phenotype, areas with visible differences are likely to be accompanied by differences in the expression of proteins which orchestrate cellular function and behavior, and therefore, appearance. The significance of visible and invisible (molecular) heterogeneity for prognosis is unknown, but recent evidence suggests that, at least at the genetic level, heterogeneity exists in the primary tumor1,2, and some of these sub-clones give rise to metastatic (and therefore lethal) disease. Moreover, some proteins are measured as biomarkers because they are the targets of therapy (for instance ER and HER2 for tamoxifen and trastuzumab (Herceptin), respectively). If these proteins show variable expression within a tumor then therapeutic responses may also be variable. The widely used histopathologic scoring schemes for immunohistochemistry either ignore, or numerically homogenize the quantification of protein expression. Similarly, in destructive techniques, where the tumor samples are homogenized (such as gene expression profiling), quantitative information can be elucidated, but spatial information is lost. Genetic heterogeneity mapping approaches in pancreatic cancer have relied either on generation of a single cell suspension3, or on macrodissection4. A recent study has used quantum dots in order to map morphologic and molecular heterogeneity in prostate cancer tissue5, providing proof of principle that morphology and molecular mapping is feasible, but falling short of quantifying the heterogeneity. Since immunohistochemistry is, at best, only semi-quantitative and subject to intra- and inter-observer bias, more sensitive and quantitative methodologies are required in order to accurately map and quantify tissue heterogeneity in situ. We have developed and applied an experimental and statistical methodology in order to systematically quantify the heterogeneity of protein expression in whole tissue sections of tumors, based on the Automated QUantitative Analysis (AQUA) system6. Tissue sections are labeled with specific antibodies directed against cytokeratins and targets of interest, coupled to fluorophore-labeled secondary antibodies. Slides are imaged using a whole-slide fluorescence scanner. Images are subdivided into hundreds to thousands of tiles, and each tile is then assigned an AQUA score which is a measure of protein concentration within the epithelial (tumor) component of the tissue. Heatmaps are generated to represent tissue expression of the proteins and a heterogeneity score assigned, using a statistical measure of heterogeneity originally used in ecology, based on the Simpson's biodiversity index7. To date there have been no attempts to systematically map and quantify this variability in tandem with protein expression, in histological preparations. Here, we illustrate the first use of the method applied to ER and HER2 biomarker expression in ovarian cancer. Using this method paves the way for analyzing heterogeneity as an independent variable in studies of biomarker expression in translational studies, in order to establish the significance of heterogeneity in prognosis and prediction of responses to therapy.
Medicine, Issue 56, quantitative immunofluorescence, heterogeneity, cancer, biomarker, targeted therapy, immunohistochemistry, proteomics, histopathology
Play Button
Murine Model for Non-invasive Imaging to Detect and Monitor Ovarian Cancer Recurrence
Authors: Natalia J. Sumi, Eydis Lima, John Pizzonia, Sean P. Orton, Vinicius Craveiro, Wonduk Joo, Jennie C. Holmberg, Marta Gurrea, Yang Yang-Hartwich, Ayesha Alvero, Gil Mor.
Institutions: Yale University School of Medicine, NatureMost Laboratories, Bruker Preclinical Imaging.
Epithelial ovarian cancer is the most lethal gynecologic malignancy in the United States. Although patients initially respond to the current standard of care consisting of surgical debulking and combination chemotherapy consisting of platinum and taxane compounds, almost 90% of patients recur within a few years. In these patients the development of chemoresistant disease limits the efficacy of currently available chemotherapy agents and therefore contributes to the high mortality. To discover novel therapy options that can target recurrent disease, appropriate animal models that closely mimic the clinical profile of patients with recurrent ovarian cancer are required. The challenge in monitoring intra-peritoneal (i.p.) disease limits the use of i.p. models and thus most xenografts are established subcutaneously. We have developed a sensitive optical imaging platform that allows the detection and anatomical location of i.p. tumor mass. The platform includes the use of optical reporters that extend from the visible light range to near infrared, which in combination with 2-dimensional X-ray co-registration can provide anatomical location of molecular signals. Detection is significantly improved by the use of a rotation system that drives the animal to multiple angular positions for 360 degree imaging, allowing the identification of tumors that are not visible in single orientation. This platform provides a unique model to non-invasively monitor tumor growth and evaluate the efficacy of new therapies for the prevention or treatment of recurrent ovarian cancer.
Cancer Biology, Issue 93, ovarian cancer, recurrence, in vivo imaging, tumor burden, cancer stem cells, chemotherapy
Play Button
Enrichment for Chemoresistant Ovarian Cancer Stem Cells from Human Cell Lines
Authors: Jennifer M. Cole, Stancy Joseph, Christopher G. Sudhahar, Karen D. Cowden Dahl.
Institutions: Indiana University School of Medicine.
Cancer stem cells (CSCs) are defined as a subset of slow cycling and undifferentiated cells that divide asymmetrically to generate highly proliferative, invasive, and chemoresistant tumor cells. Therefore, CSCs are an attractive population of cells to target therapeutically. CSCs are predicted to contribute to a number of types of malignancies including those in the blood, brain, lung, gastrointestinal tract, prostate, and ovary. Isolating and enriching a tumor cell population for CSCs will enable researchers to study the properties, genetics, and therapeutic response of CSCs. We generated a protocol that reproducibly enriches for ovarian cancer CSCs from ovarian cancer cell lines (SKOV3 and OVCA429). Cell lines are treated with 20 µM cisplatin for 3 days. Surviving cells are isolated and cultured in a serum-free stem cell media containing cytokines and growth factors. We demonstrate an enrichment of these purified CSCs by analyzing the isolated cells for known stem cell markers Oct4, Nanog, and Prom1 (CD133) and cell surface expression of CD177 and CD133. The CSCs exhibit increased chemoresistance. This method for isolation of CSCs is a useful tool for studying the role of CSCs in chemoresistance and tumor relapse.
Medicine, Issue 91, cancer stem cells, stem cell markers, ovarian cancer, chemoresistance, cisplatin, cancer progression
Play Button
Assessment of Ovarian Cancer Spheroid Attachment and Invasion of Mesothelial Cells in Real Time
Authors: Maree Bilandzic, Kaye L. Stenvers.
Institutions: MIMR-PHI Institute of Medical Research, Monash University.
Ovarian cancers metastasize by shedding into the peritoneal fluid and dispersing to distal sites within the peritoneum. Monolayer cultures do not accurately model the behaviors of cancer cells within a nonadherent environment, as cancer cells inherently aggregate into multicellular structures which contribute to the metastatic process by attaching to and invading the peritoneal lining to form secondary tumors. To model this important stage of ovarian cancer metastasis, multicellular aggregates, or spheroids, can be generated from established ovarian cancer cell lines maintained under nonadherent conditions. To mimic the peritoneal microenvironment encountered by tumor cells in vivo, a spheroid-mesothelial co-culture model was established in which preformed spheroids are plated on top of a human mesothelial cell monolayer, formed over an extracellular matrix barrier. Methods were then developed using a real-time cell analyzer to conduct quantitative real time measurements of the invasive capacity of different ovarian cancer cell lines grown as spheroids. This approach allows for the continuous measurement of invasion over long periods of time, which has several advantages over traditional endpoint assays and more laborious real time microscopy image analyses. In short, this method enables a rapid, determination of factors which regulate the interactions between ovarian cancer spheroid cells invading through mesothelial and matrix barriers over time.
Medicine, Issue 87, Ovarian cancer, metastasis, invasion, mesothelial cells, spheroids, real time analysis
Play Button
In vitro Mesothelial Clearance Assay that Models the Early Steps of Ovarian Cancer Metastasis
Authors: Rachel A. Davidowitz, Marcin P. Iwanicki, Joan S. Brugge.
Institutions: Harvard Medical School.
Ovarian cancer is the fifth leading cause of cancer related deaths in the United States1. Despite a positive initial response to therapies, 70 to 90 percent of women with ovarian cancer develop new metastases, and the recurrence is often fatal2. It is, therefore, necessary to understand how secondary metastases arise in order to develop better treatments for intermediate and late stage ovarian cancer. Ovarian cancer metastasis occurs when malignant cells detach from the primary tumor site and disseminate throughout the peritoneal cavity. The disseminated cells can form multicellular clusters, or spheroids, that will either remain unattached, or implant onto organs within the peritoneal cavity3 (Figure 1, Movie 1). All of the organs within the peritoneal cavity are lined with a single, continuous, layer of mesothelial cells4-6 (Figure 2). However, mesothelial cells are absent from underneath peritoneal tumor masses, as revealed by electron micrograph studies of excised human tumor tissue sections3,5-7 (Figure 2). This suggests that mesothelial cells are excluded from underneath the tumor mass by an unknown process. Previous in vitro experiments demonstrated that primary ovarian cancer cells attach more efficiently to extracellular matrix than to mesothelial cells8, and more recent studies showed that primary peritoneal mesothelial cells actually provide a barrier to ovarian cancer cell adhesion and invasion (as compared to adhesion and invasion on substrates that were not covered with mesothelial cells)9,10. This would suggest that mesothelial cells act as a barrier against ovarian cancer metastasis. The cellular and molecular mechanisms by which ovarian cancer cells breach this barrier, and exclude the mesothelium have, until recently, remained unknown. Here we describe the methodology for an in vitro assay that models the interaction between ovarian cancer cell spheroids and mesothelial cells in vivo (Figure 3, Movie 2). Our protocol was adapted from previously described methods for analyzing ovarian tumor cell interactions with mesothelial monolayers8-16, and was first described in a report showing that ovarian tumor cells utilize an integrin –dependent activation of myosin and traction force to promote the exclusion of the mesothelial cells from under a tumor spheroid17. This model takes advantage of time-lapse fluorescence microscopy to monitor the two cell populations in real time, providing spatial and temporal information on the interaction. The ovarian cancer cells express red fluorescent protein (RFP) while the mesothelial cells express green fluorescent protein (GFP). RFP-expressing ovarian cancer cell spheroids attach to the GFP-expressing mesothelial monolayer. The spheroids spread, invade, and force the mesothelial cells aside creating a hole in the monolayer. This hole is visualized as the negative space (black) in the GFP image. The area of the hole can then be measured to quantitatively analyze differences in clearance activity between control and experimental populations of ovarian cancer and/ or mesothelial cells. This assay requires only a small number of ovarian cancer cells (100 cells per spheroid X 20-30 spheroids per condition), so it is feasible to perform this assay using precious primary tumor cell samples. Furthermore, this assay can be easily adapted for high throughput screening.
Medicine, Issue 60, Ovarian Cancer, Metastasis, In vitro Model, Mesothelial, Spheroid
Play Button
Immunohistochemical Staining of B7-H1 (PD-L1) on Paraffin-embedded Slides of Pancreatic Adenocarcinoma Tissue
Authors: Elaine Bigelow, Katherine M. Bever, Haiying Xu, Allison Yager, Annie Wu, Janis Taube, Lieping Chen, Elizabeth M. Jaffee, Robert A. Anders, Lei Zheng.
Institutions: The Johns Hopkins University School of Medicine, The Johns Hopkins University School of Medicine, The Johns Hopkins University School of Medicine, Johns Hopkins University School of Medicine, The Johns Hopkins University School of Medicine, Yale School of Medicine, The Johns Hopkins University School of Medicine, The Johns Hopkins University School of Medicine.
B7-H1/PD-L1, a member of the B7 family of immune-regulatory cell-surface proteins, plays an important role in the negative regulation of cell-mediated immune responses through its interaction with its receptor, programmed death-1 (PD-1) 1,2. Overexpression of B7-H1 by tumor cells has been noted in a number of human cancers, including melanoma, glioblastoma, and carcinomas of the lung, breast, colon, ovary, and renal cells, and has been shown to impair anti-tumor T-cell immunity3-8. Recently, B7-H1 expression by pancreatic adenocarcinoma tissues has been identified as a potential prognostic marker9,10. Additionally, blockade of B7-H1 in a mouse model of pancreatic cancer has been shown to produce an anti-tumor response11. These data suggest the importance of B7-H1 as a potential therapeutic target. Anti-B7-H1 blockade antibodies are therefore being tested in clinical trials for multiple human solid tumors including melanoma and cancers of lung, colon, kidney, stomach and pancreas12. In order to eventually be able to identify the patients who will benefit from B7-H1 targeting therapies, it is critical to investigate the correlation between expression and localization of B7-H1 and patient response to treatment with B7-H1 blockade antibodies. Examining the expression of B7-H1 in human pancreatic adenocarcinoma tissues through immunohistochemistry will give a better understanding of how this co-inhibitory signaling molecule contributes to the suppression of antitumor immunity in the tumor's microenvironment. The anti-B7-H1 monoclonal antibody (clone 5H1) developed by Chen and coworkers has been shown to produce reliable staining results in cryosections of multiple types of human neoplastic tissues4,8, but staining on paraffin-embedded slides had been a challenge until recently13-18. We have developed the B7-H1 staining protocol for paraffin-embedded slides of pancreatic adenocarcinoma tissues. The B7-H1 staining protocol described here produces consistent membranous and cytoplasmic staining of B7-H1 with little background.
Cancer Biology, Issue 71, Medicine, Immunology, Biochemistry, Molecular Biology, Cellular Biology, Chemistry, Oncology, immunohistochemistry, B7-H1 (PD-L1), pancreatic adenocarcinoma, pancreatic cancer, pancreas, tumor, T-cell immunity, cancer
Play Button
An Orthotopic Model of Serous Ovarian Cancer in Immunocompetent Mice for in vivo Tumor Imaging and Monitoring of Tumor Immune Responses
Authors: Selene Nunez-Cruz, Denise C. Connolly, Nathalie Scholler.
Institutions: University of Pennsylvania-School of Medicine, Fox Chase Cancer Center.
Background: Ovarian cancer is generally diagnosed at an advanced stage where the case/fatality ratio is high and thus remains the most lethal of all gynecologic malignancies among US women 1,2,3. Serous tumors are the most widespread forms of ovarian cancer and 4,5 the Tg-MISIIR-TAg transgenic represents the only mouse model that spontaneously develops this type of tumors. Tg-MISIIR-TAg mice express SV40 transforming region under control of the Mullerian Inhibitory Substance type II Receptor (MISIIR) gene promoter 6. Additional transgenic lines have been identified that express the SV40 TAg transgene, but do not develop ovarian tumors. Non-tumor prone mice exhibit typical lifespan for C57Bl/6 mice and are fertile. These mice can be used as syngeneic allograft recipients for tumor cells isolated from Tg-MISIIR-TAg-DR26 mice. Objective: Although tumor imaging is possible 7, early detection of deep tumors is challenging in small living animals. To enable preclinical studies in an immunologically intact animal model for serous ovarian cancer, we describe a syngeneic mouse model for this type of ovarian cancer that permits in vivo imaging, studies of the tumor microenvironment and tumor immune responses. Methods: We first derived a TAg+ mouse cancer cell line (MOV1) from a spontaneous ovarian tumor harvested in a 26 week-old DR26 Tg-MISIIR-TAg female. Then, we stably transduced MOV1 cells with TurboFP635 Lentivirus mammalian vector that encodes Katushka, a far-red mutant of the red fluorescent protein from sea anemone Entacmaea quadricolor with excitation/emission maxima at 588/635 nm 8,9,10. We orthotopically implanted MOV1Kat in the ovary 11,12,13,14 of non-tumor prone Tg-MISIIR-TAg female mice. Tumor progression was followed by in vivo optical imaging and tumor microenvironment was analyzed by immunohistochemistry. Results: Orthotopically implanted MOV1Kat cells developed serous ovarian tumors. MOV1Kat tumors could be visualized by in vivo imaging up to three weeks after implantation (fig. 1) and were infiltrated with leukocytes, as observed in human ovarian cancers 15 (fig. 2). Conclusions: We describe an orthotopic model of ovarian cancer suitable for in vivo imaging of early tumors due to the high pH-stability and photostability of Katushka in deep tissues. We propose the use of this novel syngeneic model of serous ovarian cancer for in vivo imaging studies and monitoring of tumor immune responses and immunotherapies.
Immunology, Issue 45, Ovarian cancer, syngeneic, orthotopic, katushka (TurboFP635), in vivo imaging, immunocompetent mouse model of ovarian cancer, deep tumors
Play Button
Initiation of Metastatic Breast Carcinoma by Targeting of the Ductal Epithelium with Adenovirus-Cre: A Novel Transgenic Mouse Model of Breast Cancer
Authors: Melanie R. Rutkowski, Michael J. Allegrezza, Nikolaos Svoronos, Amelia J. Tesone, Tom L. Stephen, Alfredo Perales-Puchalt, Jenny Nguyen, Paul J. Zhang, Steven N. Fiering, Julia Tchou, Jose R. Conejo-Garcia.
Institutions: Wistar Institute, University of Pennsylvania, Geisel School of Medicine at Dartmouth, University of Pennsylvania, University of Pennsylvania, University of Pennsylvania.
Breast cancer is a heterogeneous disease involving complex cellular interactions between the developing tumor and immune system, eventually resulting in exponential tumor growth and metastasis to distal tissues and the collapse of anti-tumor immunity. Many useful animal models exist to study breast cancer, but none completely recapitulate the disease progression that occurs in humans. In order to gain a better understanding of the cellular interactions that result in the formation of latent metastasis and decreased survival, we have generated an inducible transgenic mouse model of YFP-expressing ductal carcinoma that develops after sexual maturity in immune-competent mice and is driven by consistent, endocrine-independent oncogene expression. Activation of YFP, ablation of p53, and expression of an oncogenic form of K-ras was achieved by the delivery of an adenovirus expressing Cre-recombinase into the mammary duct of sexually mature, virgin female mice. Tumors begin to appear 6 weeks after the initiation of oncogenic events. After tumors become apparent, they progress slowly for approximately two weeks before they begin to grow exponentially. After 7-8 weeks post-adenovirus injection, vasculature is observed connecting the tumor mass to distal lymph nodes, with eventual lymphovascular invasion of YFP+ tumor cells to the distal axillary lymph nodes. Infiltrating leukocyte populations are similar to those found in human breast carcinomas, including the presence of αβ and γδ T cells, macrophages and MDSCs. This unique model will facilitate the study of cellular and immunological mechanisms involved in latent metastasis and dormancy in addition to being useful for designing novel immunotherapeutic interventions to treat invasive breast cancer.
Medicine, Issue 85, Transgenic mice, breast cancer, metastasis, intraductal injection, latent mutations, adenovirus-Cre
Play Button
A Next-generation Tissue Microarray (ngTMA) Protocol for Biomarker Studies
Authors: Inti Zlobec, Guido Suter, Aurel Perren, Alessandro Lugli.
Institutions: University of Bern.
Biomarker research relies on tissue microarrays (TMA). TMAs are produced by repeated transfer of small tissue cores from a ‘donor’ block into a ‘recipient’ block and then used for a variety of biomarker applications. The construction of conventional TMAs is labor intensive, imprecise, and time-consuming. Here, a protocol using next-generation Tissue Microarrays (ngTMA) is outlined. ngTMA is based on TMA planning and design, digital pathology, and automated tissue microarraying. The protocol is illustrated using an example of 134 metastatic colorectal cancer patients. Histological, statistical and logistical aspects are considered, such as the tissue type, specific histological regions, and cell types for inclusion in the TMA, the number of tissue spots, sample size, statistical analysis, and number of TMA copies. Histological slides for each patient are scanned and uploaded onto a web-based digital platform. There, they are viewed and annotated (marked) using a 0.6-2.0 mm diameter tool, multiple times using various colors to distinguish tissue areas. Donor blocks and 12 ‘recipient’ blocks are loaded into the instrument. Digital slides are retrieved and matched to donor block images. Repeated arraying of annotated regions is automatically performed resulting in an ngTMA. In this example, six ngTMAs are planned containing six different tissue types/histological zones. Two copies of the ngTMAs are desired. Three to four slides for each patient are scanned; 3 scan runs are necessary and performed overnight. All slides are annotated; different colors are used to represent the different tissues/zones, namely tumor center, invasion front, tumor/stroma, lymph node metastases, liver metastases, and normal tissue. 17 annotations/case are made; time for annotation is 2-3 min/case. 12 ngTMAs are produced containing 4,556 spots. Arraying time is 15-20 hr. Due to its precision, flexibility and speed, ngTMA is a powerful tool to further improve the quality of TMAs used in clinical and translational research.
Medicine, Issue 91, tissue microarray, biomarkers, prognostic, predictive, digital pathology, slide scanning
Play Button
Adaptation of Semiautomated Circulating Tumor Cell (CTC) Assays for Clinical and Preclinical Research Applications
Authors: Lori E. Lowes, Benjamin D. Hedley, Michael Keeney, Alison L. Allan.
Institutions: London Health Sciences Centre, Western University, London Health Sciences Centre, Lawson Health Research Institute, Western University.
The majority of cancer-related deaths occur subsequent to the development of metastatic disease. This highly lethal disease stage is associated with the presence of circulating tumor cells (CTCs). These rare cells have been demonstrated to be of clinical significance in metastatic breast, prostate, and colorectal cancers. The current gold standard in clinical CTC detection and enumeration is the FDA-cleared CellSearch system (CSS). This manuscript outlines the standard protocol utilized by this platform as well as two additional adapted protocols that describe the detailed process of user-defined marker optimization for protein characterization of patient CTCs and a comparable protocol for CTC capture in very low volumes of blood, using standard CSS reagents, for studying in vivo preclinical mouse models of metastasis. In addition, differences in CTC quality between healthy donor blood spiked with cells from tissue culture versus patient blood samples are highlighted. Finally, several commonly discrepant items that can lead to CTC misclassification errors are outlined. Taken together, these protocols will provide a useful resource for users of this platform interested in preclinical and clinical research pertaining to metastasis and CTCs.
Medicine, Issue 84, Metastasis, circulating tumor cells (CTCs), CellSearch system, user defined marker characterization, in vivo, preclinical mouse model, clinical research
Play Button
Optimization and Utilization of Agrobacterium-mediated Transient Protein Production in Nicotiana
Authors: Moneim Shamloul, Jason Trusa, Vadim Mett, Vidadi Yusibov.
Institutions: Fraunhofer USA Center for Molecular Biotechnology.
Agrobacterium-mediated transient protein production in plants is a promising approach to produce vaccine antigens and therapeutic proteins within a short period of time. However, this technology is only just beginning to be applied to large-scale production as many technological obstacles to scale up are now being overcome. Here, we demonstrate a simple and reproducible method for industrial-scale transient protein production based on vacuum infiltration of Nicotiana plants with Agrobacteria carrying launch vectors. Optimization of Agrobacterium cultivation in AB medium allows direct dilution of the bacterial culture in Milli-Q water, simplifying the infiltration process. Among three tested species of Nicotiana, N. excelsiana (N. benthamiana × N. excelsior) was selected as the most promising host due to the ease of infiltration, high level of reporter protein production, and about two-fold higher biomass production under controlled environmental conditions. Induction of Agrobacterium harboring pBID4-GFP (Tobacco mosaic virus-based) using chemicals such as acetosyringone and monosaccharide had no effect on the protein production level. Infiltrating plant under 50 to 100 mbar for 30 or 60 sec resulted in about 95% infiltration of plant leaf tissues. Infiltration with Agrobacterium laboratory strain GV3101 showed the highest protein production compared to Agrobacteria laboratory strains LBA4404 and C58C1 and wild-type Agrobacteria strains at6, at10, at77 and A4. Co-expression of a viral RNA silencing suppressor, p23 or p19, in N. benthamiana resulted in earlier accumulation and increased production (15-25%) of target protein (influenza virus hemagglutinin).
Plant Biology, Issue 86, Agroinfiltration, Nicotiana benthamiana, transient protein production, plant-based expression, viral vector, Agrobacteria
Play Button
Induction of Invasive Transitional Cell Bladder Carcinoma in Immune Intact Human MUC1 Transgenic Mice: A Model for Immunotherapy Development
Authors: Daniel P. Vang, Gregory T. Wurz, Stephen M. Griffey, Chiao-Jung Kao, Audrey M. Gutierrez, Gregory K. Hanson, Michael Wolf, Michael W. DeGregorio.
Institutions: University of California, Davis, University of California, Davis, Merck KGaA, Darmstadt, Germany.
A preclinical model of invasive bladder cancer was developed in human mucin 1 (MUC1) transgenic (MUC1.Tg) mice for the purpose of evaluating immunotherapy and/or cytotoxic chemotherapy. To induce bladder cancer, C57BL/6 mice (MUC1.Tg and wild type) were treated orally with the carcinogen N-butyl-N-(4-hydroxybutyl)nitrosamine (OH-BBN) at 3.0 mg/day, 5 days/week for 12 weeks. To assess the effects of OH-BBN on serum cytokine profile during tumor development, whole blood was collected via submandibular bleeds prior to treatment and every four weeks. In addition, a MUC1-targeted peptide vaccine and placebo were administered to groups of mice weekly for eight weeks. Multiplex fluorometric microbead immunoanalyses of serum cytokines during tumor development and following vaccination were performed. At termination, interferon gamma (IFN-γ)/interleukin-4 (IL-4) ELISpot analysis for MUC1 specific T-cell immune response and histopathological evaluations of tumor type and grade were performed. The results showed that: (1) the incidence of bladder cancer in both MUC1.Tg and wild type mice was 67%; (2) transitional cell carcinomas (TCC) developed at a 2:1 ratio compared to squamous cell carcinomas (SCC); (3) inflammatory cytokines increased with time during tumor development; and (4) administration of the peptide vaccine induces a Th1-polarized serum cytokine profile and a MUC1 specific T-cell response. All tumors in MUC1.Tg mice were positive for MUC1 expression, and half of all tumors in MUC1.Tg and wild type mice were invasive. In conclusion, using a team approach through the coordination of the efforts of pharmacologists, immunologists, pathologists and molecular biologists, we have developed an immune intact transgenic mouse model of bladder cancer that expresses hMUC1.
Medicine, Issue 80, Urinary Bladder, Animals, Genetically Modified, Cancer Vaccines, Immunotherapy, Animal Experimentation, Models, Neoplasms Bladder Cancer, C57BL/6 Mouse, MUC1, Immunotherapy, Preclinical Model
Play Button
Collection, Isolation, and Flow Cytometric Analysis of Human Endocervical Samples
Authors: Jennifer A. Juno, Genevieve Boily-Larouche, Julie Lajoie, Keith R. Fowke.
Institutions: University of Manitoba, University of Manitoba.
Despite the public health importance of mucosal pathogens (including HIV), relatively little is known about mucosal immunity, particularly at the female genital tract (FGT). Because heterosexual transmission now represents the dominant mechanism of HIV transmission, and given the continual spread of sexually transmitted infections (STIs), it is critical to understand the interplay between host and pathogen at the genital mucosa. The substantial gaps in knowledge around FGT immunity are partially due to the difficulty in successfully collecting and processing mucosal samples. In order to facilitate studies with sufficient sample size, collection techniques must be minimally invasive and efficient. To this end, a protocol for the collection of cervical cytobrush samples and subsequent isolation of cervical mononuclear cells (CMC) has been optimized. Using ex vivo flow cytometry-based immunophenotyping, it is possible to accurately and reliably quantify CMC lymphocyte/monocyte population frequencies and phenotypes. This technique can be coupled with the collection of cervical-vaginal lavage (CVL), which contains soluble immune mediators including cytokines, chemokines and anti-proteases, all of which can be used to determine the anti- or pro-inflammatory environment in the vagina.
Medicine, Issue 89, mucosal, immunology, FGT, lavage, cervical, CMC
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
Play Button
Peptide-based Identification of Functional Motifs and their Binding Partners
Authors: Martin N. Shelton, Ming Bo Huang, Syed Ali, Kateena Johnson, William Roth, Michael Powell, Vincent Bond.
Institutions: Morehouse School of Medicine, Institute for Systems Biology, Universiti Sains Malaysia.
Specific short peptides derived from motifs found in full-length proteins, in our case HIV-1 Nef, not only retain their biological function, but can also competitively inhibit the function of the full-length protein. A set of 20 Nef scanning peptides, 20 amino acids in length with each overlapping 10 amino acids of its neighbor, were used to identify motifs in Nef responsible for its induction of apoptosis. Peptides containing these apoptotic motifs induced apoptosis at levels comparable to the full-length Nef protein. A second peptide, derived from the Secretion Modification Region (SMR) of Nef, retained the ability to interact with cellular proteins involved in Nef's secretion in exosomes (exNef). This SMRwt peptide was used as the "bait" protein in co-immunoprecipitation experiments to isolate cellular proteins that bind specifically to Nef's SMR motif. Protein transfection and antibody inhibition was used to physically disrupt the interaction between Nef and mortalin, one of the isolated SMR-binding proteins, and the effect was measured with a fluorescent-based exNef secretion assay. The SMRwt peptide's ability to outcompete full-length Nef for cellular proteins that bind the SMR motif, make it the first inhibitor of exNef secretion. Thus, by employing the techniques described here, which utilize the unique properties of specific short peptides derived from motifs found in full-length proteins, one may accelerate the identification of functional motifs in proteins and the development of peptide-based inhibitors of pathogenic functions.
Virology, Issue 76, Biochemistry, Immunology, Infection, Infectious Diseases, Molecular Biology, Medicine, Genetics, Microbiology, Genomics, Proteins, Exosomes, HIV, Peptides, Exocytosis, protein trafficking, secretion, HIV-1, Nef, Secretion Modification Region, SMR, peptide, AIDS, assay
Play Button
Investigation of Macrophage Polarization Using Bone Marrow Derived Macrophages
Authors: Wei Ying, Patali S. Cheruku, Fuller W. Bazer, Stephen H. Safe, Beiyan Zhou.
Institutions: Texas A&M University, Texas A&M University, Texas A&M University.
The article describes a readily easy adaptive in vitro model to investigate macrophage polarization. In the presence of GM-CSF/M-CSF, hematopoietic stem/progenitor cells from the bone marrow are directed into monocytic differentiation, followed by M1 or M2 stimulation. The activation status can be tracked by changes in cell surface antigens, gene expression and cell signaling pathways.
Immunology, Issue 76, Cellular Biology, Molecular Biology, Medicine, Genetics, Biomedical Engineering, biology (general), genetics (animal and plant), immunology, life sciences, Life Sciences (General), macrophage polarization, bone marrow derived macrophage, flow cytometry, PCR, animal model
Play Button
Deep Neuromuscular Blockade Leads to a Larger Intraabdominal Volume During Laparoscopy
Authors: Astrid Listov Lindekaer, Henrik Halvor Springborg, Olav Istre.
Institutions: Aleris-Hamlet Hospitals, Soeborg, Denmark, Aleris-Hamlet Hospitals, Soeborg, Denmark.
Shoulder pain is a commonly reported symptom following laparoscopic procedures such as myomectomy or hysterectomy, and recent studies have shown that lowering the insufflation pressure during surgery may reduce the risk of post-operative pain. In this pilot study, a method is presented for measuring the intra-abdominal space available to the surgeon during laproscopy, in order to examine whether the relaxation produced by deep neuromuscular blockade can increase the working surgical space sufficiently to permit a reduction in the CO2 insufflation pressure. Using the laproscopic grasper, the distance from the promontory to the skin is measured at two different insufflation pressures: 8 mm Hg and 12 mm Hg. After the initial measurements, a neuromuscular blocking agent (rocuronium) is administered to the patient and the intra-abdominal volume is measured again. Pilot data collected from 15 patients shows that the intra-abdominal space at 8 mm Hg with blockade is comparable to the intra-abdominal space measured at 12 mm Hg without blockade. The impact of neuromuscular blockade was not correlated with patient height, weight, BMI, and age. Thus, using neuromuscular blockade to maintain a steady volume while reducing insufflation pressure may produce improved patient outcomes.
Medicine, Issue 76, Anatomy, Physiology, Neurobiology, Surgery, gynecology, laparoscopy, deep neuromuscular blockade, reversal, rocuronium, sugammadex, laparoscopic surgery, clinical techniques, surgical techniques
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.