JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Ca2+ regulates the Drosophila Stoned-A and Stoned-B proteins interaction with the C2B domain of Synaptotagmin-1.
The dicistronic Drosophila stoned gene is involved in exocytosis and/or endocytosis of synaptic vesicles. Mutations in either stonedA or stonedB cause a severe disruption of neurotransmission in fruit flies. Previous studies have shown that the coiled-coil domain of the Stoned-A and the µ-homology domain of the Stoned-B protein can interact with the C2B domain of Synaptotagmin-1. However, very little is known about the mechanism of interaction between the Stoned proteins and the C2B domain of Synaptotagmin-1. Here we report that these interactions are increased in the presence of Ca(2+). The Ca(2+)-dependent interaction between the µ-homology domain of Stoned-B and C2B domain of Synaptotagmin-1 is affected by phospholipids. The C-terminal region of the C2B domain, including the tryptophan-containing motif, and the Ca(2+) binding loop region that modulate the Ca(2+)-dependent oligomerization, regulates the binding of the Stoned-A and Stoned-B proteins to the C2B domain. Stoned-B, but not Stoned-A, interacts with the Ca(2+)-binding loop region of C2B domain. The results indicate that Ca(2+)-induced self-association of the C2B domain regulates the binding of both Stoned-A and Stoned-B proteins to Synaptotagmin-1. The Stoned proteins may regulate sustainable neurotransmission in vivo by binding to Ca(2+)-bound Synaptotagmin-1 associated synaptic vesicles.
Authors: David E. Featherstone, Kaiyun Chen, Kendal Broadie.
Published: 05-20-2009
Drosophila is a premier genetic model for the study of both embryonic development and functional neuroscience. Traditionally, these fields are quite isolated from each other, with largely independent histories and scientific communities. However, the interface between these usually disparate fields is the developmental programs underlying acquisition of functional electrical signaling properties and differentiation of functional chemical synapses during the final phases of neural circuit formation. This interface is a critically important area for investigation. In Drosophila, these phases of functional development occur during a period of <8 hours (at 25°C) during the last third of embryogenesis. This late developmental period was long considered intractable to investigation owing to the deposition of a tough, impermeable epidermal cuticle. A breakthrough advance was the application of water-polymerizing surgical glue that can be locally applied to the cuticle to enable controlled dissection of late-stage embryos. With a dorsal longitudinal incision, the embryo can be laid flat, exposing the ventral nerve cord and body wall musculature to experimental investigation. This system has been heavily used to isolate and characterize genetic mutants that impair embryonic synapse formation, and thus reveal the molecular mechanisms governing the specification and differentiation of synapse connections and functional synaptic signaling properties.
21 Related JoVE Articles!
Play Button
Pull-down of Calmodulin-binding Proteins
Authors: Kanwardeep S. Kaleka, Amber N. Petersen, Matthew A. Florence, Nashaat Z. Gerges.
Institutions: Medical College of Wisconsin .
Calcium (Ca2+) is an ion vital in regulating cellular function through a variety of mechanisms. Much of Ca2+ signaling is mediated through the calcium-binding protein known as calmodulin (CaM)1,2. CaM is involved at multiple levels in almost all cellular processes, including apoptosis, metabolism, smooth muscle contraction, synaptic plasticity, nerve growth, inflammation and the immune response. A number of proteins help regulate these pathways through their interaction with CaM. Many of these interactions depend on the conformation of CaM, which is distinctly different when bound to Ca2+ (Ca2+-CaM) as opposed to its Ca2+-free state (ApoCaM)3. While most target proteins bind Ca2+-CaM, certain proteins only bind to ApoCaM. Some bind CaM through their IQ-domain, including neuromodulin4, neurogranin (Ng)5, and certain myosins6. These proteins have been shown to play important roles in presynaptic function7, postsynaptic function8, and muscle contraction9, respectively. Their ability to bind and release CaM in the absence or presence of Ca2+ is pivotal in their function. In contrast, many proteins only bind Ca2+-CaM and require this binding for their activation. Examples include myosin light chain kinase10, Ca2+/CaM-dependent kinases (CaMKs)11 and phosphatases (e.g. calcineurin)12, and spectrin kinase13, which have a variety of direct and downstream effects14. The effects of these proteins on cellular function are often dependent on their ability to bind to CaM in a Ca2+-dependent manner. For example, we tested the relevance of Ng-CaM binding in synaptic function and how different mutations affect this binding. We generated a GFP-tagged Ng construct with specific mutations in the IQ-domain that would change the ability of Ng to bind CaM in a Ca2+-dependent manner. The study of these different mutations gave us great insight into important processes involved in synaptic function8,15. However, in such studies, it is essential to demonstrate that the mutated proteins have the expected altered binding to CaM. Here, we present a method for testing the ability of proteins to bind to CaM in the presence or absence of Ca2+, using CaMKII and Ng as examples. This method is a form of affinity chromatography referred to as a CaM pull-down assay. It uses CaM-Sepharose beads to test proteins that bind to CaM and the influence of Ca2+ on this binding. It is considerably more time efficient and requires less protein relative to column chromatography and other assays. Altogether, this provides a valuable tool to explore Ca2+/CaM signaling and proteins that interact with CaM.
Molecular BIology, Issue 59, Calmodulin, calcium, IQ-motif, affinity chromatography, pull-down, Ca2+/Calmodulin-dependent Kinase II, neurogranin
Play Button
Orthogonal Protein Purification Facilitated by a Small Bispecific Affinity Tag
Authors: Johan Nilvebrant, Tove Alm, Sophia Hober.
Institutions: Royal Institute of Technology.
Due to the high costs associated with purification of recombinant proteins the protocols need to be rationalized. For high-throughput efforts there is a demand for general methods that do not require target protein specific optimization1 . To achieve this, purification tags that genetically can be fused to the gene of interest are commonly used2 . The most widely used affinity handle is the hexa-histidine tag, which is suitable for purification under both native and denaturing conditions3 . The metabolic burden for producing the tag is low, but it does not provide as high specificity as competing affinity chromatography based strategies1,2. Here, a bispecific purification tag with two different binding sites on a 46 amino acid, small protein domain has been developed. The albumin-binding domain is derived from Streptococcal protein G and has a strong inherent affinity to human serum albumin (HSA). Eleven surface-exposed amino acids, not involved in albumin-binding4 , were genetically randomized to produce a combinatorial library. The protein library with the novel randomly arranged binding surface (Figure 1) was expressed on phage particles to facilitate selection of binders by phage display technology. Through several rounds of biopanning against a dimeric Z-domain derived from Staphylococcal protein A5, a small, bispecific molecule with affinity for both HSA and the novel target was identified6 . The novel protein domain, referred to as ABDz1, was evaluated as a purification tag for a selection of target proteins with different molecular weight, solubility and isoelectric point. Three target proteins were expressed in Escherishia coli with the novel tag fused to their N-termini and thereafter affinity purified. Initial purification on either a column with immobilized HSA or Z-domain resulted in relatively pure products. Two-step affinity purification with the bispecific tag resulted in substantial improvement of protein purity. Chromatographic media with the Z-domain immobilized, for example MabSelect SuRe, are readily available for purification of antibodies and HSA can easily be chemically coupled to media to provide the second matrix. This method is especially advantageous when there is a high demand on purity of the recovered target protein. The bifunctionality of the tag allows two different chromatographic steps to be used while the metabolic burden on the expression host is limited due to the small size of the tag. It provides a competitive alternative to so called combinatorial tagging where multiple tags are used in combination1,7.
Molecular Biology, Issue 59, Affinity chromatography, albumin-binding domain, human serum albumin, Z-domain
Play Button
Bimolecular Fluorescence Complementation
Authors: Katy A. Wong, John P. O'Bryan.
Institutions: University of Illinois at Chicago.
Defining the subcellular distribution of signaling complexes is imperative to understanding the output from that complex. Conventional methods such as immunoprecipitation do not provide information on the spatial localization of complexes. In contrast, BiFC monitors the interaction and subcellular compartmentalization of protein complexes. In this method, a fluororescent protein is split into amino- and carboxy-terminal non-fluorescent fragments which are then fused to two proteins of interest. Interaction of the proteins results in reconstitution of the fluorophore (Figure 1)1,2. A limitation of BiFC is that once the fragmented fluorophore is reconstituted the complex is irreversible3. This limitation is advantageous in detecting transient or weak interactions, but precludes a kinetic analysis of complex dynamics. An additional caveat is that the reconstituted flourophore requires 30min to mature and fluoresce, again precluding the observation of real time interactions4. BiFC is a specific example of the protein fragment complementation assay (PCA) which employs reporter proteins such as green fluorescent protein variants (BiFC), dihydrofolate reductase, b-lactamase, and luciferase to measure protein:protein interactions5,6. Alternative methods to study protein:protein interactions in cells include fluorescence co-localization and Förster resonance energy transfer (FRET)7. For co-localization, two proteins are individually tagged either directly with a fluorophore or by indirect immunofluorescence. However, this approach leads to high background of non-interacting proteins making it difficult to interpret co-localization data. In addition, due to the limits of resolution of confocal microscopy, two proteins may appear co-localized without necessarily interacting. With BiFC, fluorescence is only observed when the two proteins of interest interact. FRET is another excellent method for studying protein:protein interactions, but can be technically challenging. FRET experiments require the donor and acceptor to be of similar brightness and stoichiometry in the cell. In addition, one must account for bleed through of the donor into the acceptor channel and vice versa. Unlike FRET, BiFC has little background fluorescence, little post processing of image data, does not require high overexpression, and can detect weak or transient interactions. Bioluminescence resonance energy transfer (BRET) is a method similar to FRET except the donor is an enzyme (e.g. luciferase) that catalyzes a substrate to become bioluminescent thereby exciting an acceptor. BRET lacks the technical problems of bleed through and high background fluorescence but lacks the ability to provide spatial information due to the lack of substrate localization to specific compartments8. Overall, BiFC is an excellent method for visualizing subcellular localization of protein complexes to gain insight into compartmentalized signaling.
Cellular Biology, Issue 50, Fluorescence, imaging, compartmentalized signaling, subcellular localization, signal transduction
Play Button
Transmembrane Domain Oligomerization Propensity determined by ToxR Assay
Authors: Catherine Joce, Alyssa Wiener, Hang Yin.
Institutions: University of Colorado at Boulder.
The oversimplified view of protein transmembrane domains as merely anchors in phospholipid bilayers has long since been disproven. In many cases membrane-spanning proteins have evolved highly sophisticated mechanisms of action.1-3 One way in which membrane proteins can modulate their structures and functions is by direct and specific contact of hydrophobic helices, forming structured transmembrane oligomers.4,5 Much recent work has focused on the distribution of amino acids preferentially found in the membrane environment in comparison to aqueous solution and the different intermolecular forces that drive protein association.6,7 Nevertheless, studies of molecular recognition at the transmembrane domain of proteins still lags behind those of water-soluble regions. A major hurdle remains: despite the remarkable specificity and affinity that transmembrane oligomerization can achieve,8 direct measurement of their association is challenging. Traditional methodologies applied to the study of integral membrane protein function can be hampered by the inherent insolubility of the sequences under examination. Biophysical insights gained from studying synthetic peptides representing transmembrane domains can provide useful structural insight. However, the biological relevance of the detergent micellar or liposome systems used in these studies to mimic cellular membranes is often questioned; do peptides adopt a native-like structure under these conditions and does their functional behaviour truly reflect the mode of action within a native membrane? In order to study the interactions of transmembrane sequences in natural phospholipid bilayers, the Langosch lab developed ToxR transcriptional reporter assays.9 The transmembrane domain of interest is expressed as a chimeric protein with maltose binding protein for location to the periplasm and ToxR to provide a report of the level of oligomerization (Figure 1). In the last decade, several other groups (e.g. Engelman, DeGrado, Shai) further optimized and applied this ToxR reporter assay.10-13 The various ToxR assays have become a gold standard to test protein-protein interactions in cell membranes. We herein demonstrate a typical experimental operation conducted in our laboratory that primarily follows protocols developed by Langosch. This generally applicable method is useful for the analysis of transmembrane domain self-association in E. coli, where β-galactosidase production is used to assess the TMD oligomerization propensity. Upon TMD-induced dimerization, ToxR binds to the ctx promoter causing up-regulation of the LacZ gene for β-galactosidase. A colorimetric readout is obtained by addition of ONPG to lyzed cells. Hydrolytic cleavage of ONPG by β-galactosidase results in the production of the light absorbing species o-nitrophenolate (ONP) (Figure 2).
Cellular Biology, Issue 51, Transmembrane domain, oligomerization, transcriptional reporter, ToxR, latent membrane protein-1
Play Button
In vivo and in vitro Studies of Adaptor-clathrin Interaction
Authors: Daniel Feliciano, Jarred J. Bultema, Andrea L. Ambrosio, Santiago M. Di Pietro.
Institutions: Colorado State University.
A major endocytic pathway initiates with the formation of clathrin-coated vesicles (CCVs) that transport cargo from the cell surface to endosomes1-6. CCVs are distinguished by a polyhedral lattice of clathrin that coats the vesicle membrane and serves as a mechanical scaffold. Clathrin coats are assembled during vesicle formation from individual clathrin triskelia , the soluble form of clathrin composed of three heavy and three light chain subunits7,8. Because the triskelion does not have the ability to bind to the membrane directly, clathrin-binding adaptors are critical to link the forming clathrin lattice to the membrane through association with lipids and/or membrane proteins9. Adaptors also package transmembrane protein cargo, such as receptors, and can interact with each other and with other components of the CCV formation machinery9. Over twenty clathrin adaptors have been described, several are involved in clathrin mediated endocytosis and others localize to the trans Golgi network or endosomes9. With the exception of HIP1R (yeast Sla2p), all known clathrin adaptors bind to the N-terminal -propeller domain of the clathrin heavy chain9. Clathrin adaptors are modular proteins consisting of folded domains connected by unstructured flexible linkers. Within these linker regions, short binding motifs mediate interactions with the clathrin N-terminal domain or other components of the vesicle formation machinery9. Two distinct clathrin-binding motifs have been defined: the clathrin-box and the W-box9. The consensus clathrin-box sequence was originally defined as L[L/I][D/E/N][L/F][D/E]10 but variants have been subsequently discovered11. The W-box conforms to the sequence PWxxW (where x is any residue). Sla1p (Synthetic Lethal with Actin binding protein-1) was originally identified as an actin associated protein and is necessary for normal actin cytoskeleton structure and dynamics at endocytic sites in yeast cells12. Sla1p also binds the NPFxD endocytic sorting signal and is critical for endocytosis of cargo bearing the NPFxD signal13,14. More recently, Sla1p was demonstrated to bind clathrin through a motif similar to the clathrin box, LLDLQ, termed a variant clathrin-box (vCB), and to function as an endocytic clathrin adaptor15. In addition, Sla1p has become a widely used marker for the endocytic coat in live cell fluorescence microscopy studies16. Here we use Sla1p as a model to describe approaches for adaptor-clathrin interaction studies. We focus on live cell fluorescence microscopy, GST-pull down, and co-immunoprecipitation methods.
Cell Biology, Issue 47, clathrin, adaptor, Sla1p, pull down, immunoprecipitation, GFP, fluorescence microscopy
Play Button
A Liquid Phase Affinity Capture Assay Using Magnetic Beads to Study Protein-Protein Interaction: The Poliovirus-Nanobody Example
Authors: Lise Schotte, Bart Rombaut, Bert Thys.
Institutions: Vrije Universiteit Brussel.
In this article, a simple, quantitative, liquid phase affinity capture assay is presented. Provided that one protein can be tagged and another protein labeled, this method can be implemented for the investigation of protein-protein interactions. It is based on one hand on the recognition of the tagged protein by cobalt coated magnetic beads and on the other hand on the interaction between the tagged protein and a second specific protein that is labeled. First, the labeled and tagged proteins are mixed and incubated at room temperature. The magnetic beads, that recognize the tag, are added and the bound fraction of labeled protein is separated from the unbound fraction using magnets. The amount of labeled protein that is captured can be determined in an indirect way by measuring the signal of the labeled protein remained in the unbound fraction. The described liquid phase affinity assay is extremely useful when conformational conversion sensitive proteins are assayed. The development and application of the assay is demonstrated for the interaction between poliovirus and poliovirus recognizing nanobodies1. Since poliovirus is sensitive to conformational conversion2 when attached to a solid surface (unpublished results), the use of ELISA is limited and a liquid phase based system should therefore be preferred. An example of a liquid phase based system often used in polioresearch3,4 is the micro protein A-immunoprecipitation test5. Even though this test has proven its applicability, it requires an Fc-structure, which is absent in the nanobodies6,7. However, as another opportunity, these interesting and stable single-domain antibodies8 can be easily engineered with different tags. The widely used (His)6-tag shows affinity for bivalent ions such as nickel or cobalt, which can on their turn be easily coated on magnetic beads. We therefore developed this simple quantitative affinity capture assay based on cobalt coated magnetic beads. Poliovirus was labeled with 35S to enable unhindered interaction with the nanobodies and to make a quantitative detection feasible. The method is easy to perform and can be established with a low cost, which is further supported by the possibility of effectively regenerating the magnetic beads.
Molecular Biology, Issue 63, Virology, Poliovirus, VHH, nanobody, magnetic beads, affinity capture, liquid phase based assay, protein interaction
Play Button
Simple Microfluidic Devices for in vivo Imaging of C. elegans, Drosophila and Zebrafish
Authors: Sudip Mondal, Shikha Ahlawat, Sandhya P. Koushika.
Institutions: NCBS-TIFR, TIFR.
Micro fabricated fluidic devices provide an accessible micro-environment for in vivo studies on small organisms. Simple fabrication processes are available for microfluidic devices using soft lithography techniques 1-3. Microfluidic devices have been used for sub-cellular imaging 4,5, in vivo laser microsurgery 2,6 and cellular imaging 4,7. In vivo imaging requires immobilization of organisms. This has been achieved using suction 5,8, tapered channels 6,7,9, deformable membranes 2-4,10, suction with additional cooling 5, anesthetic gas 11, temperature sensitive gels 12, cyanoacrylate glue 13 and anesthetics such as levamisole 14,15. Commonly used anesthetics influence synaptic transmission 16,17 and are known to have detrimental effects on sub-cellular neuronal transport 4. In this study we demonstrate a membrane based poly-dimethyl-siloxane (PDMS) device that allows anesthetic free immobilization of intact genetic model organisms such as Caenorhabditis elegans (C. elegans), Drosophila larvae and zebrafish larvae. These model organisms are suitable for in vivo studies in microfluidic devices because of their small diameters and optically transparent or translucent bodies. Body diameters range from ~10 μm to ~800 μm for early larval stages of C. elegans and zebrafish larvae and require microfluidic devices of different sizes to achieve complete immobilization for high resolution time-lapse imaging. These organisms are immobilized using pressure applied by compressed nitrogen gas through a liquid column and imaged using an inverted microscope. Animals released from the trap return to normal locomotion within 10 min. We demonstrate four applications of time-lapse imaging in C. elegans namely, imaging mitochondrial transport in neurons, pre-synaptic vesicle transport in a transport-defective mutant, glutamate receptor transport and Q neuroblast cell division. Data obtained from such movies show that microfluidic immobilization is a useful and accurate means of acquiring in vivo data of cellular and sub-cellular events when compared to anesthetized animals (Figure 1J and 3C-F 4). Device dimensions were altered to allow time-lapse imaging of different stages of C. elegans, first instar Drosophila larvae and zebrafish larvae. Transport of vesicles marked with synaptotagmin tagged with GFP (syt.eGFP) in sensory neurons shows directed motion of synaptic vesicle markers expressed in cholinergic sensory neurons in intact first instar Drosophila larvae. A similar device has been used to carry out time-lapse imaging of heartbeat in ~30 hr post fertilization (hpf) zebrafish larvae. These data show that the simple devices we have developed can be applied to a variety of model systems to study several cell biological and developmental phenomena in vivo.
Bioengineering, Issue 67, Molecular Biology, Neuroscience, Microfluidics, C. elegans, Drosophila larvae, zebrafish larvae, anesthetic, pre-synaptic vesicle transport, dendritic transport of glutamate receptors, mitochondrial transport, synaptotagmin transport, heartbeat
Play Button
Identifying Protein-protein Interaction in Drosophila Adult Heads by Tandem Affinity Purification (TAP)
Authors: Xiaolin Tian, Mingwei Zhu, Long Li, Chunlai Wu.
Institutions: Louisiana State University Health Sciences Center.
Genetic screens conducted using Drosophila melanogaster (fruit fly) have made numerous milestone discoveries in the advance of biological sciences. However, the use of biochemical screens aimed at extending the knowledge gained from genetic analysis was explored only recently. Here we describe a method to purify the protein complex that associates with any protein of interest from adult fly heads. This method takes advantage of the Drosophila GAL4/UAS system to express a bait protein fused with a Tandem Affinity Purification (TAP) tag in fly neurons in vivo, and then implements two rounds of purification using a TAP procedure similar to the one originally established in yeast1 to purify the interacting protein complex. At the end of this procedure, a mixture of multiple protein complexes is obtained whose molecular identities can be determined by mass spectrometry. Validation of the candidate proteins will benefit from the resource and ease of performing loss-of-function studies in flies. Similar approaches can be applied to other fly tissues. We believe that the combination of genetic manipulations and this proteomic approach in the fly model system holds tremendous potential for tackling fundamental problems in the field of neurobiology and beyond.
Biochemistry, Issue 82, Drosophila, GAL4/UAS system, transgenic, Tandem Affinity Purification, protein-protein interaction, proteomics
Play Button
Affinity-based Isolation of Tagged Nuclei from Drosophila Tissues for Gene Expression Analysis
Authors: Jingqun Ma, Vikki Marie Weake.
Institutions: Purdue University.
Drosophila melanogaster embryonic and larval tissues often contain a highly heterogeneous mixture of cell types, which can complicate the analysis of gene expression in these tissues. Thus, to analyze cell-specific gene expression profiles from Drosophila tissues, it may be necessary to isolate specific cell types with high purity and at sufficient yields for downstream applications such as transcriptional profiling and chromatin immunoprecipitation. However, the irregular cellular morphology in tissues such as the central nervous system, coupled with the rare population of specific cell types in these tissues, can pose challenges for traditional methods of cell isolation such as laser microdissection and fluorescence-activated cell sorting (FACS). Here, an alternative approach to characterizing cell-specific gene expression profiles using affinity-based isolation of tagged nuclei, rather than whole cells, is described. Nuclei in the specific cell type of interest are genetically labeled with a nuclear envelope-localized EGFP tag using the Gal4/UAS binary expression system. These EGFP-tagged nuclei can be isolated using antibodies against GFP that are coupled to magnetic beads. The approach described in this protocol enables consistent isolation of nuclei from specific cell types in the Drosophila larval central nervous system at high purity and at sufficient levels for expression analysis, even when these cell types comprise less than 2% of the total cell population in the tissue. This approach can be used to isolate nuclei from a wide variety of Drosophila embryonic and larval cell types using specific Gal4 drivers, and may be useful for isolating nuclei from cell types that are not suitable for FACS or laser microdissection.
Biochemistry, Issue 85, Gene Expression, nuclei isolation, Drosophila, KASH, GFP, cell-type specific
Play Button
Lipid Vesicle-mediated Affinity Chromatography using Magnetic Activated Cell Sorting (LIMACS): a Novel Method to Analyze Protein-lipid Interaction
Authors: Erhard Bieberich.
Institutions: Georgia Health Sciences University.
The analysis of lipid protein interaction is difficult because lipids are embedded in cell membranes and therefore, inaccessible to most purification procedures. As an alternative, lipids can be coated on flat surfaces as used for lipid ELISA and Plasmon resonance spectroscopy. However, surface coating lipids do not form microdomain structures, which may be important for the lipid binding properties. Further, these methods do not allow for the purification of larger amounts of proteins binding to their target lipids. To overcome these limitations of testing lipid protein interaction and to purify lipid binding proteins we developed a novel method termed lipid vesicle-mediated affinity chromatography using magnetic-activated cell sorting (LIMACS). In this method, lipid vesicles are prepared with the target lipid and phosphatidylserine as the anchor lipid for Annexin V MACS. Phosphatidylserine is a ubiquitous cell membrane phospholipid that shows high affinity to the protein Annexin V. Using magnetic beads conjugated to Annexin V the phosphatidylserine-containing lipid vesicles will bind to the magnetic beads. When the lipid vesicles are incubated with a cell lysate the protein binding to the target lipid will also be bound to the beads and can be co-purified using MACS. This method can also be used to test if recombinant proteins reconstitute a protein complex binding to the target lipid. We have used this method to show the interaction of atypical PKC (aPKC) with the sphingolipid ceramide and to co-purify prostate apoptosis response 4 (PAR-4), a protein binding to ceramide-associated aPKC. We have also used this method for the reconstitution of a ceramide-associated complex of recombinant aPKC with the cell polarity-related proteins Par6 and Cdc42. Since lipid vesicles can be prepared with a variety of sphingo- or phospholipids, LIMACS offers a versatile test for lipid-protein interaction in a lipid environment that resembles closely that of the cell membrane. Additional lipid protein complexes can be identified using proteomics analysis of lipid binding protein co-purified with the lipid vesicles.
Cellular Biology, Issue 50, ceramide, phosphatidylserine, lipid-protein interaction, atypical PKC
Play Button
The Utility of Stage-specific Mid-to-late Drosophila Follicle Isolation
Authors: Andrew J. Spracklen, Tina L. Tootle.
Institutions: University of Iowa Carver College of Medicine.
Drosophila oogenesis or follicle development has been widely used to advance the understanding of complex developmental and cell biologic processes. This methods paper describes how to isolate mid-to-late stage follicles (Stage 10B-14) and utilize them to provide new insights into the molecular and morphologic events occurring during tight windows of developmental time. Isolated follicles can be used for a variety of experimental techniques, including in vitro development assays, live imaging, mRNA expression analysis and western blot analysis of proteins. Follicles at Stage 10B (S10B) or later will complete development in culture; this allows one to combine genetic or pharmacologic perturbations with in vitro development to define the effects of such manipulations on the processes occurring during specific periods of development. Additionally, because these follicles develop in culture, they are ideally suited for live imaging studies, which often reveal new mechanisms that mediate morphological events. Isolated follicles can also be used for molecular analyses. For example, changes in gene expression that result from genetic perturbations can be defined for specific developmental windows. Additionally, protein level, stability, and/or posttranslational modification state during a particular stage of follicle development can be examined through western blot analyses. Thus, stage-specific isolation of Drosophila follicles provides a rich source of information into widely conserved processes of development and morphogenesis.
Developmental Biology, Issue 82, Drosophila melanogaster, Organ Culture Techniques, Gene Expression Profiling, Microscopy, Confocal, Cell Biology, Genetic Research, Molecular Biology, Pharmacology, Drosophila, oogenesis, follicle, live-imaging, gene expression, development
Play Button
Reconstitution of a Kv Channel into Lipid Membranes for Structural and Functional Studies
Authors: Sungsoo Lee, Hui Zheng, Liang Shi, Qiu-Xing Jiang.
Institutions: University of Texas Southwestern Medical Center at Dallas.
To study the lipid-protein interaction in a reductionistic fashion, it is necessary to incorporate the membrane proteins into membranes of well-defined lipid composition. We are studying the lipid-dependent gating effects in a prototype voltage-gated potassium (Kv) channel, and have worked out detailed procedures to reconstitute the channels into different membrane systems. Our reconstitution procedures take consideration of both detergent-induced fusion of vesicles and the fusion of protein/detergent micelles with the lipid/detergent mixed micelles as well as the importance of reaching an equilibrium distribution of lipids among the protein/detergent/lipid and the detergent/lipid mixed micelles. Our data suggested that the insertion of the channels in the lipid vesicles is relatively random in orientations, and the reconstitution efficiency is so high that no detectable protein aggregates were seen in fractionation experiments. We have utilized the reconstituted channels to determine the conformational states of the channels in different lipids, record electrical activities of a small number of channels incorporated in planar lipid bilayers, screen for conformation-specific ligands from a phage-displayed peptide library, and support the growth of 2D crystals of the channels in membranes. The reconstitution procedures described here may be adapted for studying other membrane proteins in lipid bilayers, especially for the investigation of the lipid effects on the eukaryotic voltage-gated ion channels.
Molecular Biology, Issue 77, Biochemistry, Genetics, Cellular Biology, Structural Biology, Biophysics, Membrane Lipids, Phospholipids, Carrier Proteins, Membrane Proteins, Micelles, Molecular Motor Proteins, life sciences, biochemistry, Amino Acids, Peptides, and Proteins, lipid-protein interaction, channel reconstitution, lipid-dependent gating, voltage-gated ion channel, conformation-specific ligands, lipids
Play Button
Peptide-based Identification of Functional Motifs and their Binding Partners
Authors: Martin N. Shelton, Ming Bo Huang, Syed Ali, Kateena Johnson, William Roth, Michael Powell, Vincent Bond.
Institutions: Morehouse School of Medicine, Institute for Systems Biology, Universiti Sains Malaysia.
Specific short peptides derived from motifs found in full-length proteins, in our case HIV-1 Nef, not only retain their biological function, but can also competitively inhibit the function of the full-length protein. A set of 20 Nef scanning peptides, 20 amino acids in length with each overlapping 10 amino acids of its neighbor, were used to identify motifs in Nef responsible for its induction of apoptosis. Peptides containing these apoptotic motifs induced apoptosis at levels comparable to the full-length Nef protein. A second peptide, derived from the Secretion Modification Region (SMR) of Nef, retained the ability to interact with cellular proteins involved in Nef's secretion in exosomes (exNef). This SMRwt peptide was used as the "bait" protein in co-immunoprecipitation experiments to isolate cellular proteins that bind specifically to Nef's SMR motif. Protein transfection and antibody inhibition was used to physically disrupt the interaction between Nef and mortalin, one of the isolated SMR-binding proteins, and the effect was measured with a fluorescent-based exNef secretion assay. The SMRwt peptide's ability to outcompete full-length Nef for cellular proteins that bind the SMR motif, make it the first inhibitor of exNef secretion. Thus, by employing the techniques described here, which utilize the unique properties of specific short peptides derived from motifs found in full-length proteins, one may accelerate the identification of functional motifs in proteins and the development of peptide-based inhibitors of pathogenic functions.
Virology, Issue 76, Biochemistry, Immunology, Infection, Infectious Diseases, Molecular Biology, Medicine, Genetics, Microbiology, Genomics, Proteins, Exosomes, HIV, Peptides, Exocytosis, protein trafficking, secretion, HIV-1, Nef, Secretion Modification Region, SMR, peptide, AIDS, assay
Play Button
Imaging Cell Membrane Injury and Subcellular Processes Involved in Repair
Authors: Aurelia Defour, S. C. Sreetama, Jyoti K. Jaiswal.
Institutions: Children's National Medical Center, George Washington University.
The ability of injured cells to heal is a fundamental cellular process, but cellular and molecular mechanisms involved in healing injured cells are poorly understood. Here assays are described to monitor the ability and kinetics of healing of cultured cells following localized injury. The first protocol describes an end point based approach to simultaneously assess cell membrane repair ability of hundreds of cells. The second protocol describes a real time imaging approach to monitor the kinetics of cell membrane repair in individual cells following localized injury with a pulsed laser. As healing injured cells involves trafficking of specific proteins and subcellular compartments to the site of injury, the third protocol describes the use of above end point based approach to assess one such trafficking event (lysosomal exocytosis) in hundreds of cells injured simultaneously and the last protocol describes the use of pulsed laser injury together with TIRF microscopy to monitor the dynamics of individual subcellular compartments in injured cells at high spatial and temporal resolution. While the protocols here describe the use of these approaches to study the link between cell membrane repair and lysosomal exocytosis in cultured muscle cells, they can be applied as such for any other adherent cultured cell and subcellular compartment of choice.
Biochemistry, Issue 85, cell injury, lysosome exocytosis, repair, calcium, imaging, total internal reflection fluorescence (TIRF) microscopy, laser ablation
Play Button
Efficient Production and Purification of Recombinant Murine Kindlin-3 from Insect Cells for Biophysical Studies
Authors: Luke A. Yates, Robert J. C. Gilbert.
Institutions: University of Oxford.
Kindlins are essential coactivators, with talin, of the cell surface receptors integrins and also participate in integrin outside-in signalling, and the control of gene transcription in the cell nucleus. The kindlins are ~75 kDa multidomain proteins and bind to an NPxY motif and upstream T/S cluster of the integrin β-subunit cytoplasmic tail. The hematopoietically-important kindlin isoform, kindlin-3, is critical for platelet aggregation during thrombus formation, leukocyte rolling in response to infection and inflammation and osteoclast podocyte formation in bone resorption. Kindlin-3's role in these processes has resulted in extensive cellular and physiological studies. However, there is a need for an efficient method of acquiring high quality milligram quantities of the protein for further studies. We have developed a protocol, here described, for the efficient expression and purification of recombinant murine kindlin-3 by use of a baculovirus-driven expression system in Sf9 cells yielding sufficient amounts of high purity full-length protein to allow its biophysical characterization. The same approach could be taken in the study of the other mammalian kindlin isoforms.
Virology, Issue 85, Heterologous protein expression, insect cells, Spodoptera frugiperda, baculovirus, protein purification, kindlin, cell adhesion
Play Button
A Protocol for Computer-Based Protein Structure and Function Prediction
Authors: Ambrish Roy, Dong Xu, Jonathan Poisson, Yang Zhang.
Institutions: University of Michigan , University of Kansas.
Genome sequencing projects have ciphered millions of protein sequence, which require knowledge of their structure and function to improve the understanding of their biological role. Although experimental methods can provide detailed information for a small fraction of these proteins, computational modeling is needed for the majority of protein molecules which are experimentally uncharacterized. The I-TASSER server is an on-line workbench for high-resolution modeling of protein structure and function. Given a protein sequence, a typical output from the I-TASSER server includes secondary structure prediction, predicted solvent accessibility of each residue, homologous template proteins detected by threading and structure alignments, up to five full-length tertiary structural models, and structure-based functional annotations for enzyme classification, Gene Ontology terms and protein-ligand binding sites. All the predictions are tagged with a confidence score which tells how accurate the predictions are without knowing the experimental data. To facilitate the special requests of end users, the server provides channels to accept user-specified inter-residue distance and contact maps to interactively change the I-TASSER modeling; it also allows users to specify any proteins as template, or to exclude any template proteins during the structure assembly simulations. The structural information could be collected by the users based on experimental evidences or biological insights with the purpose of improving the quality of I-TASSER predictions. The server was evaluated as the best programs for protein structure and function predictions in the recent community-wide CASP experiments. There are currently >20,000 registered scientists from over 100 countries who are using the on-line I-TASSER server.
Biochemistry, Issue 57, On-line server, I-TASSER, protein structure prediction, function prediction
Play Button
Inhibitory Synapse Formation in a Co-culture Model Incorporating GABAergic Medium Spiny Neurons and HEK293 Cells Stably Expressing GABAA Receptors
Authors: Laura E. Brown, Celine Fuchs, Martin W. Nicholson, F. Anne Stephenson, Alex M. Thomson, Jasmina N. Jovanovic.
Institutions: University College London.
Inhibitory neurons act in the central nervous system to regulate the dynamics and spatio-temporal co-ordination of neuronal networks. GABA (γ-aminobutyric acid) is the predominant inhibitory neurotransmitter in the brain. It is released from the presynaptic terminals of inhibitory neurons within highly specialized intercellular junctions known as synapses, where it binds to GABAA receptors (GABAARs) present at the plasma membrane of the synapse-receiving, postsynaptic neurons. Activation of these GABA-gated ion channels leads to influx of chloride resulting in postsynaptic potential changes that decrease the probability that these neurons will generate action potentials. During development, diverse types of inhibitory neurons with distinct morphological, electrophysiological and neurochemical characteristics have the ability to recognize their target neurons and form synapses which incorporate specific GABAARs subtypes. This principle of selective innervation of neuronal targets raises the question as to how the appropriate synaptic partners identify each other. To elucidate the underlying molecular mechanisms, a novel in vitro co-culture model system was established, in which medium spiny GABAergic neurons, a highly homogenous population of neurons isolated from the embryonic striatum, were cultured with stably transfected HEK293 cell lines that express different GABAAR subtypes. Synapses form rapidly, efficiently and selectively in this system, and are easily accessible for quantification. Our results indicate that various GABAAR subtypes differ in their ability to promote synapse formation, suggesting that this reduced in vitro model system can be used to reproduce, at least in part, the in vivo conditions required for the recognition of the appropriate synaptic partners and formation of specific synapses. Here the protocols for culturing the medium spiny neurons and generating HEK293 cells lines expressing GABAARs are first described, followed by detailed instructions on how to combine these two cell types in co-culture and analyze the formation of synaptic contacts.
Neuroscience, Issue 93, Developmental neuroscience, synaptogenesis, synaptic inhibition, co-culture, stable cell lines, GABAergic, medium spiny neurons, HEK 293 cell line
Play Button
Investigating Protein-protein Interactions in Live Cells Using Bioluminescence Resonance Energy Transfer
Authors: Pelagia Deriziotis, Sarah A. Graham, Sara B. Estruch, Simon E. Fisher.
Institutions: Max Planck Institute for Psycholinguistics, Donders Institute for Brain, Cognition and Behaviour.
Assays based on Bioluminescence Resonance Energy Transfer (BRET) provide a sensitive and reliable means to monitor protein-protein interactions in live cells. BRET is the non-radiative transfer of energy from a 'donor' luciferase enzyme to an 'acceptor' fluorescent protein. In the most common configuration of this assay, the donor is Renilla reniformis luciferase and the acceptor is Yellow Fluorescent Protein (YFP). Because the efficiency of energy transfer is strongly distance-dependent, observation of the BRET phenomenon requires that the donor and acceptor be in close proximity. To test for an interaction between two proteins of interest in cultured mammalian cells, one protein is expressed as a fusion with luciferase and the second as a fusion with YFP. An interaction between the two proteins of interest may bring the donor and acceptor sufficiently close for energy transfer to occur. Compared to other techniques for investigating protein-protein interactions, the BRET assay is sensitive, requires little hands-on time and few reagents, and is able to detect interactions which are weak, transient, or dependent on the biochemical environment found within a live cell. It is therefore an ideal approach for confirming putative interactions suggested by yeast two-hybrid or mass spectrometry proteomics studies, and in addition it is well-suited for mapping interacting regions, assessing the effect of post-translational modifications on protein-protein interactions, and evaluating the impact of mutations identified in patient DNA.
Cellular Biology, Issue 87, Protein-protein interactions, Bioluminescence Resonance Energy Transfer, Live cell, Transfection, Luciferase, Yellow Fluorescent Protein, Mutations
Play Button
The Cell-based L-Glutathione Protection Assays to Study Endocytosis and Recycling of Plasma Membrane Proteins
Authors: Kristine M. Cihil, Agnieszka Swiatecka-Urban.
Institutions: Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine.
Membrane trafficking involves transport of proteins from the plasma membrane to the cell interior (i.e. endocytosis) followed by trafficking to lysosomes for degradation or to the plasma membrane for recycling. The cell based L-glutathione protection assays can be used to study endocytosis and recycling of protein receptors, channels, transporters, and adhesion molecules localized at the cell surface. The endocytic assay requires labeling of cell surface proteins with a cell membrane impermeable biotin containing a disulfide bond and the N-hydroxysuccinimide (NHS) ester at 4 ºC - a temperature at which membrane trafficking does not occur. Endocytosis of biotinylated plasma membrane proteins is induced by incubation at 37 ºC. Next, the temperature is decreased again to 4 ºC to stop endocytic trafficking and the disulfide bond in biotin covalently attached to proteins that have remained at the plasma membrane is reduced with L-glutathione. At this point, only proteins that were endocytosed remain protected from L-glutathione and thus remain biotinylated. After cell lysis, biotinylated proteins are isolated with streptavidin agarose, eluted from agarose, and the biotinylated protein of interest is detected by western blotting. During the recycling assay, after biotinylation cells are incubated at 37 °C to load endocytic vesicles with biotinylated proteins and the disulfide bond in biotin covalently attached to proteins remaining at the plasma membrane is reduced with L-glutathione at 4 ºC as in the endocytic assay. Next, cells are incubated again at 37 °C to allow biotinylated proteins from endocytic vesicles to recycle to the plasma membrane. Cells are then incubated at 4 ºC, and the disulfide bond in biotin attached to proteins that recycled to the plasma membranes is reduced with L-glutathione. The biotinylated proteins protected from L-glutathione are those that did not recycle to the plasma membrane.
Basic Protocol, Issue 82, Endocytosis, recycling, plasma membrane, cell surface, EZLink, Sulfo-NHS-SS-Biotin, L-Glutathione, GSH, thiol group, disulfide bond, epithelial cells, cell polarization
Play Button
Actin Co-Sedimentation Assay; for the Analysis of Protein Binding to F-Actin
Authors: Jyoti Srivastava, Diane Barber.
Institutions: University of California, San Francisco - UCSF.
The actin cytoskeleton within the cell is a network of actin filaments that allows the movement of cells and cellular processes, and that generates tension and helps maintains cellular shape. Although the actin cytoskeleton is a rigid structure, it is a dynamic structure that is constantly remodeling. A number of proteins can bind to the actin cytoskeleton. The binding of a particular protein to F-actin is often desired to support cell biological observations or to further understand dynamic processes due to remodeling of the actin cytoskeleton. The actin co-sedimentation assay is an in vitro assay routinely used to analyze the binding of specific proteins or protein domains with F-actin. The basic principles of the assay involve an incubation of the protein of interest (full length or domain of) with F-actin, ultracentrifugation step to pellet F-actin and analysis of the protein co-sedimenting with F-actin. Actin co-sedimentation assays can be designed accordingly to measure actin binding affinities and in competition assays.
Biochemistry, Issue 13, F-actin, protein, in vitro binding, ultracentrifugation
Play Button
Electrophysiological Recording in the Drosophila Embryo
Authors: Kaiyun Chen, David E. Featherstone, Kendal Broadie.
Institutions: University of Illinois, Vanderbilt University.
Drosophila is a premier genetic model for the study of both embryonic development and functional neuroscience. Traditionally, these fields are quite isolated from each other, with largely independent histories and scientific communities. However, the interface between these usually disparate fields is the developmental programs underlying acquisition of functional electrical signaling properties and differentiation of functional chemical synapses during the final phases of neural circuit formation. This interface is a critically important area for investigation. In Drosophila, these phases of functional development occur during a period of <8 hours (at 25°C) during the last third of embryogenesis. This late developmental period was long considered intractable to investigation owing to the deposition of a tough, impermeable epidermal cuticle. A breakthrough advance was the application of water-polymerizing surgical glue that can be locally applied to the cuticle to enable controlled dissection of late-stage embryos. With a dorsal longitudinal incision, the embryo can be laid flat, exposing the ventral nerve cord and body wall musculature to experimental investigation. Whole-cell patch-clamp techniques can then be employed to record from individually-identifiable neurons and somatic muscles. These recording configurations have been used to track the appearance and maturation of ionic currents and action potential propagation in both neurons and muscles. Genetic mutants affecting these electrical properties have been characterized to reveal the molecular composition of ion channels and associated signaling complexes, and to begin exploration of the molecular mechanisms of functional differentiation. A particular focus has been the assembly of synaptic connections, both in the central nervous system and periphery. The glutamatergic neuromuscular junction (NMJ) is most accessible to a combination of optical imaging and electrophysiological recording. A glass suction electrode is used to stimulate the peripheral nerve, with excitatory junction current (EJC) recordings made in the voltage-clamped muscle. This recording configuration has been used to chart the functional differentiation of the synapse, and track the appearance and maturation of presynaptic glutamate release properties. In addition, postsynaptic properties can be assayed independently via iontophoretic or pressure application of glutamate directly to the muscle surface, to measure the appearance and maturation of the glutamate receptor fields. Thus, both pre- and postsynaptic elements can be monitored separately or in combination during embryonic synaptogenesis. This system has been heavily used to isolate and characterize genetic mutants that impair embryonic synapse formation, and thus reveal the molecular mechanisms governing the specification and differentiation of synapse connections and functional synaptic signaling properties.
Neuroscience, Issue 27, Drosophila, embryo, whole-cell patch-clamp, muscle, neuron, neuromuscular junction, synapse
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.