JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Quantifying loopy network architectures.
PLoS ONE
Biology presents many examples of planar distribution and structural networks having dense sets of closed loops. An archetype of this form of network organization is the vasculature of dicotyledonous leaves, which showcases a hierarchically-nested architecture containing closed loops at many different levels. Although a number of approaches have been proposed to measure aspects of the structure of such networks, a robust metric to quantify their hierarchical organization is still lacking. We present an algorithmic framework, the hierarchical loop decomposition, that allows mapping loopy networks to binary trees, preserving in the connectivity of the trees the architecture of the original graph. We apply this framework to investigate computer generated graphs, such as artificial models and optimal distribution networks, as well as natural graphs extracted from digitized images of dicotyledonous leaves and vasculature of rat cerebral neocortex. We calculate various metrics based on the asymmetry, the cumulative size distribution and the Strahler bifurcation ratios of the corresponding trees and discuss the relationship of these quantities to the architectural organization of the original graphs. This algorithmic framework decouples the geometric information (exact location of edges and nodes) from the metric topology (connectivity and edge weight) and it ultimately allows us to perform a quantitative statistical comparison between predictions of theoretical models and naturally occurring loopy graphs.
ABSTRACT
The ability to adjust behavior to sudden changes in the environment develops gradually in childhood and adolescence. For example, in the Dimensional Change Card Sort task, participants switch from sorting cards one way, such as shape, to sorting them a different way, such as color. Adjusting behavior in this way exacts a small performance cost, or switch cost, such that responses are typically slower and more error-prone on switch trials in which the sorting rule changes as compared to repeat trials in which the sorting rule remains the same. The ability to flexibly adjust behavior is often said to develop gradually, in part because behavioral costs such as switch costs typically decrease with increasing age. Why aspects of higher-order cognition, such as behavioral flexibility, develop so gradually remains an open question. One hypothesis is that these changes occur in association with functional changes in broad-scale cognitive control networks. On this view, complex mental operations, such as switching, involve rapid interactions between several distributed brain regions, including those that update and maintain task rules, re-orient attention, and select behaviors. With development, functional connections between these regions strengthen, leading to faster and more efficient switching operations. The current video describes a method of testing this hypothesis through the collection and multivariate analysis of fMRI data from participants of different ages.
25 Related JoVE Articles!
Play Button
Determination of Molecular Structures of HIV Envelope Glycoproteins using Cryo-Electron Tomography and Automated Sub-tomogram Averaging
Authors: Joel R. Meyerson, Tommi A. White, Donald Bliss, Amy Moran, Alberto Bartesaghi, Mario J. Borgnia, M. Jason V. de la Cruz, David Schauder, Lisa M. Hartnell, Rachna Nandwani, Moez Dawood, Brianna Kim, Jun Hong Kim, John Sununu, Lisa Yang, Siddhant Bhatia, Carolyn Subramaniam, Darrell E. Hurt, Laurent Gaudreault, Sriram Subramaniam.
Institutions: National Institutes of Health, University of Cambridge , National Institutes of Health, Massachusetts Institute of Technology, William Fremd High School, University of Virginia , Duke University , Yale University, University of Notre Dame , Washington University in St. Louis , National Institutes of Health, Thomas Jefferson High School for Science and Technology.
Since its discovery nearly 30 years ago, more than 60 million people have been infected with the human immunodeficiency virus (HIV) (www.usaid.gov). The virus infects and destroys CD4+ T-cells thereby crippling the immune system, and causing an acquired immunodeficiency syndrome (AIDS) 2. Infection begins when the HIV Envelope glycoprotein "spike" makes contact with the CD4 receptor on the surface of the CD4+ T-cell. This interaction induces a conformational change in the spike, which promotes interaction with a second cell surface co-receptor 5,9. The significance of these protein interactions in the HIV infection pathway makes them of profound importance in fundamental HIV research, and in the pursuit of an HIV vaccine. The need to better understand the molecular-scale interactions of HIV cell contact and neutralization motivated the development of a technique to determine the structures of the HIV spike interacting with cell surface receptor proteins and molecules that block infection. Using cryo-electron tomography and 3D image processing, we recently demonstrated the ability to determine such structures on the surface of native virus, at ˜20 Å resolution 9,14. This approach is not limited to resolving HIV Envelope structures, and can be extended to other viral membrane proteins and proteins reconstituted on a liposome. In this protocol, we describe how to obtain structures of HIV envelope glycoproteins starting from purified HIV virions and proceeding stepwise through preparing vitrified samples, collecting, cryo-electron microscopy data, reconstituting and processing 3D data volumes, averaging and classifying 3D protein subvolumes, and interpreting results to produce a protein model. The computational aspects of our approach were adapted into modules that can be accessed and executed remotely using the Biowulf GNU/Linux parallel processing cluster at the NIH (http://biowulf.nih.gov). This remote access, combined with low-cost computer hardware and high-speed network access, has made possible the involvement of researchers and students working from school or home.
Immunology, Issue 58, HIV, Envelope glycoprotein, membrane protein, vaccine design, cryo-electron tomography, transmission electron microscopy, structural biology, high school science, scientific outreach, scientific visualization, National Institutes of Health, National Cancer Institute, National Library of Medicine
2770
Play Button
Using High Resolution Computed Tomography to Visualize the Three Dimensional Structure and Function of Plant Vasculature
Authors: Andrew J. McElrone, Brendan Choat, Dilworth Y. Parkinson, Alastair A. MacDowell, Craig R. Brodersen.
Institutions: U.S. Department of Agriculture, University of California - Davis, University of Western Sydney, Lawrence Berkeley National Lab, University of Florida .
High resolution x-ray computed tomography (HRCT) is a non-destructive diagnostic imaging technique with sub-micron resolution capability that is now being used to evaluate the structure and function of plant xylem network in three dimensions (3D) (e.g. Brodersen et al. 2010; 2011; 2012a,b). HRCT imaging is based on the same principles as medical CT systems, but a high intensity synchrotron x-ray source results in higher spatial resolution and decreased image acquisition time. Here, we demonstrate in detail how synchrotron-based HRCT (performed at the Advanced Light Source-LBNL Berkeley, CA, USA) in combination with Avizo software (VSG Inc., Burlington, MA, USA) is being used to explore plant xylem in excised tissue and living plants. This new imaging tool allows users to move beyond traditional static, 2D light or electron micrographs and study samples using virtual serial sections in any plane. An infinite number of slices in any orientation can be made on the same sample, a feature that is physically impossible using traditional microscopy methods. Results demonstrate that HRCT can be applied to both herbaceous and woody plant species, and a range of plant organs (i.e. leaves, petioles, stems, trunks, roots). Figures presented here help demonstrate both a range of representative plant vascular anatomy and the type of detail extracted from HRCT datasets, including scans for coast redwood (Sequoia sempervirens), walnut (Juglans spp.), oak (Quercus spp.), and maple (Acer spp.) tree saplings to sunflowers (Helianthus annuus), grapevines (Vitis spp.), and ferns (Pteridium aquilinum and Woodwardia fimbriata). Excised and dried samples from woody species are easiest to scan and typically yield the best images. However, recent improvements (i.e. more rapid scans and sample stabilization) have made it possible to use this visualization technique on green tissues (e.g. petioles) and in living plants. On occasion some shrinkage of hydrated green plant tissues will cause images to blur and methods to avoid these issues are described. These recent advances with HRCT provide promising new insights into plant vascular function.
Plant Biology, Issue 74, Cellular Biology, Molecular Biology, Biophysics, Structural Biology, Physics, Environmental Sciences, Agriculture, botany, environmental effects (biological, animal and plant), plants, radiation effects (biological, animal and plant), CT scans, advanced visualization techniques, xylem networks, plant vascular function, synchrotron, x-ray micro-tomography, ALS 8.3.2, xylem, phloem, tomography, imaging
50162
Play Button
Computer-assisted Large-scale Visualization and Quantification of Pancreatic Islet Mass, Size Distribution and Architecture
Authors: Abraham Kim, German Kilimnik, Charles Guo, Joshua Sung, Junghyo Jo, Vipul Periwal, Piotr Witkowski, Philip Dilorio, Manami Hara.
Institutions: University of Chicago, National Institutes of Health, University of Chicago, University of Massachusetts.
The pancreatic islet is a unique micro-organ composed of several hormone secreting endocrine cells such as beta-cells (insulin), alpha-cells (glucagon), and delta-cells (somatostatin) that are embedded in the exocrine tissues and comprise 1-2% of the entire pancreas. There is a close correlation between body and pancreas weight. Total beta-cell mass also increases proportionately to compensate for the demand for insulin in the body. What escapes this proportionate expansion is the size distribution of islets. Large animals such as humans share similar islet size distributions with mice, suggesting that this micro-organ has a certain size limit to be functional. The inability of large animal pancreata to generate proportionately larger islets is compensated for by an increase in the number of islets and by an increase in the proportion of larger islets in their overall islet size distribution. Furthermore, islets exhibit a striking plasticity in cellular composition and architecture among different species and also within the same species under various pathophysiological conditions. In the present study, we describe novel approaches for the analysis of biological image data in order to facilitate the automation of analytic processes, which allow for the analysis of large and heterogeneous data collections in the study of such dynamic biological processes and complex structures. Such studies have been hampered due to technical difficulties of unbiased sampling and generating large-scale data sets to precisely capture the complexity of biological processes of islet biology. Here we show methods to collect unbiased "representative" data within the limited availability of samples (or to minimize the sample collection) and the standard experimental settings, and to precisely analyze the complex three-dimensional structure of the islet. Computer-assisted automation allows for the collection and analysis of large-scale data sets and also assures unbiased interpretation of the data. Furthermore, the precise quantification of islet size distribution and spatial coordinates (i.e. X, Y, Z-positions) not only leads to an accurate visualization of pancreatic islet structure and composition, but also allows us to identify patterns during development and adaptation to altering conditions through mathematical modeling. The methods developed in this study are applicable to studies of many other systems and organisms as well.
Cellular Biology, Issue 49, beta-cells, islets, large-scale analysis, pancreas
2471
Play Button
Microwave-assisted Functionalization of Poly(ethylene glycol) and On-resin Peptides for Use in Chain Polymerizations and Hydrogel Formation
Authors: Amy H. Van Hove, Brandon D. Wilson, Danielle S. W. Benoit.
Institutions: University of Rochester, University of Rochester, University of Rochester Medical Center.
One of the main benefits to using poly(ethylene glycol) (PEG) macromers in hydrogel formation is synthetic versatility. The ability to draw from a large variety of PEG molecular weights and configurations (arm number, arm length, and branching pattern) affords researchers tight control over resulting hydrogel structures and properties, including Young’s modulus and mesh size. This video will illustrate a rapid, efficient, solvent-free, microwave-assisted method to methacrylate PEG precursors into poly(ethylene glycol) dimethacrylate (PEGDM). This synthetic method provides much-needed starting materials for applications in drug delivery and regenerative medicine. The demonstrated method is superior to traditional methacrylation methods as it is significantly faster and simpler, as well as more economical and environmentally friendly, using smaller amounts of reagents and solvents. We will also demonstrate an adaptation of this technique for on-resin methacrylamide functionalization of peptides. This on-resin method allows the N-terminus of peptides to be functionalized with methacrylamide groups prior to deprotection and cleavage from resin. This allows for selective addition of methacrylamide groups to the N-termini of the peptides while amino acids with reactive side groups (e.g. primary amine of lysine, primary alcohol of serine, secondary alcohols of threonine, and phenol of tyrosine) remain protected, preventing functionalization at multiple sites. This article will detail common analytical methods (proton Nuclear Magnetic Resonance spectroscopy (;H-NMR) and Matrix Assisted Laser Desorption Ionization Time of Flight mass spectrometry (MALDI-ToF)) to assess the efficiency of the functionalizations. Common pitfalls and suggested troubleshooting methods will be addressed, as will modifications of the technique which can be used to further tune macromer functionality and resulting hydrogel physical and chemical properties. Use of synthesized products for the formation of hydrogels for drug delivery and cell-material interaction studies will be demonstrated, with particular attention paid to modifying hydrogel composition to affect mesh size, controlling hydrogel stiffness and drug release.
Chemistry, Issue 80, Poly(ethylene glycol), peptides, polymerization, polymers, methacrylation, peptide functionalization, 1H-NMR, MALDI-ToF, hydrogels, macromer synthesis
50890
Play Button
Methods to Assess Subcellular Compartments of Muscle in C. elegans
Authors: Christopher J. Gaffney, Joseph J. Bass, Thomas F. Barratt, Nathaniel J. Szewczyk.
Institutions: University of Nottingham.
Muscle is a dynamic tissue that responds to changes in nutrition, exercise, and disease state. The loss of muscle mass and function with disease and age are significant public health burdens. We currently understand little about the genetic regulation of muscle health with disease or age. The nematode C. elegans is an established model for understanding the genomic regulation of biological processes of interest. This worm’s body wall muscles display a large degree of homology with the muscles of higher metazoan species. Since C. elegans is a transparent organism, the localization of GFP to mitochondria and sarcomeres allows visualization of these structures in vivo. Similarly, feeding animals cationic dyes, which accumulate based on the existence of a mitochondrial membrane potential, allows the assessment of mitochondrial function in vivo. These methods, as well as assessment of muscle protein homeostasis, are combined with assessment of whole animal muscle function, in the form of movement assays, to allow correlation of sub-cellular defects with functional measures of muscle performance. Thus, C. elegans provides a powerful platform with which to assess the impact of mutations, gene knockdown, and/or chemical compounds upon muscle structure and function. Lastly, as GFP, cationic dyes, and movement assays are assessed non-invasively, prospective studies of muscle structure and function can be conducted across the whole life course and this at present cannot be easily investigated in vivo in any other organism.
Developmental Biology, Issue 93, Physiology, C. elegans, muscle, mitochondria, sarcomeres, ageing
52043
Play Button
Modeling Biological Membranes with Circuit Boards and Measuring Electrical Signals in Axons: Student Laboratory Exercises
Authors: Martha M. Robinson, Jonathan M. Martin, Harold L. Atwood, Robin L. Cooper.
Institutions: University of Kentucky, University of Toronto.
This is a demonstration of how electrical models can be used to characterize biological membranes. This exercise also introduces biophysical terminology used in electrophysiology. The same equipment is used in the membrane model as on live preparations. Some properties of an isolated nerve cord are investigated: nerve action potentials, recruitment of neurons, and responsiveness of the nerve cord to environmental factors.
Basic Protocols, Issue 47, Invertebrate, Crayfish, Modeling, Student laboratory, Nerve cord
2325
Play Button
Printing Thermoresponsive Reverse Molds for the Creation of Patterned Two-component Hydrogels for 3D Cell Culture
Authors: Michael Müller, Jana Becher, Matthias Schnabelrauch, Marcy Zenobi-Wong.
Institutions: Cartilage Engineering & Regeneration, Innovent e.V..
Bioprinting is an emerging technology that has its origins in the rapid prototyping industry. The different printing processes can be divided into contact bioprinting1-4 (extrusion, dip pen and soft lithography), contactless bioprinting5-7 (laser forward transfer, ink-jet deposition) and laser based techniques such as two photon photopolymerization8. It can be used for many applications such as tissue engineering9-13, biosensor microfabrication14-16 and as a tool to answer basic biological questions such as influences of co-culturing of different cell types17. Unlike common photolithographic or soft-lithographic methods, extrusion bioprinting has the advantage that it does not require a separate mask or stamp. Using CAD software, the design of the structure can quickly be changed and adjusted according to the requirements of the operator. This makes bioprinting more flexible than lithography-based approaches. Here we demonstrate the printing of a sacrificial mold to create a multi-material 3D structure using an array of pillars within a hydrogel as an example. These pillars could represent hollow structures for a vascular network or the tubes within a nerve guide conduit. The material chosen for the sacrificial mold was poloxamer 407, a thermoresponsive polymer with excellent printing properties which is liquid at 4 °C and a solid above its gelation temperature ~20 °C for 24.5% w/v solutions18. This property allows the poloxamer-based sacrificial mold to be eluted on demand and has advantages over the slow dissolution of a solid material especially for narrow geometries. Poloxamer was printed on microscope glass slides to create the sacrificial mold. Agarose was pipetted into the mold and cooled until gelation. After elution of the poloxamer in ice cold water, the voids in the agarose mold were filled with alginate methacrylate spiked with FITC labeled fibrinogen. The filled voids were then cross-linked with UV and the construct was imaged with an epi-fluorescence microscope.
Bioengineering, Issue 77, Immunology, Cellular Biology, Biomedical Engineering, Biophysics, Molecular Biology, Materials Science, Tissue Engineering, Biomaterials, Hydrogel, Biopolymers, Structured/Patterned Hydrogels, Bioprinter, Sacrificial Mold, Thermoresponsive Polymers, Poloxamer, tissue, polymer, matrix, cell, cell culture
50632
Play Button
Using Microwave and Macroscopic Samples of Dielectric Solids to Study the Photonic Properties of Disordered Photonic Bandgap Materials
Authors: Seyed Reza Hashemizad, Sam Tsitrin, Polin Yadak, Yingquan He, Daniel Cuneo, Eric Paul Williamson, Devin Liner, Weining Man.
Institutions: San Francisco State University.
Recently, disordered photonic materials have been suggested as an alternative to periodic crystals for the formation of a complete photonic bandgap (PBG). In this article we will describe the methods for constructing and characterizing macroscopic disordered photonic structures using microwaves. The microwave regime offers the most convenient experimental sample size to build and test PBG media. Easily manipulated dielectric lattice components extend flexibility in building various 2D structures on top of pre-printed plastic templates. Once built, the structures could be quickly modified with point and line defects to make freeform waveguides and filters. Testing is done using a widely available Vector Network Analyzer and pairs of microwave horn antennas. Due to the scale invariance property of electromagnetic fields, the results we obtained in the microwave region can be directly applied to infrared and optical regions. Our approach is simple but delivers exciting new insight into the nature of light and disordered matter interaction. Our representative results include the first experimental demonstration of the existence of a complete and isotropic PBG in a two-dimensional (2D) hyperuniform disordered dielectric structure. Additionally we demonstrate experimentally the ability of this novel photonic structure to guide electromagnetic waves (EM) through freeform waveguides of arbitrary shape.
Physics, Issue 91, optics and photonics, photonic crystals, photonic bandgap, hyperuniform, disordered media, waveguides
51614
Play Button
ECM Protein Nanofibers and Nanostructures Engineered Using Surface-initiated Assembly
Authors: John M. Szymanski, Quentin Jallerat, Adam W. Feinberg.
Institutions: Carnegie Mellon University, Carnegie Mellon University.
The extracellular matrix (ECM) in tissues is synthesized and assembled by cells to form a 3D fibrillar, protein network with tightly regulated fiber diameter, composition and organization. In addition to providing structural support, the physical and chemical properties of the ECM play an important role in multiple cellular processes including adhesion, differentiation, and apoptosis. In vivo, the ECM is assembled by exposing cryptic self-assembly (fibrillogenesis) sites within proteins. This process varies for different proteins, but fibronectin (FN) fibrillogenesis is well-characterized and serves as a model system for cell-mediated ECM assembly. Specifically, cells use integrin receptors on the cell membrane to bind FN dimers and actomyosin-generated contractile forces to unfold and expose binding sites for assembly into insoluble fibers. This receptor-mediated process enables cells to assemble and organize the ECM from the cellular to tissue scales. Here, we present a method termed surface-initiated assembly (SIA), which recapitulates cell-mediated matrix assembly using protein-surface interactions to unfold ECM proteins and assemble them into insoluble fibers. First, ECM proteins are adsorbed onto a hydrophobic polydimethylsiloxane (PDMS) surface where they partially denature (unfold) and expose cryptic binding domains. The unfolded proteins are then transferred in well-defined micro- and nanopatterns through microcontact printing onto a thermally responsive poly(N-isopropylacrylamide) (PIPAAm) surface. Thermally-triggered dissolution of the PIPAAm leads to final assembly and release of insoluble ECM protein nanofibers and nanostructures with well-defined geometries. Complex architectures are possible by engineering defined patterns on the PDMS stamps used for microcontact printing. In addition to FN, the SIA process can be used with laminin, fibrinogen and collagens type I and IV to create multi-component ECM nanostructures. Thus, SIA can be used to engineer ECM protein-based materials with precise control over the protein composition, fiber geometry and scaffold architecture in order to recapitulate the structure and composition of the ECM in vivo.
Bioengineering, Issue 86, Nanofibers, Nanofabrics, Extracellular Matrix Proteins, Microcontact Printing, Fibronectin, Laminin, Tissue Engineering, poly(N-isopropylacrylamide), Surface-Initiated Assembly
51176
Play Button
A Faster, High Resolution, mtPA-GFP-based Mitochondrial Fusion Assay Acquiring Kinetic Data of Multiple Cells in Parallel Using Confocal Microscopy
Authors: Alenka Lovy, Anthony J.A. Molina, Fernanda M. Cerqueira, Kyle Trudeau, Orian S. Shirihai.
Institutions: Tufts School of Medicine, Wake Forest Baptist Medical Center, Boston University Medical Center.
Mitochondrial fusion plays an essential role in mitochondrial calcium homeostasis, bioenergetics, autophagy and quality control. Fusion is quantified in living cells by photo-conversion of matrix targeted photoactivatable GFP (mtPAGFP) in a subset of mitochondria. The rate at which the photoconverted molecules equilibrate across the entire mitochondrial population is used as a measure of fusion activity. Thus far measurements were performed using a single cell time lapse approach, quantifying the equilibration in one cell over an hour. Here, we scale up and automate a previously published live cell method based on using mtPAGFP and a low concentration of TMRE (15 nm). This method involves photoactivating a small portion of the mitochondrial network, collecting highly resolved stacks of confocal sections every 15 min for 1 hour, and quantifying the change in signal intensity. Depending on several factors such as ease of finding PAGFP expressing cells, and the signal of the photoactivated regions, it is possible to collect around 10 cells within the 15 min intervals. This provides a significant improvement in the time efficiency of this assay while maintaining the highly resolved subcellular quantification as well as the kinetic parameters necessary to capture the detail of mitochondrial behavior in its native cytoarchitectural environment. Mitochondrial dynamics play a role in many cellular processes including respiration, calcium regulation, and apoptosis1,2,3,13. The structure of the mitochondrial network affects the function of mitochondria, and the way they interact with the rest of the cell. Undergoing constant division and fusion, mitochondrial networks attain various shapes ranging from highly fused networks, to being more fragmented. Interestingly, Alzheimer's disease, Parkinson's disease, Charcot Marie Tooth 2A, and dominant optic atrophy have been correlated with altered mitochondrial morphology, namely fragmented networks4,10,13. Often times, upon fragmentation, mitochondria become depolarized, and upon accumulation this leads to impaired cell function18. Mitochondrial fission has been shown to signal a cell to progress toward apoptosis. It can also provide a mechanism by which to separate depolarized and inactive mitochondria to keep the bulk of the network robust14. Fusion of mitochondria, on the other hand, leads to sharing of matrix proteins, solutes, mtDNA and the electrochemical gradient, and also seems to prevent progression to apoptosis9. How fission and fusion of mitochondria affects cell homeostasis and ultimately the functioning of the organism needs further understanding, and therefore the continuous development and optimization of how to gather information on these phenomena is necessary. Existing mitochondrial fusion assays have revealed various insights into mitochondrial physiology, each having its own advantages. The hybrid PEG fusion assay7, mixes two populations of differently labeled cells (mtRFP and mtYFP), and analyzes the amount of mixing and colocalization of fluorophores in fused, multinucleated, cells. Although this method has yielded valuable information, not all cell types can fuse, and the conditions under which fusion is stimulated involves the use of toxic drugs that likely affect the normal fusion process. More recently, a cell free technique has been devised, using isolated mitochondria to observe fusion events based on a luciferase assay1,5. Two human cell lines are targeted with either the amino or a carboxy terminal part of Renilla luciferase along with a leucine zipper to ensure dimerization upon mixing. Mitochondria are isolated from each cell line, and fused. The fusion reaction can occur without the cytosol under physiological conditions in the presence of energy, appropriate temperature and inner mitochondrial membrane potential. Interestingly, the cytosol was found to modulate the extent of fusion, demonstrating that cell signaling regulates the fusion process 4,5. This assay will be very useful for high throughput screening to identify components of the fusion machinery and also pharmacological compounds that may affect mitochondrial dynamics. However, more detailed whole cell mitochondrial assays will be needed to complement this in vitro assay to observe these events within a cellular environment. A technique for monitoring whole-cell mitochondrial dynamics has been in use for some time and is based on a mitochondrially-targeted photoactivatable GFP (mtPAGFP)6,11. Upon expression of the mtPAGFP, a small portion of the mitochondrial network is photoactivated (10-20%), and the spread of the signal to the rest of the mitochondrial network is recorded every 15 minutes for 1 hour using time lapse confocal imaging. Each fusion event leads to a dilution of signal intensity, enabling quantification of the fusion rate. Although fusion and fission are continuously occurring in cells, this technique only monitors fusion as fission does not lead to a dilution of the PAGFP signal6. Co-labeling with low levels of TMRE (7-15 nM in INS1 cells) allows quantification of the membrane potential of mitochondria. When mitochondria are hyperpolarized they uptake more TMRE, and when they depolarize they lose the TMRE dye. Mitochondria that depolarize no longer have a sufficient membrane potential and tend not to fuse as efficiently if at all. Therefore, active fusing mitochondria can be tracked with these low levels of TMRE9,15. Accumulation of depolarized mitochondria that lack a TMRE signal may be a sign of phototoxicity or cell death. Higher concentrations of TMRE render mitochondria very sensitive to laser light, and therefore great care must be taken to avoid overlabeling with TMRE. If the effect of depolarization of mitochondria is the topic of interest, a technique using slightly higher levels of TMRE and more intense laser light can be used to depolarize mitochondria in a controlled fashion (Mitra and Lippincott-Schwartz, 2010). To ensure that toxicity due to TMRE is not an issue, we suggest exposing loaded cells (3-15 nM TMRE) to the imaging parameters that will be used in the assay (perhaps 7 stacks of 6 optical sections in a row), and assessing cell health after 2 hours. If the mitochondria appear too fragmented and cells are dying, other mitochondrial markers, such as dsRED or Mitotracker red could be used instead of TMRE. The mtPAGFP method has revealed details about mitochondrial network behavior that could not be visualized using other methods. For example, we now know that mitochondrial fusion can be full or transient, where matrix content can mix without changing the overall network morphology. Additionally, we know that the probability of fusion is independent of contact duration and organelle dimension, is influenced by organelle motility, membrane potential and history of previous fusion activity8,15,16,17. In this manuscript, we describe a methodology for scaling up the previously published protocol using mtPAGFP and 15nM TMRE8 in order to examine multiple cells at a time and improve the time efficiency of data collection without sacrificing the subcellular resolution. This has been made possible by the use of an automated microscope stage, and programmable image acquisition software. Zen software from Zeiss allows the user to mark and track several designated cells expressing mtPAGFP. Each of these cells can be photoactivated in a particular region of interest, and stacks of confocal slices can be monitored for mtPAGFP signal as well as TMRE at specified intervals. Other confocal systems could be used to perform this protocol provided there is an automated stage that is programmable, an incubator with CO2, and a means by which to photoactivate the PAGFP; either a multiphoton laser, or a 405 nm diode laser.
Molecular Biology, Issue 65, Genetics, Cellular Biology, Physics, confocal microscopy, mitochondria, fusion, TMRE, mtPAGFP, INS1, mitochondrial dynamics, mitochondrial morphology, mitochondrial network
3991
Play Button
Using Informational Connectivity to Measure the Synchronous Emergence of fMRI Multi-voxel Information Across Time
Authors: Marc N. Coutanche, Sharon L. Thompson-Schill.
Institutions: University of Pennsylvania.
It is now appreciated that condition-relevant information can be present within distributed patterns of functional magnetic resonance imaging (fMRI) brain activity, even for conditions with similar levels of univariate activation. Multi-voxel pattern (MVP) analysis has been used to decode this information with great success. FMRI investigators also often seek to understand how brain regions interact in interconnected networks, and use functional connectivity (FC) to identify regions that have correlated responses over time. Just as univariate analyses can be insensitive to information in MVPs, FC may not fully characterize the brain networks that process conditions with characteristic MVP signatures. The method described here, informational connectivity (IC), can identify regions with correlated changes in MVP-discriminability across time, revealing connectivity that is not accessible to FC. The method can be exploratory, using searchlights to identify seed-connected areas, or planned, between pre-selected regions-of-interest. The results can elucidate networks of regions that process MVP-related conditions, can breakdown MVPA searchlight maps into separate networks, or can be compared across tasks and patient groups.
Neuroscience, Issue 89, fMRI, MVPA, connectivity, informational connectivity, functional connectivity, networks, multi-voxel pattern analysis, decoding, classification, method, multivariate
51226
Play Button
From Voxels to Knowledge: A Practical Guide to the Segmentation of Complex Electron Microscopy 3D-Data
Authors: Wen-Ting Tsai, Ahmed Hassan, Purbasha Sarkar, Joaquin Correa, Zoltan Metlagel, Danielle M. Jorgens, Manfred Auer.
Institutions: Lawrence Berkeley National Laboratory, Lawrence Berkeley National Laboratory, Lawrence Berkeley National Laboratory.
Modern 3D electron microscopy approaches have recently allowed unprecedented insight into the 3D ultrastructural organization of cells and tissues, enabling the visualization of large macromolecular machines, such as adhesion complexes, as well as higher-order structures, such as the cytoskeleton and cellular organelles in their respective cell and tissue context. Given the inherent complexity of cellular volumes, it is essential to first extract the features of interest in order to allow visualization, quantification, and therefore comprehension of their 3D organization. Each data set is defined by distinct characteristics, e.g., signal-to-noise ratio, crispness (sharpness) of the data, heterogeneity of its features, crowdedness of features, presence or absence of characteristic shapes that allow for easy identification, and the percentage of the entire volume that a specific region of interest occupies. All these characteristics need to be considered when deciding on which approach to take for segmentation. The six different 3D ultrastructural data sets presented were obtained by three different imaging approaches: resin embedded stained electron tomography, focused ion beam- and serial block face- scanning electron microscopy (FIB-SEM, SBF-SEM) of mildly stained and heavily stained samples, respectively. For these data sets, four different segmentation approaches have been applied: (1) fully manual model building followed solely by visualization of the model, (2) manual tracing segmentation of the data followed by surface rendering, (3) semi-automated approaches followed by surface rendering, or (4) automated custom-designed segmentation algorithms followed by surface rendering and quantitative analysis. Depending on the combination of data set characteristics, it was found that typically one of these four categorical approaches outperforms the others, but depending on the exact sequence of criteria, more than one approach may be successful. Based on these data, we propose a triage scheme that categorizes both objective data set characteristics and subjective personal criteria for the analysis of the different data sets.
Bioengineering, Issue 90, 3D electron microscopy, feature extraction, segmentation, image analysis, reconstruction, manual tracing, thresholding
51673
Play Button
Automated, Quantitative Cognitive/Behavioral Screening of Mice: For Genetics, Pharmacology, Animal Cognition and Undergraduate Instruction
Authors: C. R. Gallistel, Fuat Balci, David Freestone, Aaron Kheifets, Adam King.
Institutions: Rutgers University, Koç University, New York University, Fairfield University.
We describe a high-throughput, high-volume, fully automated, live-in 24/7 behavioral testing system for assessing the effects of genetic and pharmacological manipulations on basic mechanisms of cognition and learning in mice. A standard polypropylene mouse housing tub is connected through an acrylic tube to a standard commercial mouse test box. The test box has 3 hoppers, 2 of which are connected to pellet feeders. All are internally illuminable with an LED and monitored for head entries by infrared (IR) beams. Mice live in the environment, which eliminates handling during screening. They obtain their food during two or more daily feeding periods by performing in operant (instrumental) and Pavlovian (classical) protocols, for which we have written protocol-control software and quasi-real-time data analysis and graphing software. The data analysis and graphing routines are written in a MATLAB-based language created to simplify greatly the analysis of large time-stamped behavioral and physiological event records and to preserve a full data trail from raw data through all intermediate analyses to the published graphs and statistics within a single data structure. The data-analysis code harvests the data several times a day and subjects it to statistical and graphical analyses, which are automatically stored in the "cloud" and on in-lab computers. Thus, the progress of individual mice is visualized and quantified daily. The data-analysis code talks to the protocol-control code, permitting the automated advance from protocol to protocol of individual subjects. The behavioral protocols implemented are matching, autoshaping, timed hopper-switching, risk assessment in timed hopper-switching, impulsivity measurement, and the circadian anticipation of food availability. Open-source protocol-control and data-analysis code makes the addition of new protocols simple. Eight test environments fit in a 48 in x 24 in x 78 in cabinet; two such cabinets (16 environments) may be controlled by one computer.
Behavior, Issue 84, genetics, cognitive mechanisms, behavioral screening, learning, memory, timing
51047
Play Button
Applications of EEG Neuroimaging Data: Event-related Potentials, Spectral Power, and Multiscale Entropy
Authors: Jennifer J. Heisz, Anthony R. McIntosh.
Institutions: Baycrest.
When considering human neuroimaging data, an appreciation of signal variability represents a fundamental innovation in the way we think about brain signal. Typically, researchers represent the brain's response as the mean across repeated experimental trials and disregard signal fluctuations over time as "noise". However, it is becoming clear that brain signal variability conveys meaningful functional information about neural network dynamics. This article describes the novel method of multiscale entropy (MSE) for quantifying brain signal variability. MSE may be particularly informative of neural network dynamics because it shows timescale dependence and sensitivity to linear and nonlinear dynamics in the data.
Neuroscience, Issue 76, Neurobiology, Anatomy, Physiology, Medicine, Biomedical Engineering, Electroencephalography, EEG, electroencephalogram, Multiscale entropy, sample entropy, MEG, neuroimaging, variability, noise, timescale, non-linear, brain signal, information theory, brain, imaging
50131
Play Button
Characterization of Complex Systems Using the Design of Experiments Approach: Transient Protein Expression in Tobacco as a Case Study
Authors: Johannes Felix Buyel, Rainer Fischer.
Institutions: RWTH Aachen University, Fraunhofer Gesellschaft.
Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.
Bioengineering, Issue 83, design of experiments (DoE), transient protein expression, plant-derived biopharmaceuticals, promoter, 5'UTR, fluorescent reporter protein, model building, incubation conditions, monoclonal antibody
51216
Play Button
Diffusion Tensor Magnetic Resonance Imaging in the Analysis of Neurodegenerative Diseases
Authors: Hans-Peter Müller, Jan Kassubek.
Institutions: University of Ulm.
Diffusion tensor imaging (DTI) techniques provide information on the microstructural processes of the cerebral white matter (WM) in vivo. The present applications are designed to investigate differences of WM involvement patterns in different brain diseases, especially neurodegenerative disorders, by use of different DTI analyses in comparison with matched controls. DTI data analysis is performed in a variate fashion, i.e. voxelwise comparison of regional diffusion direction-based metrics such as fractional anisotropy (FA), together with fiber tracking (FT) accompanied by tractwise fractional anisotropy statistics (TFAS) at the group level in order to identify differences in FA along WM structures, aiming at the definition of regional patterns of WM alterations at the group level. Transformation into a stereotaxic standard space is a prerequisite for group studies and requires thorough data processing to preserve directional inter-dependencies. The present applications show optimized technical approaches for this preservation of quantitative and directional information during spatial normalization in data analyses at the group level. On this basis, FT techniques can be applied to group averaged data in order to quantify metrics information as defined by FT. Additionally, application of DTI methods, i.e. differences in FA-maps after stereotaxic alignment, in a longitudinal analysis at an individual subject basis reveal information about the progression of neurological disorders. Further quality improvement of DTI based results can be obtained during preprocessing by application of a controlled elimination of gradient directions with high noise levels. In summary, DTI is used to define a distinct WM pathoanatomy of different brain diseases by the combination of whole brain-based and tract-based DTI analysis.
Medicine, Issue 77, Neuroscience, Neurobiology, Molecular Biology, Biomedical Engineering, Anatomy, Physiology, Neurodegenerative Diseases, nuclear magnetic resonance, NMR, MR, MRI, diffusion tensor imaging, fiber tracking, group level comparison, neurodegenerative diseases, brain, imaging, clinical techniques
50427
Play Button
Analysis of Tubular Membrane Networks in Cardiac Myocytes from Atria and Ventricles
Authors: Eva Wagner, Sören Brandenburg, Tobias Kohl, Stephan E. Lehnart.
Institutions: Heart Research Center Goettingen, University Medical Center Goettingen, German Center for Cardiovascular Research (DZHK) partner site Goettingen, University of Maryland School of Medicine.
In cardiac myocytes a complex network of membrane tubules - the transverse-axial tubule system (TATS) - controls deep intracellular signaling functions. While the outer surface membrane and associated TATS membrane components appear to be continuous, there are substantial differences in lipid and protein content. In ventricular myocytes (VMs), certain TATS components are highly abundant contributing to rectilinear tubule networks and regular branching 3D architectures. It is thought that peripheral TATS components propagate action potentials from the cell surface to thousands of remote intracellular sarcoendoplasmic reticulum (SER) membrane contact domains, thereby activating intracellular Ca2+ release units (CRUs). In contrast to VMs, the organization and functional role of TATS membranes in atrial myocytes (AMs) is significantly different and much less understood. Taken together, quantitative structural characterization of TATS membrane networks in healthy and diseased myocytes is an essential prerequisite towards better understanding of functional plasticity and pathophysiological reorganization. Here, we present a strategic combination of protocols for direct quantitative analysis of TATS membrane networks in living VMs and AMs. For this, we accompany primary cell isolations of mouse VMs and/or AMs with critical quality control steps and direct membrane staining protocols for fluorescence imaging of TATS membranes. Using an optimized workflow for confocal or superresolution TATS image processing, binarized and skeletonized data are generated for quantitative analysis of the TATS network and its components. Unlike previously published indirect regional aggregate image analysis strategies, our protocols enable direct characterization of specific components and derive complex physiological properties of TATS membrane networks in living myocytes with high throughput and open access software tools. In summary, the combined protocol strategy can be readily applied for quantitative TATS network studies during physiological myocyte adaptation or disease changes, comparison of different cardiac or skeletal muscle cell types, phenotyping of transgenic models, and pharmacological or therapeutic interventions.
Bioengineering, Issue 92, cardiac myocyte, atria, ventricle, heart, primary cell isolation, fluorescence microscopy, membrane tubule, transverse-axial tubule system, image analysis, image processing, T-tubule, collagenase
51823
Play Button
Detection of Architectural Distortion in Prior Mammograms via Analysis of Oriented Patterns
Authors: Rangaraj M. Rangayyan, Shantanu Banik, J.E. Leo Desautels.
Institutions: University of Calgary , University of Calgary .
We demonstrate methods for the detection of architectural distortion in prior mammograms of interval-cancer cases based on analysis of the orientation of breast tissue patterns in mammograms. We hypothesize that architectural distortion modifies the normal orientation of breast tissue patterns in mammographic images before the formation of masses or tumors. In the initial steps of our methods, the oriented structures in a given mammogram are analyzed using Gabor filters and phase portraits to detect node-like sites of radiating or intersecting tissue patterns. Each detected site is then characterized using the node value, fractal dimension, and a measure of angular dispersion specifically designed to represent spiculating patterns associated with architectural distortion. Our methods were tested with a database of 106 prior mammograms of 56 interval-cancer cases and 52 mammograms of 13 normal cases using the features developed for the characterization of architectural distortion, pattern classification via quadratic discriminant analysis, and validation with the leave-one-patient out procedure. According to the results of free-response receiver operating characteristic analysis, our methods have demonstrated the capability to detect architectural distortion in prior mammograms, taken 15 months (on the average) before clinical diagnosis of breast cancer, with a sensitivity of 80% at about five false positives per patient.
Medicine, Issue 78, Anatomy, Physiology, Cancer Biology, angular spread, architectural distortion, breast cancer, Computer-Assisted Diagnosis, computer-aided diagnosis (CAD), entropy, fractional Brownian motion, fractal dimension, Gabor filters, Image Processing, Medical Informatics, node map, oriented texture, Pattern Recognition, phase portraits, prior mammograms, spectral analysis
50341
Play Button
Identification of Disease-related Spatial Covariance Patterns using Neuroimaging Data
Authors: Phoebe Spetsieris, Yilong Ma, Shichun Peng, Ji Hyun Ko, Vijay Dhawan, Chris C. Tang, David Eidelberg.
Institutions: The Feinstein Institute for Medical Research.
The scaled subprofile model (SSM)1-4 is a multivariate PCA-based algorithm that identifies major sources of variation in patient and control group brain image data while rejecting lesser components (Figure 1). Applied directly to voxel-by-voxel covariance data of steady-state multimodality images, an entire group image set can be reduced to a few significant linearly independent covariance patterns and corresponding subject scores. Each pattern, termed a group invariant subprofile (GIS), is an orthogonal principal component that represents a spatially distributed network of functionally interrelated brain regions. Large global mean scalar effects that can obscure smaller network-specific contributions are removed by the inherent logarithmic conversion and mean centering of the data2,5,6. Subjects express each of these patterns to a variable degree represented by a simple scalar score that can correlate with independent clinical or psychometric descriptors7,8. Using logistic regression analysis of subject scores (i.e. pattern expression values), linear coefficients can be derived to combine multiple principal components into single disease-related spatial covariance patterns, i.e. composite networks with improved discrimination of patients from healthy control subjects5,6. Cross-validation within the derivation set can be performed using bootstrap resampling techniques9. Forward validation is easily confirmed by direct score evaluation of the derived patterns in prospective datasets10. Once validated, disease-related patterns can be used to score individual patients with respect to a fixed reference sample, often the set of healthy subjects that was used (with the disease group) in the original pattern derivation11. These standardized values can in turn be used to assist in differential diagnosis12,13 and to assess disease progression and treatment effects at the network level7,14-16. We present an example of the application of this methodology to FDG PET data of Parkinson's Disease patients and normal controls using our in-house software to derive a characteristic covariance pattern biomarker of disease.
Medicine, Issue 76, Neurobiology, Neuroscience, Anatomy, Physiology, Molecular Biology, Basal Ganglia Diseases, Parkinsonian Disorders, Parkinson Disease, Movement Disorders, Neurodegenerative Diseases, PCA, SSM, PET, imaging biomarkers, functional brain imaging, multivariate spatial covariance analysis, global normalization, differential diagnosis, PD, brain, imaging, clinical techniques
50319
Play Button
Simultaneous Multicolor Imaging of Biological Structures with Fluorescence Photoactivation Localization Microscopy
Authors: Nikki M. Curthoys, Michael J. Mlodzianoski, Dahan Kim, Samuel T. Hess.
Institutions: University of Maine.
Localization-based super resolution microscopy can be applied to obtain a spatial map (image) of the distribution of individual fluorescently labeled single molecules within a sample with a spatial resolution of tens of nanometers. Using either photoactivatable (PAFP) or photoswitchable (PSFP) fluorescent proteins fused to proteins of interest, or organic dyes conjugated to antibodies or other molecules of interest, fluorescence photoactivation localization microscopy (FPALM) can simultaneously image multiple species of molecules within single cells. By using the following approach, populations of large numbers (thousands to hundreds of thousands) of individual molecules are imaged in single cells and localized with a precision of ~10-30 nm. Data obtained can be applied to understanding the nanoscale spatial distributions of multiple protein types within a cell. One primary advantage of this technique is the dramatic increase in spatial resolution: while diffraction limits resolution to ~200-250 nm in conventional light microscopy, FPALM can image length scales more than an order of magnitude smaller. As many biological hypotheses concern the spatial relationships among different biomolecules, the improved resolution of FPALM can provide insight into questions of cellular organization which have previously been inaccessible to conventional fluorescence microscopy. In addition to detailing the methods for sample preparation and data acquisition, we here describe the optical setup for FPALM. One additional consideration for researchers wishing to do super-resolution microscopy is cost: in-house setups are significantly cheaper than most commercially available imaging machines. Limitations of this technique include the need for optimizing the labeling of molecules of interest within cell samples, and the need for post-processing software to visualize results. We here describe the use of PAFP and PSFP expression to image two protein species in fixed cells. Extension of the technique to living cells is also described.
Basic Protocol, Issue 82, Microscopy, Super-resolution imaging, Multicolor, single molecule, FPALM, Localization microscopy, fluorescent proteins
50680
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (http://www.proteinwisdom.org), a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
50476
Play Button
Reaggregate Thymus Cultures
Authors: Andrea White, Eric Jenkinson, Graham Anderson.
Institutions: University of Birmingham .
Stromal cells within lymphoid tissues are organized into three-dimensional structures that provide a scaffold that is thought to control the migration and development of haemopoeitic cells. Importantly, the maintenance of this three-dimensional organization appears to be critical for normal stromal cell function, with two-dimensional monolayer cultures often being shown to be capable of supporting only individual fragments of lymphoid tissue function. In the thymus, complex networks of cortical and medullary epithelial cells act as a framework that controls the recruitment, proliferation, differentiation and survival of lymphoid progenitors as they undergo the multi-stage process of intrathymic T-cell development. Understanding the functional role of individual stromal compartments in the thymus is essential in determining how the thymus imposes self/non-self discrimination. Here we describe a technique in which we exploit the plasticity of fetal tissues to re-associate into intact three-dimensional structures in vitro, following their enzymatic disaggregation. The dissociation of fetal thymus lobes into heterogeneous cellular mixtures, followed by their separation into individual cellular components, is then combined with the in vitro re-association of these desired cell types into three-dimensional reaggregate structures at defined ratios, thereby providing an opportunity to investigate particular aspects of T-cell development under defined cellular conditions. (This article is based on work first reported Methods in Molecular Biology 2007, Vol. 380 pages 185-196).
Immunology, Issue 18, Springer Protocols, Thymus, 2-dGuo, Thymus Organ Cultures, Immune Tolerance, Positive and Negative Selection, Lymphoid Development
905
Play Button
Linearization of the Bradford Protein Assay
Authors: Orna Ernst, Tsaffrir Zor.
Institutions: Tel Aviv University.
Determination of microgram quantities of protein in the Bradford Coomassie brilliant blue assay is accomplished by measurement of absorbance at 590 nm. This most common assay enables rapid and simple protein quantification in cell lysates, cellular fractions, or recombinant protein samples, for the purpose of normalization of biochemical measurements. However, an intrinsic nonlinearity compromises the sensitivity and accuracy of this method. It is shown that under standard assay conditions, the ratio of the absorbance measurements at 590 nm and 450 nm is strictly linear with protein concentration. This simple procedure increases the accuracy and improves the sensitivity of the assay about 10-fold, permitting quantification down to 50 ng of bovine serum albumin. Furthermore, the interference commonly introduced by detergents that are used to create the cell lysates is greatly reduced by the new protocol. A linear equation developed on the basis of mass action and Beer's law perfectly fits the experimental data.
Cellular Biology, Issue 38, Bradford, protein assay, protein quantification, Coomassie brilliant blue
1918
Play Button
Probing the Brain in Autism Using fMRI and Diffusion Tensor Imaging
Authors: Rajesh K. Kana, Donna L. Murdaugh, Lauren E. Libero, Mark R. Pennick, Heather M. Wadsworth, Rishi Deshpande, Christi P. Hu.
Institutions: University of Alabama at Birmingham.
Newly emerging theories suggest that the brain does not function as a cohesive unit in autism, and this discordance is reflected in the behavioral symptoms displayed by individuals with autism. While structural neuroimaging findings have provided some insights into brain abnormalities in autism, the consistency of such findings is questionable. Functional neuroimaging, on the other hand, has been more fruitful in this regard because autism is a disorder of dynamic processing and allows examination of communication between cortical networks, which appears to be where the underlying problem occurs in autism. Functional connectivity is defined as the temporal correlation of spatially separate neurological events1. Findings from a number of recent fMRI studies have supported the idea that there is weaker coordination between different parts of the brain that should be working together to accomplish complex social or language problems2,3,4,5,6. One of the mysteries of autism is the coexistence of deficits in several domains along with relatively intact, sometimes enhanced, abilities. Such complex manifestation of autism calls for a global and comprehensive examination of the disorder at the neural level. A compelling recent account of the brain functioning in autism, the cortical underconnectivity theory,2,7 provides an integrating framework for the neurobiological bases of autism. The cortical underconnectivity theory of autism suggests that any language, social, or psychological function that is dependent on the integration of multiple brain regions is susceptible to disruption as the processing demand increases. In autism, the underfunctioning of integrative circuitry in the brain may cause widespread underconnectivity. In other words, people with autism may interpret information in a piecemeal fashion at the expense of the whole. Since cortical underconnectivity among brain regions, especially the frontal cortex and more posterior areas 3,6, has now been relatively well established, we can begin to further understand brain connectivity as a critical component of autism symptomatology. A logical next step in this direction is to examine the anatomical connections that may mediate the functional connections mentioned above. Diffusion Tensor Imaging (DTI) is a relatively novel neuroimaging technique that helps probe the diffusion of water in the brain to infer the integrity of white matter fibers. In this technique, water diffusion in the brain is examined in several directions using diffusion gradients. While functional connectivity provides information about the synchronization of brain activation across different brain areas during a task or during rest, DTI helps in understanding the underlying axonal organization which may facilitate the cross-talk among brain areas. This paper will describe these techniques as valuable tools in understanding the brain in autism and the challenges involved in this line of research.
Medicine, Issue 55, Functional magnetic resonance imaging (fMRI), MRI, Diffusion tensor imaging (DTI), Functional Connectivity, Neuroscience, Developmental disorders, Autism, Fractional Anisotropy
3178
Play Button
Automated Midline Shift and Intracranial Pressure Estimation based on Brain CT Images
Authors: Wenan Chen, Ashwin Belle, Charles Cockrell, Kevin R. Ward, Kayvan Najarian.
Institutions: Virginia Commonwealth University, Virginia Commonwealth University Reanimation Engineering Science (VCURES) Center, Virginia Commonwealth University, Virginia Commonwealth University, Virginia Commonwealth University.
In this paper we present an automated system based mainly on the computed tomography (CT) images consisting of two main components: the midline shift estimation and intracranial pressure (ICP) pre-screening system. To estimate the midline shift, first an estimation of the ideal midline is performed based on the symmetry of the skull and anatomical features in the brain CT scan. Then, segmentation of the ventricles from the CT scan is performed and used as a guide for the identification of the actual midline through shape matching. These processes mimic the measuring process by physicians and have shown promising results in the evaluation. In the second component, more features are extracted related to ICP, such as the texture information, blood amount from CT scans and other recorded features, such as age, injury severity score to estimate the ICP are also incorporated. Machine learning techniques including feature selection and classification, such as Support Vector Machines (SVMs), are employed to build the prediction model using RapidMiner. The evaluation of the prediction shows potential usefulness of the model. The estimated ideal midline shift and predicted ICP levels may be used as a fast pre-screening step for physicians to make decisions, so as to recommend for or against invasive ICP monitoring.
Medicine, Issue 74, Biomedical Engineering, Molecular Biology, Neurobiology, Biophysics, Physiology, Anatomy, Brain CT Image Processing, CT, Midline Shift, Intracranial Pressure Pre-screening, Gaussian Mixture Model, Shape Matching, Machine Learning, traumatic brain injury, TBI, imaging, clinical techniques
3871
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.