JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Extensive fusion of mitochondria in spinal cord motor neurons.
PLoS ONE
The relative roles played by trafficking, fission and fusion in the dynamics of mitochondria in neurons have not been fully elucidated. In the present study, a slow widespread redistribution of mitochondria within cultured spinal cord motor neurons was observed as a result of extensive organelle fusion. Mitochondria were labeled with a photoconvertible fluorescent protein (mitoKaede) that is red-shifted following brief irradiation with blue light. The behavior of these selectively labeled mitochondria was followed by live fluorescence imaging. Marking mitochondria within the cell soma revealed a complete mixing, within 18 hours, of these organelles with mitochondria coming from the surrounding neurites. Fusion of juxtaposed mitochondria was directly observed in neuritic processes at least 200 microns from the cell body. Within 24 hours, photoconverted mitoKaede was dispersed to all of the mitochondria in the portion of neurite under observation. When time lapse imaging over minutes was combined with long-term observation of marked mitochondria, moving organelles that traversed the field of view did not initially contain photoconverted protein, but after several hours organelles in motion contained both fluorescent proteins, coincident with widespread fusion of all of the mitochondria within the length of neurite under observation. These observations suggest that there is a widespread exchange of mitochondrial components throughout a neuron as a result of organelle fusion.
Authors: Sarah Pickles, Nathalie Arbour, Christine Vande Velde.
Published: 09-18-2014
ABSTRACT
Methods to detect and monitor mitochondrial outer membrane protein components in animal tissues are vital to study mitochondrial physiology and pathophysiology. This protocol describes a technique where mitochondria isolated from rodent tissue are immunolabeled and analyzed by flow cytometry. Mitochondria are isolated from rodent spinal cords and subjected to a rapid enrichment step so as to remove myelin, a major contaminant of mitochondrial fractions prepared from nervous tissue. Isolated mitochondria are then labeled with an antibody of choice and a fluorescently conjugated secondary antibody. Analysis by flow cytometry verifies the relative purity of mitochondrial preparations by staining with a mitochondrial specific dye, followed by detection and quantification of immunolabeled protein. This technique is rapid, quantifiable and high-throughput, allowing for the analysis of hundreds of thousands of mitochondria per sample. It is applicable to assess novel proteins at the mitochondrial surface under normal physiological conditions as well as the proteins that may become mislocalized to this organelle during pathology. Importantly, this method can be coupled to fluorescent indicator dyes to report on certain activities of mitochondrial subpopulations and is feasible for mitochondria from the central nervous system (brain and spinal cord) as well as liver.
26 Related JoVE Articles!
Play Button
A high-throughput method to globally study the organelle morphology in S. cerevisiae
Authors: Shabnam Tavassoli, Jesse Tzu-Cheng Chao, Christopher Loewen.
Institutions: University of British Columbia - UBC.
High-throughput methods to examine protein localization or organelle morphology is an effective tool for studying protein interactions and can help achieve an comprehensive understanding of molecular pathways. In Saccharomyces cerevisiae, with the development of the non-essential gene deletion array, we can globally study the morphology of different organelles like the endoplasmic reticulum (ER) and the mitochondria using GFP (or variant)-markers in different gene backgrounds. However, incorporating GFP markers in each single mutant individually is a labor-intensive process. Here, we describe a procedure that is routinely used in our laboratory. By using a robotic system to handle high-density yeast arrays and drug selection techniques, we can significantly shorten the time required and improve reproducibility. In brief, we cross a GFP-tagged mitochondrial marker (Apc1-GFP) to a high-density array of 4,672 nonessential gene deletion mutants by robotic replica pinning. Through diploid selection, sporulation, germination and dual marker selection, we recover both alleles. As a result, each haploid single mutant contains Apc1-GFP incorporated at its genomic locus. Now, we can study the morphology of mitochondria in all non-essential mutant background. Using this high-throughput approach, we can conveniently study and delineate the pathways and genes involved in the inheritance and the formation of organelles in a genome-wide setting.
Microbiology, Issue 25, High throughput, confocal microscopy, Acp1, mitochondria, endoplasmic reticulum, Saccharomyces cerevisiae
1224
Play Button
Mitochondrial Isolation from Skeletal Muscle
Authors: Mary L. Garcia-Cazarin, Natalie N. Snider, Francisco H. Andrade.
Institutions: University of Kentucky.
Mitochondria are organelles controlling the life and death of the cell. They participate in key metabolic reactions, synthesize most of the ATP, and regulate a number of signaling cascades2,3. Past and current researchers have isolated mitochondria from rat and mice tissues such as liver, brain and heart4,5. In recent years, many researchers have focused on studying mitochondrial function from skeletal muscles. Here, we describe a method that we have used successfully for the isolation of mitochondria from skeletal muscles 6. Our procedure requires that all buffers and reagents are made fresh and need about 250-500 mg of skeletal muscle. We studied mitochondria isolated from rat and mouse gastrocnemius and diaphragm, and rat extraocular muscles. Mitochondrial protein concentration is measured with the Bradford assay. It is important that mitochondrial samples be kept ice-cold during preparation and that functional studies be performed within a relatively short time (~1 hr). Mitochondrial respiration is measured using polarography with a Clark-type electrode (Oxygraph system) at 37°C7. Calibration of the oxygen electrode is a key step in this protocol and it must be performed daily. Isolated mitochondria (150 μg) are added to 0.5 ml of experimental buffer (EB). State 2 respiration starts with addition of glutamate (5mM) and malate (2.5 mM). Then, adenosine diphosphate (ADP) (150 μM) is added to start state 3. Oligomycin (1 μM), an ATPase synthase blocker, is used to estimate state 4. Lastly, carbonyl cyanide p-[trifluoromethoxy]-phenyl-hydrazone (FCCP, 0.2 μM) is added to measurestate 5, or uncoupled respiration 6. The respiratory control ratio (RCR), the ratio of state 3 to state 4, is calculated after each experiment. An RCR ≥4 is considered as evidence of a viable mitochondria preparation. In summary, we present a method for the isolation of viable mitochondria from skeletal muscles that can be used in biochemical (e.g., enzyme activity, immunodetection, proteomics) and functional studies (mitochondrial respiration).
Cellular Biology, Issue 49, Skeletal muscle, homogenization, mitochondrial isolation, mitochondrial respiration
2452
Play Button
Acute Dissociation of Lamprey Reticulospinal Axons to Enable Recording from the Release Face Membrane of Individual Functional Presynaptic Terminals
Authors: Shankar Ramachandran, Simon Alford.
Institutions: University of Illinois at Chicago.
Synaptic transmission is an extremely rapid process. Action potential driven influx of Ca2+ into the presynaptic terminal, through voltage-gated calcium channels (VGCCs) located in the release face membrane, is the trigger for vesicle fusion and neurotransmitter release. Crucial to the rapidity of synaptic transmission is the spatial and temporal synchrony between the arrival of the action potential, VGCCs and the neurotransmitter release machinery. The ability to directly record Ca2+ currents from the release face membrane of individual presynaptic terminals is imperative for a precise understanding of the relationship between presynaptic Ca2+ and neurotransmitter release. Access to the presynaptic release face membrane for electrophysiological recording is not available in most preparations and presynaptic Ca2+ entry has been characterized using imaging techniques and macroscopic current measurements – techniques that do not have sufficient temporal resolution to visualize Ca2+ entry. The characterization of VGCCs directly at single presynaptic terminals has not been possible in central synapses and has thus far been successfully achieved only in the calyx-type synapse of the chick ciliary ganglion and in rat calyces. We have successfully addressed this problem in the giant reticulospinal synapse of the lamprey spinal cord by developing an acutely dissociated preparation of the spinal cord that yields isolated reticulospinal axons with functional presynaptic terminals devoid of postsynaptic structures. We can fluorescently label and identify individual presynaptic terminals and target them for recording. Using this preparation, we have characterized VGCCs directly at the release face of individual presynaptic terminals using immunohistochemistry and electrophysiology approaches. Ca2+ currents have been recorded directly at the release face membrane of individual presynaptic terminals, the first such recording to be carried out at central synapses.
Neuroscience, Issue 92, reticulospinal synapse, reticulospinal axons, presynaptic terminal, presynaptic calcium, voltage-gated calcium channels, vesicle fusion, synaptic transmission, neurotransmitter release, spinal cord, lamprey, synaptic vesicles, acute dissociation
51925
Play Button
Intraspinal Cell Transplantation for Targeting Cervical Ventral Horn in Amyotrophic Lateral Sclerosis and Traumatic Spinal Cord Injury
Authors: Angelo C. Lepore.
Institutions: Thomas Jefferson University Medical College.
Respiratory compromise due to phrenic motor neuron loss is a debilitating consequence of a large proportion of human traumatic spinal cord injury (SCI) cases 1 and is the ultimate cause of death in patients with the motor neuron disorder, amyotrophic laterals sclerosis (ALS) 2. ALS is a devastating neurological disorder that is characterized by relatively rapid degeneration of upper and lower motor neurons. Patients ultimately succumb to the disease on average 2-5 years following diagnosis because of respiratory paralysis due to loss of phrenic motor neuron innnervation of the diaphragm 3. The vast majority of cases are sporadic, while 10% are of the familial form. Approximately twenty percent of familial cases are linked to various point mutations in the Cu/Zn superoxide dismutase 1 (SOD1) gene on chromosome 21 4. Transgenic mice 4,5 and rats 6 carrying mutant human SOD1 genes (G93A, G37R, G86R, G85R) have been generated, and, despite the existence of other animal models of motor neuron loss, are currently the most highly used models of the disease. Spinal cord injury (SCI) is a heterogeneous set of conditions resulting from physical trauma to the spinal cord, with functional outcome varying according to the type, location and severity of the injury 7. Nevertheless, approximately half of human SCI cases affect cervical regions, resulting in debilitating respiratory dysfunction due to phrenic motor neuron loss and injury to descending bulbospinal respiratory axons 1. A number of animal models of SCI have been developed, with the most commonly used and clinically-relevant being the contusion 8. Transplantation of various classes of neural precursor cells (NPCs) is a promising therapeutic strategy for treatment of traumatic CNS injuries and neurodegeneration, including ALS and SCI, because of the ability to replace lost or dysfunctional CNS cell types, provide neuroprotection, and deliver gene factors of interest 9. Animal models of both ALS and SCI can model many clinically-relevant aspects of these diseases, including phrenic motor neuron loss and consequent respiratory compromise 10,11. In order to evaluate the efficacy of NPC-based strategies on respiratory function in these animal models of ALS and SCI, cellular interventions must be specifically directed to regions containing therapeutically relevant targets such as phrenic motor neurons. We provide a detailed protocol for multi-segmental, intraspinal transplantation of NPCs into the cervical spinal cord ventral gray matter of neurodegenerative models such as SOD1G93A mice and rats, as well as spinal cord injured rats and mice 11.
Medicine, Issue 55, cell transplantation, engraftment, graft, spinal cord, stem cells, precursors, ALS, amyotrophic lateral sclerosis, motor neuron, SCI, spinal cord injury
3069
Play Button
Promotion of Survival and Differentiation of Neural Stem Cells with Fibrin and Growth Factor Cocktails after Severe Spinal Cord Injury
Authors: Paul Lu, Lori Graham, Yaozhi Wang, Di Wu, Mark Tuszynski.
Institutions: Veterans Administration Medical Center, San Diego, University of California, San Diego.
Neural stem cells (NSCs) can self-renew and differentiate into neurons and glia. Transplanted NSCs can replace lost neurons and glia after spinal cord injury (SCI), and can form functional relays to re-connect spinal cord segments above and below a lesion. Previous studies grafting neural stem cells have been limited by incomplete graft survival within the spinal cord lesion cavity. Further, tracking of graft cell survival, differentiation, and process extension had not been optimized. Finally, in previous studies, cultured rat NSCs were typically reported to differentiate into glia when grafted to the injured spinal cord, rather than neurons, unless fate was driven to a specific cell type. To address these issues, we developed new methods to improve the survival, integration and differentiation of NSCs to sites of even severe SCI. NSCs were freshly isolated from embryonic day 14 spinal cord (E14) from a stable transgenic Fischer 344 rat line expressing green fluorescent protein (GFP) and were embedded into a fibrin matrix containing growth factors; this formulation aimed to retain grafted cells in the lesion cavity and support cell survival. NSCs in the fibrin/growth factor cocktail were implanted two weeks after thoracic level-3 (T3) complete spinal cord transections, thereby avoiding peak periods of inflammation. Resulting grafts completely filled the lesion cavity and differentiated into both neurons, which extended axons into the host spinal cord over remarkably long distances, and glia. Grafts of cultured human NSCs expressing GFP resulted in similar findings. Thus, methods are defined for improving neural stem cell grafting, survival and analysis of in vivo findings.
Neuroscience, Issue 89, nervous system diseases, wounds and injuries, biological factors, therapeutics, surgical procedures, neural stem cells, transplantation, spinal cord injury, fibrin, growth factors
50641
Play Button
Production of RNA for Transcriptomic Analysis from Mouse Spinal Cord Motor Neuron Cell Bodies by Laser Capture Microdissection
Authors: Urmi Bandyopadhyay, Wayne A. Fenton, Arthur L. Horwich, Maria Nagy.
Institutions: Yale School of Medicine, Howard Hughes Medical Institute.
Preparation of high-quality RNA from cells of interest is critical to precise and meaningful analysis of transcriptional differences among cell types or between the same cell type in health and disease or following pharmacologic treatments. In the spinal cord, such preparation from motor neurons, the target of interest in many neurologic and neurodegenerative diseases, is complicated by the fact that motor neurons represent <10% of the total cell population. Laser capture microdissection (LMD) has been developed to address this problem. Here, we describe a protocol to quickly recover, freeze, and section mouse spinal cord to avoid RNA damage by endogenous and exogenous RNases, followed by staining with Azure B in 70% ethanol to identify the motor neurons while keeping endogenous RNase inhibited. LMD is then used to capture the stained neurons directly into guanidine thiocyanate lysis buffer, maintaining RNA integrity. Standard techniques are used to recover the total RNA and measure its integrity. This material can then be used for downstream analysis of the transcripts by RNA-seq and qRT-PCR.
Neuroscience, Issue 83, Laser capture microdissection, Motor neuron, Spinal cord, Azure B, RNA, RNA-seq, qRT-PCR
51168
Play Button
A Novel Method for Assessing Proximal and Distal Forelimb Function in the Rat: the Irvine, Beatties and Bresnahan (IBB) Forelimb Scale
Authors: Karen-Amanda Irvine, Adam R. Ferguson, Kathleen D. Mitchell, Stephanie B. Beattie, Michael S. Beattie, Jacqueline C. Bresnahan.
Institutions: University of California, San Francisco.
Several experimental models of cervical spinal cord injury (SCI) have been developed recently to assess the consequences of damage to this level of the spinal cord (Pearse et al., 2005, Gensel et al., 2006, Anderson et al., 2009), as the majority of human SCI occur here (Young, 2010; www.sci-info-pages.com). Behavioral deficits include loss of forelimb function due to damage to the white matter affecting both descending motor and ascending sensory systems, and to the gray matter containing the segmental circuitry for processing sensory input and motor output for the forelimb. Additionally, a key priority for human patients with cervical SCI is restoration of hand/arm function (Anderson, 2004). Thus, outcome measures that assess both proximal and distal forelimb function are needed. Although there are several behavioral assays that are sensitive to different aspects of forelimb recovery in experimental models of cervical SCI (Girgis et al., 2007, Gensel et al., 2006, Ballerman et al., 2001, Metz and Whishaw, 2000, Bertelli and Mira, 1993, Montoya et al., 1991, Whishaw and Pellis, 1990), few techniques provide detailed information on the recovery of fine motor control and digit movement. The current measurement technique, the Irvine, Beatties and Bresnahan forelimb scale (IBB), can detect recovery of both proximal and distal forelimb function including digit movements during a naturally occurring behavior that does not require extensive training or deprivation to enhance motivation. The IBB was generated by observing recovery after a unilateral C6 SCI, and involves video recording of animals eating two differently shaped cereals (spherical and doughnut) of a consistent size. These videos were then used to assess features of forelimb use, such as joint position, object support, digit movement and grasping technique. The IBB, like other forelimb behavioral tasks, shows a consistent pattern of recovery that is sensitive to injury severity. Furthermore, the IBB scale could be used to assess recovery following other types of injury that impact normal forelimb function.
Neuroscience, Issue 46, spinal cord injury, recovery of function, forelimb function, neurological test, cervical injuries
2246
Play Button
Chicken Embryo Spinal Cord Slice Culture Protocol
Authors: Kristina C. Tubby, Dee Norval, Stephen R. Price.
Institutions: University College London.
Slice cultures can facilitate the manipulation of embryo development both pharmacologically and through gene manipulations. In this reduced system, potential lethal side effects due to systemic drug applications can be overcome. However, culture conditions must ensure that normal development proceeds within the reduced environment of the slice. We have focused on the development of the spinal cord, particularly that of spinal motor neurons. We systematically varied culture conditions of chicken embryo slices from the point at which most spinal motor neurons had been born. We assayed the number and type of motor neurons that survived during the culture period and the position of those motor neurons compared to that in vivo. We found that serum type and neurotrophic factors were required during the culture period and were able to keep motor neurons alive for at least 24 hr and allow those motor neurons to migrate to appropriate positions in the spinal cord. We present these culture conditions and the methodology of preparing the embryo slice cultures using eviscerated chicken embryos embedded in agarose and sliced using a vibratome.
Developmental Biology, Issue 73, Neurobiology, Neuroscience, Medicine, Cellular Biology, Molecular Biology, Anatomy, Physiology, Biomedical Engineering, Genetics, Surgery, Cells, Animal Structures, Embryonic Structures, Nervous System, spinal cord, embryo, development, Slice-Culture, motor neuron, neurons, immunostaining, chick, imaging, animal model
50295
Play Button
Utilizing Transcranial Magnetic Stimulation to Study the Human Neuromuscular System
Authors: David A. Goss, Richard L. Hoffman, Brian C. Clark.
Institutions: Ohio University.
Transcranial magnetic stimulation (TMS) has been in use for more than 20 years 1, and has grown exponentially in popularity over the past decade. While the use of TMS has expanded to the study of many systems and processes during this time, the original application and perhaps one of the most common uses of TMS involves studying the physiology, plasticity and function of the human neuromuscular system. Single pulse TMS applied to the motor cortex excites pyramidal neurons transsynaptically 2 (Figure 1) and results in a measurable electromyographic response that can be used to study and evaluate the integrity and excitability of the corticospinal tract in humans 3. Additionally, recent advances in magnetic stimulation now allows for partitioning of cortical versus spinal excitability 4,5. For example, paired-pulse TMS can be used to assess intracortical facilitatory and inhibitory properties by combining a conditioning stimulus and a test stimulus at different interstimulus intervals 3,4,6-8. In this video article we will demonstrate the methodological and technical aspects of these techniques. Specifically, we will demonstrate single-pulse and paired-pulse TMS techniques as applied to the flexor carpi radialis (FCR) muscle as well as the erector spinae (ES) musculature. Our laboratory studies the FCR muscle as it is of interest to our research on the effects of wrist-hand cast immobilization on reduced muscle performance6,9, and we study the ES muscles due to these muscles clinical relevance as it relates to low back pain8. With this stated, we should note that TMS has been used to study many muscles of the hand, arm and legs, and should iterate that our demonstrations in the FCR and ES muscle groups are only selected examples of TMS being used to study the human neuromuscular system.
Medicine, Issue 59, neuroscience, muscle, electromyography, physiology, TMS, strength, motor control. sarcopenia, dynapenia, lumbar
3387
Play Button
A Murine Model of Cervical Spinal Cord Injury to Study Post-lesional Respiratory Neuroplasticity
Authors: Emilie Keomani, Thérèse B. Deramaudt, Michel Petitjean, Marcel Bonay, Frédéric Lofaso, Stéphane Vinit.
Institutions: Université de Versailles Saint-Quentin-en-Yvelines, Hôpital Ambroise Paré, Université de Versailles Saint-Quentin-en-Yvelines.
A cervical spinal cord injury induces permanent paralysis, and often leads to respiratory distress. To date, no efficient therapeutics have been developed to improve/ameliorate the respiratory failure following high cervical spinal cord injury (SCI). Here we propose a murine pre-clinical model of high SCI at the cervical 2 (C2) metameric level to study diverse post-lesional respiratory neuroplasticity. The technique consists of a surgical partial injury at the C2 level, which will induce a hemiparalysis of the diaphragm due to a deafferentation of the phrenic motoneurons from the respiratory centers located in the brainstem. The contralateral side of the injury remains intact and allows the animal recovery. Unlike other SCIs which affect the locomotor function (at the thoracic and lumbar level), the respiratory function does not require animal motivation and the quantification of the deficit/recovery can be easily performed (diaphragm and phrenic nerve recordings, whole body ventilation). This pre-clinical C2 SCI model is a powerful, useful, and reliable pre-clinical model to study various respiratory and non-respiratory neuroplasticity events at different levels (molecular to physiology) and to test diverse putative therapeutic strategies which might improve the respiration in SCI patients.
Physiology, Issue 87, rat, cervical spinal cord injury, respiratory deficit, crossed phrenic phenomenon, respiratory neuroplasticity
51235
Play Button
An Ex Vivo Laser-induced Spinal Cord Injury Model to Assess Mechanisms of Axonal Degeneration in Real-time
Authors: Starlyn L. M. Okada, Nicole S. Stivers, Peter K. Stys, David P. Stirling.
Institutions: University of Louisville, University of Calgary.
Injured CNS axons fail to regenerate and often retract away from the injury site. Axons spared from the initial injury may later undergo secondary axonal degeneration. Lack of growth cone formation, regeneration, and loss of additional myelinated axonal projections within the spinal cord greatly limits neurological recovery following injury. To assess how central myelinated axons of the spinal cord respond to injury, we developed an ex vivo living spinal cord model utilizing transgenic mice that express yellow fluorescent protein in axons and a focal and highly reproducible laser-induced spinal cord injury to document the fate of axons and myelin (lipophilic fluorescent dye Nile Red) over time using two-photon excitation time-lapse microscopy. Dynamic processes such as acute axonal injury, axonal retraction, and myelin degeneration are best studied in real-time. However, the non-focal nature of contusion-based injuries and movement artifacts encountered during in vivo spinal cord imaging make differentiating primary and secondary axonal injury responses using high resolution microscopy challenging. The ex vivo spinal cord model described here mimics several aspects of clinically relevant contusion/compression-induced axonal pathologies including axonal swelling, spheroid formation, axonal transection, and peri-axonal swelling providing a useful model to study these dynamic processes in real-time. Major advantages of this model are excellent spatiotemporal resolution that allows differentiation between the primary insult that directly injures axons and secondary injury mechanisms; controlled infusion of reagents directly to the perfusate bathing the cord; precise alterations of the environmental milieu (e.g., calcium, sodium ions, known contributors to axonal injury, but near impossible to manipulate in vivo); and murine models also offer an advantage as they provide an opportunity to visualize and manipulate genetically identified cell populations and subcellular structures. Here, we describe how to isolate and image the living spinal cord from mice to capture dynamics of acute axonal injury.
Neuroscience, Issue 93, spinal cord injury, axon, myelin, two-photon excitation microscopy, Nile Red, axonal degeneration, axonal dieback, axonal retraction
52173
Play Button
A Fluorescence Microscopy Assay for Monitoring Mitophagy in the Yeast Saccharomyces cerevisiae
Authors: Dalibor Mijaljica, Mark Prescott, Rodney J. Devenish.
Institutions: Monash University.
Autophagy is important for turnover of cellular components under a range of different conditions. It serves an essential homeostatic function as well as a quality control mechanism that can target and selectively degrade cellular material including organelles1-4. For example, damaged or redundant mitochondria (Fig. 1), not disposed of by autophagy, can represent a threat to cellular homeostasis and cell survival. In the yeast, Saccharomyces cerevisiae, nutrient deprivation (e.g., nitrogen starvation) or damage can promote selective turnover of mitochondria by autophagy in a process termed mitophagy 5-9. We describe a simple fluorescence microscopy approach to assess autophagy. For clarity we restrict our description here to show how the approach can be used to monitor mitophagy in yeast cells. The assay makes use of a fluorescent reporter, Rosella, which is a dual-emission biosensor comprising a relatively pH-stable red fluorescent protein linked to a pH-sensitive green fluorescent protein. The operation of this reporter relies on differences in pH between the vacuole (pH ~ 5.0-5.5) and mitochondria (pH ~ 8.2) in living cells. Under growing conditions, wild type cells exhibit both red and green fluorescence distributed in a manner characteristic of the mitochondria. Fluorescence emission is not associated with the vacuole. When subjected to nitrogen starvation, a condition which induces mitophagy, in addition to red and green fluorescence labeling the mitochondria, cells exhibit the accumulation of red, but not green fluorescence, in the acidic vacuolar lumen representing the delivery of mitochondria to the vacuole. Scoring cells with red, but not green fluorescent vacuoles can be used as a measure of mitophagic activity in cells5,10-12.
Cell Biology, Issue 53, autophagy, microscopy, mitochondria, nucleus, yeast
2779
Play Button
Monitoring Dynamic Changes In Mitochondrial Calcium Levels During Apoptosis Using A Genetically Encoded Calcium Sensor
Authors: Askar M. Akimzhanov, Darren Boehning.
Institutions: University of Texas Medical Branch.
Dynamic changes in intracellular calcium concentration in response to various stimuli regulates many cellular processes such as proliferation, differentiation, and apoptosis1. During apoptosis, calcium accumulation in mitochondria promotes the release of pro-apoptotic factors from the mitochondria into the cytosol2. It is therefore of interest to directly measure mitochondrial calcium in living cells in situ during apoptosis. High-resolution fluorescent imaging of cells loaded with dual-excitation ratiometric and non-ratiometric synthetic calcium indicator dyes has been proven to be a reliable and versatile tool to study various aspects of intracellular calcium signaling. Measuring cytosolic calcium fluxes using these techniques is relatively straightforward. However, measuring intramitochondrial calcium levels in intact cells using synthetic calcium indicators such as rhod-2 and rhod-FF is more challenging. Synthetic indicators targeted to mitochondria have blunted responses to repetitive increases in mitochondrial calcium, and disrupt mitochondrial morphology3. Additionally, synthetic indicators tend to leak out of mitochondria over several hours which makes them unsuitable for long-term experiments. Thus, genetically encoded calcium indicators based upon green fluorescent protein (GFP)4 or aequorin5 targeted to mitochondria have greatly facilitated measurement of mitochondrial calcium dynamics. Here, we describe a simple method for real-time measurement of mitochondrial calcium fluxes in response to different stimuli. The method is based on fluorescence microscopy of 'ratiometric-pericam' which is selectively targeted to mitochondria. Ratiometric pericam is a calcium indicator based on a fusion of circularly permuted yellow fluorescent protein and calmodulin4. Binding of calcium to ratiometric pericam causes a shift of its excitation peak from 415 nm to 494 nm, while the emission spectrum, which peaks around 515 nm, remains unchanged. Ratiometric pericam binds a single calcium ion with a dissociation constant in vitro of ~1.7 μM4. These properties of ratiometric pericam allow the quantification of rapid and long-term changes in mitochondrial calcium concentration. Furthermore, we describe adaptation of this methodology to a standard wide-field calcium imaging microscope with commonly available filter sets. Using two distinct agonists, the purinergic agonist ATP and apoptosis-inducing drug staurosporine, we demonstrate that this method is appropriate for monitoring changes in mitochondrial calcium concentration with a temporal resolution of seconds to hours. Furthermore, we also demonstrate that ratiometric pericam is also useful for measuring mitochondrial fission/fragmentation during apoptosis. Thus, ratiometric pericam is particularly well suited for continuous long-term measurement of mitochondrial calcium dynamics during apoptosis.
Cellular Biology, Issue 50, Ratiometric pericam, mitochondria, calcium, apoptosis, staurosporine, live cell imaging
2579
Play Button
A Faster, High Resolution, mtPA-GFP-based Mitochondrial Fusion Assay Acquiring Kinetic Data of Multiple Cells in Parallel Using Confocal Microscopy
Authors: Alenka Lovy, Anthony J.A. Molina, Fernanda M. Cerqueira, Kyle Trudeau, Orian S. Shirihai.
Institutions: Tufts School of Medicine, Wake Forest Baptist Medical Center, Boston University Medical Center.
Mitochondrial fusion plays an essential role in mitochondrial calcium homeostasis, bioenergetics, autophagy and quality control. Fusion is quantified in living cells by photo-conversion of matrix targeted photoactivatable GFP (mtPAGFP) in a subset of mitochondria. The rate at which the photoconverted molecules equilibrate across the entire mitochondrial population is used as a measure of fusion activity. Thus far measurements were performed using a single cell time lapse approach, quantifying the equilibration in one cell over an hour. Here, we scale up and automate a previously published live cell method based on using mtPAGFP and a low concentration of TMRE (15 nm). This method involves photoactivating a small portion of the mitochondrial network, collecting highly resolved stacks of confocal sections every 15 min for 1 hour, and quantifying the change in signal intensity. Depending on several factors such as ease of finding PAGFP expressing cells, and the signal of the photoactivated regions, it is possible to collect around 10 cells within the 15 min intervals. This provides a significant improvement in the time efficiency of this assay while maintaining the highly resolved subcellular quantification as well as the kinetic parameters necessary to capture the detail of mitochondrial behavior in its native cytoarchitectural environment. Mitochondrial dynamics play a role in many cellular processes including respiration, calcium regulation, and apoptosis1,2,3,13. The structure of the mitochondrial network affects the function of mitochondria, and the way they interact with the rest of the cell. Undergoing constant division and fusion, mitochondrial networks attain various shapes ranging from highly fused networks, to being more fragmented. Interestingly, Alzheimer's disease, Parkinson's disease, Charcot Marie Tooth 2A, and dominant optic atrophy have been correlated with altered mitochondrial morphology, namely fragmented networks4,10,13. Often times, upon fragmentation, mitochondria become depolarized, and upon accumulation this leads to impaired cell function18. Mitochondrial fission has been shown to signal a cell to progress toward apoptosis. It can also provide a mechanism by which to separate depolarized and inactive mitochondria to keep the bulk of the network robust14. Fusion of mitochondria, on the other hand, leads to sharing of matrix proteins, solutes, mtDNA and the electrochemical gradient, and also seems to prevent progression to apoptosis9. How fission and fusion of mitochondria affects cell homeostasis and ultimately the functioning of the organism needs further understanding, and therefore the continuous development and optimization of how to gather information on these phenomena is necessary. Existing mitochondrial fusion assays have revealed various insights into mitochondrial physiology, each having its own advantages. The hybrid PEG fusion assay7, mixes two populations of differently labeled cells (mtRFP and mtYFP), and analyzes the amount of mixing and colocalization of fluorophores in fused, multinucleated, cells. Although this method has yielded valuable information, not all cell types can fuse, and the conditions under which fusion is stimulated involves the use of toxic drugs that likely affect the normal fusion process. More recently, a cell free technique has been devised, using isolated mitochondria to observe fusion events based on a luciferase assay1,5. Two human cell lines are targeted with either the amino or a carboxy terminal part of Renilla luciferase along with a leucine zipper to ensure dimerization upon mixing. Mitochondria are isolated from each cell line, and fused. The fusion reaction can occur without the cytosol under physiological conditions in the presence of energy, appropriate temperature and inner mitochondrial membrane potential. Interestingly, the cytosol was found to modulate the extent of fusion, demonstrating that cell signaling regulates the fusion process 4,5. This assay will be very useful for high throughput screening to identify components of the fusion machinery and also pharmacological compounds that may affect mitochondrial dynamics. However, more detailed whole cell mitochondrial assays will be needed to complement this in vitro assay to observe these events within a cellular environment. A technique for monitoring whole-cell mitochondrial dynamics has been in use for some time and is based on a mitochondrially-targeted photoactivatable GFP (mtPAGFP)6,11. Upon expression of the mtPAGFP, a small portion of the mitochondrial network is photoactivated (10-20%), and the spread of the signal to the rest of the mitochondrial network is recorded every 15 minutes for 1 hour using time lapse confocal imaging. Each fusion event leads to a dilution of signal intensity, enabling quantification of the fusion rate. Although fusion and fission are continuously occurring in cells, this technique only monitors fusion as fission does not lead to a dilution of the PAGFP signal6. Co-labeling with low levels of TMRE (7-15 nM in INS1 cells) allows quantification of the membrane potential of mitochondria. When mitochondria are hyperpolarized they uptake more TMRE, and when they depolarize they lose the TMRE dye. Mitochondria that depolarize no longer have a sufficient membrane potential and tend not to fuse as efficiently if at all. Therefore, active fusing mitochondria can be tracked with these low levels of TMRE9,15. Accumulation of depolarized mitochondria that lack a TMRE signal may be a sign of phototoxicity or cell death. Higher concentrations of TMRE render mitochondria very sensitive to laser light, and therefore great care must be taken to avoid overlabeling with TMRE. If the effect of depolarization of mitochondria is the topic of interest, a technique using slightly higher levels of TMRE and more intense laser light can be used to depolarize mitochondria in a controlled fashion (Mitra and Lippincott-Schwartz, 2010). To ensure that toxicity due to TMRE is not an issue, we suggest exposing loaded cells (3-15 nM TMRE) to the imaging parameters that will be used in the assay (perhaps 7 stacks of 6 optical sections in a row), and assessing cell health after 2 hours. If the mitochondria appear too fragmented and cells are dying, other mitochondrial markers, such as dsRED or Mitotracker red could be used instead of TMRE. The mtPAGFP method has revealed details about mitochondrial network behavior that could not be visualized using other methods. For example, we now know that mitochondrial fusion can be full or transient, where matrix content can mix without changing the overall network morphology. Additionally, we know that the probability of fusion is independent of contact duration and organelle dimension, is influenced by organelle motility, membrane potential and history of previous fusion activity8,15,16,17. In this manuscript, we describe a methodology for scaling up the previously published protocol using mtPAGFP and 15nM TMRE8 in order to examine multiple cells at a time and improve the time efficiency of data collection without sacrificing the subcellular resolution. This has been made possible by the use of an automated microscope stage, and programmable image acquisition software. Zen software from Zeiss allows the user to mark and track several designated cells expressing mtPAGFP. Each of these cells can be photoactivated in a particular region of interest, and stacks of confocal slices can be monitored for mtPAGFP signal as well as TMRE at specified intervals. Other confocal systems could be used to perform this protocol provided there is an automated stage that is programmable, an incubator with CO2, and a means by which to photoactivate the PAGFP; either a multiphoton laser, or a 405 nm diode laser.
Molecular Biology, Issue 65, Genetics, Cellular Biology, Physics, confocal microscopy, mitochondria, fusion, TMRE, mtPAGFP, INS1, mitochondrial dynamics, mitochondrial morphology, mitochondrial network
3991
Play Button
Methods to Assess Subcellular Compartments of Muscle in C. elegans
Authors: Christopher J. Gaffney, Joseph J. Bass, Thomas F. Barratt, Nathaniel J. Szewczyk.
Institutions: University of Nottingham.
Muscle is a dynamic tissue that responds to changes in nutrition, exercise, and disease state. The loss of muscle mass and function with disease and age are significant public health burdens. We currently understand little about the genetic regulation of muscle health with disease or age. The nematode C. elegans is an established model for understanding the genomic regulation of biological processes of interest. This worm’s body wall muscles display a large degree of homology with the muscles of higher metazoan species. Since C. elegans is a transparent organism, the localization of GFP to mitochondria and sarcomeres allows visualization of these structures in vivo. Similarly, feeding animals cationic dyes, which accumulate based on the existence of a mitochondrial membrane potential, allows the assessment of mitochondrial function in vivo. These methods, as well as assessment of muscle protein homeostasis, are combined with assessment of whole animal muscle function, in the form of movement assays, to allow correlation of sub-cellular defects with functional measures of muscle performance. Thus, C. elegans provides a powerful platform with which to assess the impact of mutations, gene knockdown, and/or chemical compounds upon muscle structure and function. Lastly, as GFP, cationic dyes, and movement assays are assessed non-invasively, prospective studies of muscle structure and function can be conducted across the whole life course and this at present cannot be easily investigated in vivo in any other organism.
Developmental Biology, Issue 93, Physiology, C. elegans, muscle, mitochondria, sarcomeres, ageing
52043
Play Button
Ratiometric Biosensors that Measure Mitochondrial Redox State and ATP in Living Yeast Cells
Authors: Jason D. Vevea, Dana M. Alessi Wolken, Theresa C. Swayne, Adam B. White, Liza A. Pon.
Institutions: Columbia University, Columbia University.
Mitochondria have roles in many cellular processes, from energy metabolism and calcium homeostasis to control of cellular lifespan and programmed cell death. These processes affect and are affected by the redox status of and ATP production by mitochondria. Here, we describe the use of two ratiometric, genetically encoded biosensors that can detect mitochondrial redox state and ATP levels at subcellular resolution in living yeast cells. Mitochondrial redox state is measured using redox-sensitive Green Fluorescent Protein (roGFP) that is targeted to the mitochondrial matrix. Mito-roGFP contains cysteines at positions 147 and 204 of GFP, which undergo reversible and environment-dependent oxidation and reduction, which in turn alter the excitation spectrum of the protein. MitGO-ATeam is a Förster resonance energy transfer (FRET) probe in which the ε subunit of the FoF1-ATP synthase is sandwiched between FRET donor and acceptor fluorescent proteins. Binding of ATP to the ε subunit results in conformation changes in the protein that bring the FRET donor and acceptor in close proximity and allow for fluorescence resonance energy transfer from the donor to acceptor.
Bioengineering, Issue 77, Microbiology, Cellular Biology, Molecular Biology, Biochemistry, life sciences, roGFP, redox-sensitive green fluorescent protein, GO-ATeam, ATP, FRET, ROS, mitochondria, biosensors, GFP, ImageJ, microscopy, confocal microscopy, cell, imaging
50633
Play Button
Preparation of Primary Neurons for Visualizing Neurites in a Frozen-hydrated State Using Cryo-Electron Tomography
Authors: Sarah H. Shahmoradian, Mauricio R. Galiano, Chengbiao Wu, Shurui Chen, Matthew N. Rasband, William C. Mobley, Wah Chiu.
Institutions: Baylor College of Medicine, Baylor College of Medicine, University of California at San Diego, Baylor College of Medicine.
Neurites, both dendrites and axons, are neuronal cellular processes that enable the conduction of electrical impulses between neurons. Defining the structure of neurites is critical to understanding how these processes move materials and signals that support synaptic communication. Electron microscopy (EM) has been traditionally used to assess the ultrastructural features within neurites; however, the exposure to organic solvent during dehydration and resin embedding can distort structures. An important unmet goal is the formulation of procedures that allow for structural evaluations not impacted by such artifacts. Here, we have established a detailed and reproducible protocol for growing and flash-freezing whole neurites of different primary neurons on electron microscopy grids followed by their examination with cryo-electron tomography (cryo-ET). This technique allows for 3-D visualization of frozen, hydrated neurites at nanometer resolution, facilitating assessment of their morphological differences. Our protocol yields an unprecedented view of dorsal root ganglion (DRG) neurites, and a visualization of hippocampal neurites in their near-native state. As such, these methods create a foundation for future studies on neurites of both normal neurons and those impacted by neurological disorders.
Neuroscience, Issue 84, Neurons, Cryo-electron Microscopy, Electron Microscope Tomography, Brain, rat, primary neuron culture, morphological assay
50783
Play Button
Isolation of Cellular Lipid Droplets: Two Purification Techniques Starting from Yeast Cells and Human Placentas
Authors: Jaana Mannik, Alex Meyers, Paul Dalhaimer.
Institutions: University of Tennessee, University of Tennessee.
Lipid droplets are dynamic organelles that can be found in most eukaryotic and certain prokaryotic cells. Structurally, the droplets consist of a core of neutral lipids surrounded by a phospholipid monolayer. One of the most useful techniques in determining the cellular roles of droplets has been proteomic identification of bound proteins, which can be isolated along with the droplets. Here, two methods are described to isolate lipid droplets and their bound proteins from two wide-ranging eukaryotes: fission yeast and human placental villous cells. Although both techniques have differences, the main method - density gradient centrifugation - is shared by both preparations. This shows the wide applicability of the presented droplet isolation techniques. In the first protocol, yeast cells are converted into spheroplasts by enzymatic digestion of their cell walls. The resulting spheroplasts are then gently lysed in a loose-fitting homogenizer. Ficoll is added to the lysate to provide a density gradient, and the mixture is centrifuged three times. After the first spin, the lipid droplets are localized to the white-colored floating layer of the centrifuge tubes along with the endoplasmic reticulum (ER), the plasma membrane, and vacuoles. Two subsequent spins are used to remove these other three organelles. The result is a layer that has only droplets and bound proteins. In the second protocol, placental villous cells are isolated from human term placentas by enzymatic digestion with trypsin and DNase I. The cells are homogenized in a loose-fitting homogenizer. Low-speed and medium-speed centrifugation steps are used to remove unbroken cells, cellular debris, nuclei, and mitochondria. Sucrose is added to the homogenate to provide a density gradient and the mixture is centrifuged to separate the lipid droplets from the other cellular fractions. The purity of the lipid droplets in both protocols is confirmed by Western Blot analysis. The droplet fractions from both preps are suitable for subsequent proteomic and lipidomic analysis.
Bioengineering, Issue 86, Lipid droplet, lipid body, fat body, oil body, Yeast, placenta, placental villous cells, isolation, purification, density gradient centrifugation
50981
Play Button
Enhancement of Apoptotic and Autophagic Induction by a Novel Synthetic C-1 Analogue of 7-deoxypancratistatin in Human Breast Adenocarcinoma and Neuroblastoma Cells with Tamoxifen
Authors: Dennis Ma, Jonathan Collins, Tomas Hudlicky, Siyaram Pandey.
Institutions: University of Windsor, Brock University.
Breast cancer is one of the most common cancers amongst women in North America. Many current anti-cancer treatments, including ionizing radiation, induce apoptosis via DNA damage. Unfortunately, such treatments are non-selective to cancer cells and produce similar toxicity in normal cells. We have reported selective induction of apoptosis in cancer cells by the natural compound pancratistatin (PST). Recently, a novel PST analogue, a C-1 acetoxymethyl derivative of 7-deoxypancratistatin (JCTH-4), was produced by de novo synthesis and it exhibits comparable selective apoptosis inducing activity in several cancer cell lines. Recently, autophagy has been implicated in malignancies as both pro-survival and pro-death mechanisms in response to chemotherapy. Tamoxifen (TAM) has invariably demonstrated induction of pro-survival autophagy in numerous cancers. In this study, the efficacy of JCTH-4 alone and in combination with TAM to induce cell death in human breast cancer (MCF7) and neuroblastoma (SH-SY5Y) cells was evaluated. TAM alone induced autophagy, but insignificant cell death whereas JCTH-4 alone caused significant induction of apoptosis with some induction of autophagy. Interestingly, the combinatory treatment yielded a drastic increase in apoptotic and autophagic induction. We monitored time-dependent morphological changes in MCF7 cells undergoing TAM-induced autophagy, JCTH-4-induced apoptosis and autophagy, and accelerated cell death with combinatorial treatment using time-lapse microscopy. We have demonstrated these compounds to induce apoptosis/autophagy by mitochondrial targeting in these cancer cells. Importantly, these treatments did not affect the survival of noncancerous human fibroblasts. Thus, these results indicate that JCTH-4 in combination with TAM could be used as a safe and very potent anti-cancer therapy against breast cancer and neuroblastoma cells.
Cancer Biology, Issue 63, Medicine, Biochemistry, Breast adenocarcinoma, neuroblastoma, tamoxifen, combination therapy, apoptosis, autophagy
3586
Play Button
Using Microfluidics Chips for Live Imaging and Study of Injury Responses in Drosophila Larvae
Authors: Bibhudatta Mishra, Mostafa Ghannad-Rezaie, Jiaxing Li, Xin Wang, Yan Hao, Bing Ye, Nikos Chronis, Catherine A. Collins.
Institutions: University of Michigan, University of Michigan, University of Michigan, University of Michigan, University of Michigan.
Live imaging is an important technique for studying cell biological processes, however this can be challenging in live animals. The translucent cuticle of the Drosophila larva makes it an attractive model organism for live imaging studies. However, an important challenge for live imaging techniques is to noninvasively immobilize and position an animal on the microscope. This protocol presents a simple and easy to use method for immobilizing and imaging Drosophila larvae on a polydimethylsiloxane (PDMS) microfluidic device, which we call the 'larva chip'. The larva chip is comprised of a snug-fitting PDMS microchamber that is attached to a thin glass coverslip, which, upon application of a vacuum via a syringe, immobilizes the animal and brings ventral structures such as the nerve cord, segmental nerves, and body wall muscles, within close proximity to the coverslip. This allows for high-resolution imaging, and importantly, avoids the use of anesthetics and chemicals, which facilitates the study of a broad range of physiological processes. Since larvae recover easily from the immobilization, they can be readily subjected to multiple imaging sessions. This allows for longitudinal studies over time courses ranging from hours to days. This protocol describes step-by-step how to prepare the chip and how to utilize the chip for live imaging of neuronal events in 3rd instar larvae. These events include the rapid transport of organelles in axons, calcium responses to injury, and time-lapse studies of the trafficking of photo-convertible proteins over long distances and time scales. Another application of the chip is to study regenerative and degenerative responses to axonal injury, so the second part of this protocol describes a new and simple procedure for injuring axons within peripheral nerves by a segmental nerve crush.
Bioengineering, Issue 84, Drosophila melanogaster, Live Imaging, Microfluidics, axonal injury, axonal degeneration, calcium imaging, photoconversion, laser microsurgery
50998
Play Button
Isolation of mRNAs Associated with Yeast Mitochondria to Study Mechanisms of Localized Translation
Authors: Chen Lesnik, Yoav Arava.
Institutions: Technion - Israel Institute of Technology.
Most of mitochondrial proteins are encoded in the nucleus and need to be imported into the organelle. Import may occur while the protein is synthesized near the mitochondria. Support for this possibility is derived from recent studies, in which many mRNAs encoding mitochondrial proteins were shown to be localized to the mitochondria vicinity. Together with earlier demonstrations of ribosomes’ association with the outer membrane, these results suggest a localized translation process. Such localized translation may improve import efficiency, provide unique regulation sites and minimize cases of ectopic expression. Diverse methods have been used to characterize the factors and elements that mediate localized translation. Standard among these is subcellular fractionation by differential centrifugation. This protocol has the advantage of isolation of mRNAs, ribosomes and proteins in a single procedure. These can then be characterized by various molecular and biochemical methods. Furthermore, transcriptomics and proteomics methods can be applied to the resulting material, thereby allow genome-wide insights. The utilization of yeast as a model organism for such studies has the advantages of speed, costs and simplicity. Furthermore, the advanced genetic tools and available deletion strains facilitate verification of candidate factors.
Biochemistry, Issue 85, mitochondria, mRNA localization, Yeast, S. cerevisiae, microarray, localized translation, biochemical fractionation
51265
Play Button
Neuromodulation and Mitochondrial Transport: Live Imaging in Hippocampal Neurons over Long Durations
Authors: David B. Edelman, Geoffrey C. Owens, Sigeng Chen.
Institutions: The Neurosciences Institute.
To understand the relationship between mitochondrial transport and neuronal function, it is critical to observe mitochondrial behavior in live cultured neurons for extended durations1-3. This is now possible through the use of vital dyes and fluorescent proteins with which cytoskeletal components, organelles, and other structures in living cells can be labeled and then visualized via dynamic fluorescence microscopy. For example, in embryonic chicken sympathetic neurons, mitochondrial movement was characterized using the vital dye rhodamine 1234. In another study, mitochondria were visualized in rat forebrain neurons by transfection of mitochondrially targeted eYFP5. However, imaging of primary neurons over minutes, hours, or even days presents a number of issues. Foremost among these are: 1) maintenance of culture conditions such as temperature, humidity, and pH during long imaging sessions; 2) a strong, stable fluorescent signal to assure both the quality of acquired images and accurate measurement of signal intensity during image analysis; and 3) limiting exposure times during image acquisition to minimize photobleaching and avoid phototoxicity. Here, we describe a protocol that permits the observation, visualization, and analysis of mitochondrial movement in cultured hippocampal neurons with high temporal resolution and under optimal life support conditions. We have constructed an affordable stage-top incubator that provides good temperature regulation and atmospheric gas flow, and also limits the degree of media evaporation, assuring stable pH and osmolarity. This incubator is connected, via inlet and outlet hoses, to a standard tissue culture incubator, which provides constant humidity levels and an atmosphere of 5-10% CO2/air. This design offers a cost-effective alternative to significantly more expensive microscope incubators that don't necessarily assure the viability of cells over many hours or even days. To visualize mitochondria, we infect cells with a lentivirus encoding a red fluorescent protein that is targeted to the mitochondrion. This assures a strong and persistent signal, which, in conjunction with the use of a stable xenon light source, allows us to limit exposure times during image acquisition and all but precludes photobleaching and phototoxicity. Two injection ports on the top of the stage-top incubator allow the acute administration of neurotransmitters and other reagents intended to modulate mitochondrial movement. In sum, lentivirus-mediated expression of an organelle-targeted red fluorescent protein and the combination of our stage-top incubator, a conventional inverted fluorescence microscope, CCD camera, and xenon light source allow us to acquire time-lapse images of mitochondrial transport in living neurons over longer durations than those possible in studies deploying conventional vital dyes and off-the-shelf life support systems.
Neuroscience, Issue 52, Mitochondria, Transport, Neuromodulation, Hippocampal neuron, Serotonin, Dopamine, Fluorescence, Time-lapse, Live imaging, Stage-top incubator
2599
Play Button
Purification of Mitochondria from Yeast Cells
Authors: Christopher Gregg, Pavlo Kyryakov, Vladimir I. Titorenko.
Institutions: Concordia University.
Mitochondria are the main site of ATP production during aerobic metabolism in eukaryotic non-photosynthetic cells1. These complex organelles also play essential roles in apoptotic cell death2, cell survival3, mammalian development4, neuronal development and function4, intracellular signalling5, and longevity regulation6. Our understanding of these complex biological processes controlled by mitochondria relies on robust methods for assessing their morphology, their protein and lipid composition, the integrity of their DNA, and their numerous vital functions. The budding yeast Saccharomyces cerevisiae, a genetically and biochemically manipulable unicellular eukaryote with annotated genome and well-defined proteome, is a valuable model for studying the molecular and cellular mechanisms underlying essential biological functions of mitochondria. For these types of studies, it is crucial to have highly pure mitochondria. Here we present a detailed description of a rapid and effective method for purification of yeast mitochondria. This method enables the isolation of highly pure mitochondria that are essentially free of contamination by other organelles and retain their structural and functional integrity after their purification. Mitochondria purified by this method are suitable for cell-free reconstitution of essential mitochondrial processes and can be used for the analysis of mitochondrial structure and functions, mitochondrial proteome and lipidome, and mitochondrial DNA.
Cellular Biology, Issue 30, subcellular fractionation, organelles, organelle purification, mitochondria
1417
Play Button
Live Imaging of Dense-core Vesicles in Primary Cultured Hippocampal Neurons
Authors: David M. Kwinter, Michael A. Silverman.
Institutions: Simon Fraser University.
Observing and characterizing dynamic cellular processes can yield important information about cellular activity that cannot be gained from static images. Vital fluorescent probes, particularly green fluorescent protein (GFP) have revolutionized cell biology stemming from the ability to label specific intracellular compartments and cellular structures. For example, the live imaging of GFP (and its spectral variants) chimeras have allowed for a dynamic analysis of the cytoskeleton, organelle transport, and membrane dynamics in a multitude of organisms and cell types [1-3]. Although live imaging has become prevalent, this approach still poses many technical challenges, particularly in primary cultured neurons. One challenge is the expression of GFP-tagged proteins in post-mitotic neurons; the other is the ability to capture fluorescent images while minimizing phototoxicity, photobleaching, and maintaining general cell health. Here we provide a protocol that describes a lipid-based transfection method that yields a relatively low transfection rate (~0.5%), however is ideal for the imaging of fully polarized neurons. A low transfection rate is essential so that single axons and dendrites can be characterized as to their orientation to the cell body to confirm directionality of transport, i.e., anterograde v. retrograde. Our approach to imaging GFP expressing neurons relies on a standard wide-field fluorescent microscope outfitted with a CCD camera, image capture software, and a heated imaging chamber. We have imaged a wide variety of organelles or structures, for example, dense-core vesicles, mitochondria, growth cones, and actin without any special optics or excitation requirements other than a fluorescent light source. Additionally, spectrally-distinct, fluorescently labeled proteins, e.g., GFP and dsRed-tagged proteins, can be visualized near simultaneously to characterize co-transport or other coordinated cellular events. The imaging approach described here is flexible for a variety of imaging applications and can be adopted by a laboratory for relatively little cost provided a microscope is available.
Neuroscience, Issue 27, Live cell imaging, intracellular transport, membrane-bound organelles, green fluorescent protein, hippocampal neurons, transfection, fluorescence microscopy
1144
Play Button
Photoconversion of Purified Fluorescent Proteins and Dual-probe Optical Highlighting in Live Cells
Authors: Gert-Jan Kremers, David Piston.
Institutions: Vanderbilt University.
Photoconvertible fluorescent proteins (pc-FPs) are a class of fluorescent proteins with "optical highlighter" capability, meaning that the color of fluorescence can be changed by exposure to light of a specific wavelength. Optical highlighting allows noninvasive marking of a subpopulation of fluorescent molecules, and is therefore ideal for tracking single cells or organelles. Critical parameters for efficient photoconversion are the intensity and the exposure time of the photoconversion light. If the intensity is too low, photoconversion will be slow or not occur at all. On the other hand, too much intensity or too long exposure can photobleach the protein and thereby reduce the efficiency of photoconversion. This protocol describes a general approach how to set up a confocal laser scanning microscope for pc-FP photoconversion applications. First, we describe a procedure for preparing purified protein droplet samples. This sample format is very convenient for studying the photophysical behavior of fluorescent proteins under the microscope. Second, we will use the protein droplet sample to show how to configure the microscope for photoconversion. And finally, we will show how to perform optical highlighting in live cells, including dual-probe optical highlighting with mOrange2 and Dronpa.
Cellular Biology, Issue 40, mOrange, Dronpa, photoconversion, photoactivation, octanol, droplet, confocal, imaging
1995
Play Button
Preparation of Highly Coupled Rat Heart Mitochondria
Authors: Irina Gostimskaya, Alexander Galkin.
Institutions: University of Manchester, Queen's University Belfast.
The function of mitochondria in generation of cellular ATP in the process of oxidative phosphorylation is widely recognised. During the past decades there have been significant advances in our understanding of the functions of mitochondria other than the generation of energy. These include their role in apoptosis, acting as signalling organelles, mammalian development and ageing as well as their contribution to the coordination between cell metabolism and cell proliferation. Our understanding of biological processes modulated by mitochondria is based on robust methods for isolation and handling of intact mitochondria from tissues of the laboratory animals. Mitochondria from rat heart is one of the most common preparations for past and current studies of cellular metabolism including studies on knock-out animals. Here we describe a detailed rapid method for isolation of intact mitochondria with a high degree of coupling. Such preparation of rat heart mitochondria is an excellent object for functional and structural research on cellular bioenergetics, transport of biomolecules, proteomic studies and analysis of mitochondrial DNA, proteins and lipids.
Cellular Biology, Issue 43, Bioenergetics, Mitochondriology, Mitochondria Purification, Oxidative Phosphorylation, Cellular Respiration, Cardiology
2202
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.