JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Impaired LDL receptor-related protein 1 translocation correlates with improved dyslipidemia and atherosclerosis in apoE-deficient mice.
PLoS ONE
Determination of the in vivo significance of LDL receptor-related protein 1 (LRP1) dysfunction on lipid metabolism and atherosclerosis development in absence of its main ligand apoE.
Authors: Daniel E. Venegas-Pino, Nicole Banko, Mohammed I. Khan, Yuanyuan Shi, Geoff H. Werstuck.
Published: 12-07-2013
ABSTRACT
Atherosclerosis is a disease of the large arteries and a major underlying cause of myocardial infarction and stroke. Several different mouse models have been developed to facilitate the study of the molecular and cellular pathophysiology of this disease. In this manuscript we describe specific techniques for the quantification and characterization of atherosclerotic lesions in the murine aortic sinus and ascending aorta. The advantage of this procedure is that it provides an accurate measurement of the cross-sectional area and total volume of the lesion, which can be used to compare atherosclerotic progression across different treatment groups. This is possible through the use of the valve leaflets as an anatomical landmark, together with careful adjustment of the sectioning angle. We also describe basic staining methods that can be used to begin to characterize atherosclerotic progression. These can be further modified to investigate antigens of specific interest to the researcher. The described techniques are generally applicable to a wide variety of existing and newly created dietary and genetically-induced models of atherogenesis.
17 Related JoVE Articles!
Play Button
Inducing Myointimal Hyperplasia Versus Atherosclerosis in Mice: An Introduction of Two Valid Models
Authors: Mandy Stubbendorff, Xiaoqin Hua, Tobias Deuse, Ziad Ali, Hermann Reichenspurner, Lars Maegdefessel, Robert C. Robbins, Sonja Schrepfer.
Institutions: University Hospital Hamburg, Cardiovascular Research Center (CVRC) and DZHK University Hamburg, University Heart Center Hamburg, Columbia University, Cardiovascular Research Foundation, New York, Karolinska Institute, Stockholm, Stanford University School of Medicine, Falk Cardiovascular Research Center.
Various in vivo laboratory rodent models for the induction of artery stenosis have been established to mimic diseases that include arterial plaque formation and stenosis, as observed for example in ischemic heart disease. Two highly reproducible mouse models – both resulting in artery stenosis but each underlying a different pathway of development – are introduced here. The models represent the two most common causes of artery stenosis; namely one mouse model for each myointimal hyperplasia, and atherosclerosis are shown. To induce myointimal hyperplasia, a balloon catheter injury of the abdominal aorta is performed. For the development of atherosclerotic plaque, the ApoE -/- mouse model in combination with western fatty diet is used. Different model-adapted options for the measurement and evaluation of the results are named and described in this manuscript. The introduction and comparison of these two models provides information for scientists to choose the appropriate artery stenosis model in accordance to the scientific question asked.
Medicine, Issue 87, vascular diseases, atherosclerosis, coronary stenosis, neointima, myointimal hyperplasia, mice, denudation model, ApoE -/-, balloon injury, western diet, analysis
51459
Play Button
Production of Apolipoprotein C-III Knockout Rabbits using Zinc Finger Nucleases
Authors: Dongshan Yang, Jifeng Zhang, Jie Xu, Tianqing Zhu, Yanbo Fan, Jianglin Fan, Y. Eugene Chen.
Institutions: University of Michigan Medical Center, University of Yamanashi.
Apolipoprotein (Apo) C-III (ApoCIII) resides on the surface of plasma chylomicron (CM), very low density lipoprotein (VLDL) and high density lipoproteins (HDL). It has been recognized that high levels of plasma ApoCIII constitutea risk factor for cardiovascular diseases (CVD). Elevated plasma ApoCIII level often correlates with insulin resistance, obesity, and hypertriglyceridemia. Invaluable knowledge on the roles of ApoCIIIin lipid metabolisms and CVD has been obtained from transgenic mouse models including ApoCIII knockout (KO) mice; however, it is noted that the metabolism of lipoprotein in mice is different from that of humans in many aspects. It is not known until now whether elevated plasma ApoCIII is directly atherogenic. We worked to develop ApoCIII KO rabbits in the present study based on the hypothesis that rabbits can serve as a reasonablemodelfor studying human lipid metabolism and atherosclerosis. Zinc finger nuclease (ZFN) sets targeting rabbit ApoCIIIgene were subjected to in vitro validation prior to embryo microinjection. The mRNA was injected to the cytoplasm of 35 rabbit pronuclear stage embryos, and evaluated the mutation rates at the blastocyst state. Of sixteen blastocysts that were assayed, a satisfactory 50% mutation rate (8/16) at the targeting site was achieved, supporting the use of Set 1 for in vivo experiments. Next, we microinjected 145 embryos with Set 1 mRNA, and transferred these embryos to 7 recipient rabbits. After 30 days gestation, 21 kits were born, out of which five were confirmed as ApoCIII KO rabbits after PCR sequencing assays. The KO animal rate (#KO kits/total born) was 23.8%. The overall production efficiency is 3.4% (5 kits/145 embryos transferred). The present work demonstrated that ZFN is a highly efficient method to produce KO rabbits. These ApoCIII KO rabbits are novel resources to study the roles of ApoCIII in lipid metabolisms.
Medicine, Issue 81, Apolipoprotein C-III, rabbits, knockout, zinc finger nuclease, cardiovascular diseases, lipid metabolism, ApoCIII
50957
Play Button
Real-time Imaging of Leukotriene B4 Mediated Cell Migration and BLT1 Interactions with β-arrestin
Authors: Venkatakrishna R. Jala, Bodduluri Haribabu.
Institutions: University of Louisville.
G-protein coupled receptors (GPCRs) belong to the seven transmembrane protein family and mediate the transduction of extracellular signals to intracellular responses. GPCRs control diverse biological functions such as chemotaxis, intracellular calcium release, gene regulation in a ligand dependent manner via heterotrimeric G-proteins1-2. Ligand binding induces a series of conformational changes leading to activation of heterotrimeric G-proteins that modulate levels of second messengers such as cyclic adenosine monophosphate (cAMP), inositol triphosphate (IP3) and diacyl glycerol (DG). Concomitant with activation of the receptor ligand binding also initiates a series of events to attenuate the receptor signaling via desensitization, sequestration and/or internalization. The desensitization process of GPCRs occurs via receptor phosphorylation by G-protein receptor kinases (GRKs) and subsequent binding of β-arrestins3. β-arrestins are cytosolic proteins and translocate to membrane upon GPCR activation, binding to phosphorylated receptors (most cases) there by facilitating receptor internalization 4-6. Leukotriene B4 (LTB4) is a pro-inflammatory lipid molecule derived from arachidonic acid pathway and mediates its actions via GPCRs, LTB4 receptor 1 (BLT1; a high affinity receptor) and LTB4 receptor 2 (BLT2; a low affinity receptor)7-9. The LTB4-BLT1 pathway has been shown to be critical in several inflammatory diseases including, asthma, arthritis and atherosclerosis10-17. The current paper describes the methodologies developed to monitor LTB4-induced leukocyte migration and the interactions of BLT1 with β-arrestin and , receptor translocation in live cells using microscopy imaging techniques18-19. Bone marrow derived dendritic cells from C57BL/6 mice were isolated and cultured as previously described 20-21. These cells were tested in live cell imaging methods to demonstrate LTB4 induced cell migration. The human BLT1 was tagged with red fluorescent protein (BLT1-RFP) at C-terminus and β-arrestin1 tagged with green fluorescent protein (β-arr-GFP) and transfected the both plasmids into Rat Basophilic Leukomia (RBL-2H3) cell lines18-19. The kinetics of interaction between these proteins and localization were monitored using live cell video microscopy. The methodologies in the current paper describe the use of microscopic techniques to investigate the functional responses of G-protein coupled receptors in live cells. The current paper also describes the use of Metamorph software to quantify the fluorescence intensities to determine the kinetics of receptor and cytosolic protein interactions.
Immunology, Issue 46, Live cell imaging, Chemotaxis, G-protein coupled receptor, receptor internalization, leukotriene B4, leukotriene B4 receptor 1
2315
Play Button
Metabolic Profile Analysis of Zebrafish Embryos
Authors: Yann Gibert, Sean L. McGee, Alister C. Ward.
Institutions: School of Medicine, Deakin University.
A growing goal in the field of metabolism is to determine the impact of genetics on different aspects of mitochondrial function. Understanding these relationships will help to understand the underlying etiology for a range of diseases linked with mitochondrial dysfunction, such as diabetes and obesity. Recent advances in instrumentation, has enabled the monitoring of distinct parameters of mitochondrial function in cell lines or tissue explants. Here we present a method for a rapid and sensitive analysis of mitochondrial function parameters in vivo during zebrafish embryonic development using the Seahorse bioscience XF 24 extracellular flux analyser. This protocol utilizes the Islet Capture microplates where a single embryo is placed in each well, allowing measurement of bioenergetics, including: (i) basal respiration; (ii) basal mitochondrial respiration (iii) mitochondrial respiration due to ATP turnover; (iv) mitochondrial uncoupled respiration or proton leak and (iv) maximum respiration. Using this approach embryonic zebrafish respiration parameters can be compared between wild type and genetically altered embryos (mutant, gene over-expression or gene knockdown) or those manipulated pharmacologically. It is anticipated that dissemination of this protocol will provide researchers with new tools to analyse the genetic basis of metabolic disorders in vivo in this relevant vertebrate animal model.
Developmental Biology, Issue 71, Genetics, Biochemistry, Cellular Biology, Molecular Biology, Physiology, Embryology, Metabolism, Metabolomics, metabolic profile, respiration, mitochondria, ATP, development, Oil Red O staining, zebrafish, Danio rerio, animal model
4300
Play Button
A Model of Disturbed Flow-Induced Atherosclerosis in Mouse Carotid Artery by Partial Ligation and a Simple Method of RNA Isolation from Carotid Endothelium
Authors: Douglas Nam, Chih-Wen Ni, Amir Rezvan, Jin Suo, Klaudia Budzyn, Alexander Llanos, David G. Harrison, Don P. Giddens, Hanjoong Jo.
Institutions: Emory University, Georgia Tech and Emory University, Ewha Womans University.
Despite the well-known close association, direct evidence linking disturbed flow to atherogenesis has been lacking. We have recently used a modified version of carotid partial ligation methods [1,2] to show that it acutely induces low and oscillatory flow conditions, two key characteristics of disturbed flow, in the mouse common carotid artery. Using this model, we have provided direct evidence that disturbed flow indeed leads to rapid and robust atherosclerosis development in Apolipoprotein E knockout mouse [3]. We also developed a method of endothelial RNA preparation with high purity from the mouse carotid intima [3]. Using this mouse model and method, we found that partial ligation causes endothelial dysfunction in a week, followed by robust and rapid atheroma formation in two weeks in a hyperlipidemic mouse model along with features of complex lesion formation such as intraplaque neovascularization by four weeks. This rapid in vivo model and the endothelial RNA preparation method could be used to determine molecular mechanisms underlying flow-dependent regulation of vascular biology and diseases. Also, it could be used to test various therapeutic interventions targeting endothelial dysfunction and atherosclerosis in considerably reduced study duration.
JoVE Medicine, Issue 40, atherosclerosis, disturbed flow, shear stress, carotid, partial ligation, endothelial RNA
1861
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (http://www.proteinwisdom.org), a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
50476
Play Button
Creating Dynamic Images of Short-lived Dopamine Fluctuations with lp-ntPET: Dopamine Movies of Cigarette Smoking
Authors: Evan D. Morris, Su Jin Kim, Jenna M. Sullivan, Shuo Wang, Marc D. Normandin, Cristian C. Constantinescu, Kelly P. Cosgrove.
Institutions: Yale University, Yale University, Yale University, Yale University, Massachusetts General Hospital, University of California, Irvine.
We describe experimental and statistical steps for creating dopamine movies of the brain from dynamic PET data. The movies represent minute-to-minute fluctuations of dopamine induced by smoking a cigarette. The smoker is imaged during a natural smoking experience while other possible confounding effects (such as head motion, expectation, novelty, or aversion to smoking repeatedly) are minimized. We present the details of our unique analysis. Conventional methods for PET analysis estimate time-invariant kinetic model parameters which cannot capture short-term fluctuations in neurotransmitter release. Our analysis - yielding a dopamine movie - is based on our work with kinetic models and other decomposition techniques that allow for time-varying parameters 1-7. This aspect of the analysis - temporal-variation - is key to our work. Because our model is also linear in parameters, it is practical, computationally, to apply at the voxel level. The analysis technique is comprised of five main steps: pre-processing, modeling, statistical comparison, masking and visualization. Preprocessing is applied to the PET data with a unique 'HYPR' spatial filter 8 that reduces spatial noise but preserves critical temporal information. Modeling identifies the time-varying function that best describes the dopamine effect on 11C-raclopride uptake. The statistical step compares the fit of our (lp-ntPET) model 7 to a conventional model 9. Masking restricts treatment to those voxels best described by the new model. Visualization maps the dopamine function at each voxel to a color scale and produces a dopamine movie. Interim results and sample dopamine movies of cigarette smoking are presented.
Behavior, Issue 78, Neuroscience, Neurobiology, Molecular Biology, Biomedical Engineering, Medicine, Anatomy, Physiology, Image Processing, Computer-Assisted, Receptors, Dopamine, Dopamine, Functional Neuroimaging, Binding, Competitive, mathematical modeling (systems analysis), Neurotransmission, transient, dopamine release, PET, modeling, linear, time-invariant, smoking, F-test, ventral-striatum, clinical techniques
50358
Play Button
Biochemical and High Throughput Microscopic Assessment of Fat Mass in Caenorhabditis Elegans
Authors: Elizabeth C. Pino, Christopher M. Webster, Christopher E. Carr, Alexander A. Soukas.
Institutions: Massachusetts General Hospital and Harvard Medical School, Massachusetts Institute of Technology.
The nematode C. elegans has emerged as an important model for the study of conserved genetic pathways regulating fat metabolism as it relates to human obesity and its associated pathologies. Several previous methodologies developed for the visualization of C. elegans triglyceride-rich fat stores have proven to be erroneous, highlighting cellular compartments other than lipid droplets. Other methods require specialized equipment, are time-consuming, or yield inconsistent results. We introduce a rapid, reproducible, fixative-based Nile red staining method for the accurate and rapid detection of neutral lipid droplets in C. elegans. A short fixation step in 40% isopropanol makes animals completely permeable to Nile red, which is then used to stain animals. Spectral properties of this lipophilic dye allow it to strongly and selectively fluoresce in the yellow-green spectrum only when in a lipid-rich environment, but not in more polar environments. Thus, lipid droplets can be visualized on a fluorescent microscope equipped with simple GFP imaging capability after only a brief Nile red staining step in isopropanol. The speed, affordability, and reproducibility of this protocol make it ideally suited for high throughput screens. We also demonstrate a paired method for the biochemical determination of triglycerides and phospholipids using gas chromatography mass-spectrometry. This more rigorous protocol should be used as confirmation of results obtained from the Nile red microscopic lipid determination. We anticipate that these techniques will become new standards in the field of C. elegans metabolic research.
Genetics, Issue 73, Biochemistry, Cellular Biology, Molecular Biology, Developmental Biology, Physiology, Anatomy, Caenorhabditis elegans, Obesity, Energy Metabolism, Lipid Metabolism, C. elegans, fluorescent lipid staining, lipids, Nile red, fat, high throughput screening, obesity, gas chromatography, mass spectrometry, GC/MS, animal model
50180
Play Button
Flow Cytometry Analysis of Immune Cells Within Murine Aortas
Authors: Matthew J. Butcher, Margo Herre, Klaus Ley, Elena Galkina.
Institutions: Eastern Virginia Medical School, LaJolla Institute for Allergy and Immunology.
Atherosclerosis is a chronic inflammatory process of medium and large size vessels that is characterized by the formation of plaques consisting of foam cells, immune cells, vascular endothelial and smooth muscle cells, platelets, extracellular matrix, and a lipid-rich core with extensive necrosis and fibrosis of surrounding tissues.1 The innate and adaptive arms of the immune response are involved in the initiation, development and persistence of atherosclerosis.2, 3 There is a significant body of evidence that different subsets of the immune cells, such as macrophages, dendritic cells, T and B lymphocytes, are present within the aortas of healthy and atherosclerosis-prone mice4. Additionally, immune cells are found in the surrounding aortic adventitia which suggests an important role of this tissue in atherogenesis.2 For some time, the quantitative detection of different types of immune cells, their activation status, and the cellular composition within the aortic wall was limited by RT-PCR and immunohistochemical methods for the study of atherosclerosis. Few attempts were made to perform flow cytometry using human aortas, and a number of problems, such as a high autofluorescence, have been reported5,6. Human atherosclerotic plaques were digested with collagenase 1, and free cells were collected and stained for CD14+/CD11c+ to highlight macrophage-derived foam cells. In this study, a "mock" channel was used to avoid false-positive staining.6 Necrotic materials accumulating during the digestion process give rise in a large amount of debris that generates a high autofluorescence in aortic samples. To resolve this problem, a panel of negative and positive controls has been proposed, but only double staining could be applied in these samples. We have developed a new flow cytometry-based method7 to analyze the immune cell composition and characterize the activation, proliferation, differentiation of immune cells in healthy and atherosclerosis-prone aorta. This method allows the investigation of the immune cell composition of the aortic wall and opens possibilities to use a broad spectrum of immunological methods for investigations of immune aspects of this disease.
Immunology, Issue 53, atherosclerosis, immune response, leukocytes, adventitia, flow cytometry
2848
Play Button
Implantation of a Carotid Cuff for Triggering Shear-stress Induced Atherosclerosis in Mice
Authors: Michael T. Kuhlmann, Simon Cuhlmann, Irmgard Hoppe, Rob Krams, Paul C. Evans, Gustav J. Strijkers, Klaas Nicolay, Sven Hermann, Michael Schäfers.
Institutions: Westfälische Wilhelms-University Münster, Imperial College London , Imperial College London , Eindhoven University of Technology.
It is widely accepted that alterations in vascular shear stress trigger the expression of inflammatory genes in endothelial cells and thereby induce atherosclerosis (reviewed in 1 and 2). The role of shear stress has been extensively studied in vitro investigating the influence of flow dynamics on cultured endothelial cells 1,3,4 and in vivo in larger animals and humans 1,5,6,7,8. However, highly reproducible small animal models allowing systematic investigation of the influence of shear stress on plaque development are rare. Recently, Nam et al. 9 introduced a mouse model in which the ligation of branches of the carotid artery creates a region of low and oscillatory flow. Although this model causes endothelial dysfunction and rapid formation of atherosclerotic lesions in hyperlipidemic mice, it cannot be excluded that the observed inflammatory response is, at least in part, a consequence of endothelial and/or vessel damage due to ligation. In order to avoid such limitations, a shear stress modifying cuff has been developed based upon calculated fluid dynamics, whose cone shaped inner lumen was selected to create defined regions of low, high and oscillatory shear stress within the common carotid artery 10. By applying this model in Apolipoprotein E (ApoE) knockout mice fed a high cholesterol western type diet, vascular lesions develop upstream and downstream from the cuff. Their phenotype is correlated with the regional flow dynamics 11 as confirmed by in vivo Magnetic Resonance Imaging (MRI) 12: Low and laminar shear stress upstream of the cuff causes the formation of extensive plaques of a more vulnerable phenotype, whereas oscillatory shear stress downstream of the cuff induces stable atherosclerotic lesions 11. In those regions of high shear stress and high laminar flow within the cuff, typically no atherosclerotic plaques are observed. In conclusion, the shear stress-modifying cuff procedure is a reliable surgical approach to produce phenotypically different atherosclerotic lesions in ApoE-deficient mice.
Medicine, Issue 59, atherosclerosis, mouse, cardiovascular disease, shear stress
3308
Play Button
Ultrasound Assessment of Endothelial-Dependent Flow-Mediated Vasodilation of the Brachial Artery in Clinical Research
Authors: Hugh Alley, Christopher D. Owens, Warren J. Gasper, S. Marlene Grenon.
Institutions: University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, Veterans Affairs Medical Center, San Francisco.
The vascular endothelium is a monolayer of cells that cover the interior of blood vessels and provide both structural and functional roles. The endothelium acts as a barrier, preventing leukocyte adhesion and aggregation, as well as controlling permeability to plasma components. Functionally, the endothelium affects vessel tone. Endothelial dysfunction is an imbalance between the chemical species which regulate vessel tone, thombroresistance, cellular proliferation and mitosis. It is the first step in atherosclerosis and is associated with coronary artery disease, peripheral artery disease, heart failure, hypertension, and hyperlipidemia. The first demonstration of endothelial dysfunction involved direct infusion of acetylcholine and quantitative coronary angiography. Acetylcholine binds to muscarinic receptors on the endothelial cell surface, leading to an increase of intracellular calcium and increased nitric oxide (NO) production. In subjects with an intact endothelium, vasodilation was observed while subjects with endothelial damage experienced paradoxical vasoconstriction. There exists a non-invasive, in vivo method for measuring endothelial function in peripheral arteries using high-resolution B-mode ultrasound. The endothelial function of peripheral arteries is closely related to coronary artery function. This technique measures the percent diameter change in the brachial artery during a period of reactive hyperemia following limb ischemia. This technique, known as endothelium-dependent, flow-mediated vasodilation (FMD) has value in clinical research settings. However, a number of physiological and technical issues can affect the accuracy of the results and appropriate guidelines for the technique have been published. Despite the guidelines, FMD remains heavily operator dependent and presents a steep learning curve. This article presents a standardized method for measuring FMD in the brachial artery on the upper arm and offers suggestions to reduce intra-operator variability.
Medicine, Issue 92, endothelial function, endothelial dysfunction, brachial artery, peripheral artery disease, ultrasound, vascular, endothelium, cardiovascular disease.
52070
Play Button
Optimized Negative Staining: a High-throughput Protocol for Examining Small and Asymmetric Protein Structure by Electron Microscopy
Authors: Matthew Rames, Yadong Yu, Gang Ren.
Institutions: The Molecular Foundry.
Structural determination of proteins is rather challenging for proteins with molecular masses between 40 - 200 kDa. Considering that more than half of natural proteins have a molecular mass between 40 - 200 kDa1,2, a robust and high-throughput method with a nanometer resolution capability is needed. Negative staining (NS) electron microscopy (EM) is an easy, rapid, and qualitative approach which has frequently been used in research laboratories to examine protein structure and protein-protein interactions. Unfortunately, conventional NS protocols often generate structural artifacts on proteins, especially with lipoproteins that usually form presenting rouleaux artifacts. By using images of lipoproteins from cryo-electron microscopy (cryo-EM) as a standard, the key parameters in NS specimen preparation conditions were recently screened and reported as the optimized NS protocol (OpNS), a modified conventional NS protocol 3 . Artifacts like rouleaux can be greatly limited by OpNS, additionally providing high contrast along with reasonably high‐resolution (near 1 nm) images of small and asymmetric proteins. These high-resolution and high contrast images are even favorable for an individual protein (a single object, no average) 3D reconstruction, such as a 160 kDa antibody, through the method of electron tomography4,5. Moreover, OpNS can be a high‐throughput tool to examine hundreds of samples of small proteins. For example, the previously published mechanism of 53 kDa cholesteryl ester transfer protein (CETP) involved the screening and imaging of hundreds of samples 6. Considering cryo-EM rarely successfully images proteins less than 200 kDa has yet to publish any study involving screening over one hundred sample conditions, it is fair to call OpNS a high-throughput method for studying small proteins. Hopefully the OpNS protocol presented here can be a useful tool to push the boundaries of EM and accelerate EM studies into small protein structure, dynamics and mechanisms.
Environmental Sciences, Issue 90, small and asymmetric protein structure, electron microscopy, optimized negative staining
51087
Play Button
A Mouse Model for Pathogen-induced Chronic Inflammation at Local and Systemic Sites
Authors: George Papadopoulos, Carolyn D. Kramer, Connie S. Slocum, Ellen O. Weinberg, Ning Hua, Cynthia V. Gudino, James A. Hamilton, Caroline A. Genco.
Institutions: Boston University School of Medicine, Boston University School of Medicine.
Chronic inflammation is a major driver of pathological tissue damage and a unifying characteristic of many chronic diseases in humans including neoplastic, autoimmune, and chronic inflammatory diseases. Emerging evidence implicates pathogen-induced chronic inflammation in the development and progression of chronic diseases with a wide variety of clinical manifestations. Due to the complex and multifactorial etiology of chronic disease, designing experiments for proof of causality and the establishment of mechanistic links is nearly impossible in humans. An advantage of using animal models is that both genetic and environmental factors that may influence the course of a particular disease can be controlled. Thus, designing relevant animal models of infection represents a key step in identifying host and pathogen specific mechanisms that contribute to chronic inflammation. Here we describe a mouse model of pathogen-induced chronic inflammation at local and systemic sites following infection with the oral pathogen Porphyromonas gingivalis, a bacterium closely associated with human periodontal disease. Oral infection of specific-pathogen free mice induces a local inflammatory response resulting in destruction of tooth supporting alveolar bone, a hallmark of periodontal disease. In an established mouse model of atherosclerosis, infection with P. gingivalis accelerates inflammatory plaque deposition within the aortic sinus and innominate artery, accompanied by activation of the vascular endothelium, an increased immune cell infiltrate, and elevated expression of inflammatory mediators within lesions. We detail methodologies for the assessment of inflammation at local and systemic sites. The use of transgenic mice and defined bacterial mutants makes this model particularly suitable for identifying both host and microbial factors involved in the initiation, progression, and outcome of disease. Additionally, the model can be used to screen for novel therapeutic strategies, including vaccination and pharmacological intervention.
Immunology, Issue 90, Pathogen-Induced Chronic Inflammation; Porphyromonas gingivalis; Oral Bone Loss; Periodontal Disease; Atherosclerosis; Chronic Inflammation; Host-Pathogen Interaction; microCT; MRI
51556
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
51278
Play Button
Isolation, Purification and Labeling of Mouse Bone Marrow Neutrophils for Functional Studies and Adoptive Transfer Experiments
Authors: Muthulekha Swamydas, Michail S. Lionakis.
Institutions: National Institute of Allergy and Infectious Diseases, NIH.
Neutrophils are critical effector cells of the innate immune system. They are rapidly recruited at sites of acute inflammation and exert protective or pathogenic effects depending on the inflammatory milieu. Nonetheless, despite the indispensable role of neutrophils in immunity, detailed understanding of the molecular factors that mediate neutrophils' effector and immunopathogenic effects in different infectious diseases and inflammatory conditions is still lacking, partly because of their short half life, the difficulties with handling of these cells and the lack of reliable experimental protocols for obtaining sufficient numbers of neutrophils for downstream functional studies and adoptive transfer experiments. Therefore, simple, fast, economical and reliable methods are highly desirable for harvesting sufficient numbers of mouse neutrophils for assessing functions such as phagocytosis, killing, cytokine production, degranulation and trafficking. To that end, we present a reproducible density gradient centrifugation-based protocol, which can be adapted in any laboratory to isolate large numbers of neutrophils from the bone marrow of mice with high purity and viability. Moreover, we present a simple protocol that uses CellTracker dyes to label the isolated neutrophils, which can then be adoptively transferred into recipient mice and tracked in several tissues for at least 4 hr post-transfer using flow cytometry. Using this approach, differential labeling of neutrophils from wild-type and gene-deficient mice with different CellTracker dyes can be successfully employed to perform competitive repopulation studies for evaluating the direct role of specific genes in trafficking of neutrophils from the blood into target tissues in vivo.
Immunology, Issue 77, Cellular Biology, Infection, Infectious Diseases, Molecular Biology, Medicine, Biomedical Engineering, Bioengineering, Neutrophils, Adoptive Transfer, immunology, Neutrophils, mouse, bone marrow, adoptive transfer, density gradient, labeling, CellTracker, cell, isolation, flow cytometry, animal model
50586
Play Button
Single Molecule Methods for Monitoring Changes in Bilayer Elastic Properties
Authors: Helgi Ingolfson, Ruchi Kapoor, Shemille A. Collingwood, Olaf Sparre Andersen.
Institutions: Weill Cornell Medical College, Weill Cornell Medical College of Cornell University.
Membrane protein function is regulated by the cell membrane lipid composition. This regulation is due to a combination of specific lipid-protein interactions and more general lipid bilayer-protein interactions. These interactions are particularly important in pharmacological research, as many current pharmaceuticals on the market can alter the lipid bilayer material properties, which can lead to altered membrane protein function. The formation of gramicidin channels are dependent on conformational changes in gramicidin subunits which are in turn dependent on the properties of the lipid. Hence the gramicidin channel current is a reporter of altered properties of the bilayer due to certain compounds.
Cellular Biology, Issue 21, Springer Protocols, Membrane Biophysics, Gramicidin Channels, Artificial Bilayers, Bilayer Elastic Properties,
1032
Play Button
Preparation of Artificial Bilayers for Electrophysiology Experiments
Authors: Ruchi Kapoor, Jung H. Kim, Helgi Ingolfson, Olaf Sparre Andersen.
Institutions: Weill Cornell Medical College of Cornell University.
Planar lipid bilayers, also called artificial lipid bilayers, allow you to study ion-conducting channels in a well-defined environment. These bilayers can be used for many different studies, such as the characterization of membrane-active peptides, the reconstitution of ion channels or investigations on how changes in lipid bilayer properties alter the function of bilayer-spanning channels. Here, we show how to form a planar bilayer and how to isolate small patches from the bilayer, and in a second video will also demonstrate a procedure for using gramicidin channels to determine changes in lipid bilayer elastic properties. We also demonstrate the individual steps needed to prepare the bilayer chamber, the electrodes and how to test that the bilayer is suitable for single-channel measurements.
Cellular Biology, Issue 20, Springer Protocols, Artificial Bilayers, Bilayer Patch Experiments, Lipid Bilayers, Bilayer Punch Electrodes, Electrophysiology
1033
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.