JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Predicting progression of IgA nephropathy: new clinical progression risk score.
IgA nephropathy (IgAN) is a common cause of end-stage renal disease (ESRD) in Asia. In this study, based on a large cohort of Chinese patients with IgAN, we aim to identify independent predictive factors associated with disease progression to ESRD. We collected retrospective clinical data and renal outcomes on 619 biopsy-diagnosed IgAN patients with a mean follow-up time of 41.3 months. In total, 67 individuals reached the study endpoint defined by occurrence of ESRD necessitating renal replacement therapy. In the fully adjusted Cox proportional hazards model, there were four baseline variables with a significant independent effect on the risk of ESRD. These included: eGFR [HR = 0.96(0.95-0.97)], serum albumin [HR = 0.47(0.32-0.68)], hemoglobin [HR = 0.79(0.72-0.88)], and SBP [HR = 1.02(1.00-1.03)]. Based on these observations, we developed a 4-variable equation of a clinical risk score for disease progression. Our risk score explained nearly 22% of the total variance in the primary outcome. Survival ROC curves revealed that the risk score provided improved prediction of ESRD at 24th, 60th and 120th month of follow-up compared to the three previously proposed risk scores. In summary, our data indicate that IgAN patients with higher systolic blood pressure, lower eGFR, hemoglobin, and albumin levels at baseline are at a greatest risk of progression to ESRD. The new progression risk score calculated based on these four baseline variables offers a simple clinical tool for risk stratification.
Authors: Hugh Alley, Christopher D. Owens, Warren J. Gasper, S. Marlene Grenon.
Published: 10-22-2014
The vascular endothelium is a monolayer of cells that cover the interior of blood vessels and provide both structural and functional roles. The endothelium acts as a barrier, preventing leukocyte adhesion and aggregation, as well as controlling permeability to plasma components. Functionally, the endothelium affects vessel tone. Endothelial dysfunction is an imbalance between the chemical species which regulate vessel tone, thombroresistance, cellular proliferation and mitosis. It is the first step in atherosclerosis and is associated with coronary artery disease, peripheral artery disease, heart failure, hypertension, and hyperlipidemia. The first demonstration of endothelial dysfunction involved direct infusion of acetylcholine and quantitative coronary angiography. Acetylcholine binds to muscarinic receptors on the endothelial cell surface, leading to an increase of intracellular calcium and increased nitric oxide (NO) production. In subjects with an intact endothelium, vasodilation was observed while subjects with endothelial damage experienced paradoxical vasoconstriction. There exists a non-invasive, in vivo method for measuring endothelial function in peripheral arteries using high-resolution B-mode ultrasound. The endothelial function of peripheral arteries is closely related to coronary artery function. This technique measures the percent diameter change in the brachial artery during a period of reactive hyperemia following limb ischemia. This technique, known as endothelium-dependent, flow-mediated vasodilation (FMD) has value in clinical research settings. However, a number of physiological and technical issues can affect the accuracy of the results and appropriate guidelines for the technique have been published. Despite the guidelines, FMD remains heavily operator dependent and presents a steep learning curve. This article presents a standardized method for measuring FMD in the brachial artery on the upper arm and offers suggestions to reduce intra-operator variability.
21 Related JoVE Articles!
Play Button
An Experimental Paradigm for the Prediction of Post-Operative Pain (PPOP)
Authors: Ruth Landau, John C. Kraft, Lisa Y. Flint, Brendan Carvalho, Philippe Richebé, Monica Cardoso, Patricia Lavand'homme, Michal Granot, David Yarnitsky, Alex Cahana.
Institutions: University of Washington School of Medicine.
Many women undergo cesarean delivery without problems, however some experience significant pain after cesarean section. Pain is associated with negative short-term and long-term effects on the mother. Prior to women undergoing surgery, can we predict who is at risk for developing significant postoperative pain and potentially prevent or minimize its negative consequences? These are the fundamental questions that a team from the University of Washington, Stanford University, the Catholic University in Brussels, Belgium, Santa Joana Women's Hospital in São Paulo, Brazil, and Rambam Medical Center in Israel is currently evaluating in an international research collaboration. The ultimate goal of this project is to provide optimal pain relief during and after cesarean section by offering individualized anesthetic care to women who appear to be more 'susceptible' to pain after surgery. A significant number of women experience moderate or severe acute post-partum pain after vaginal and cesarean deliveries. 1 Furthermore, 10-15% of women suffer chronic persistent pain after cesarean section. 2 With constant increase in cesarean rates in the US 3 and the already high rate in Brazil, this is bound to create a significant public health problem. When questioning women's fears and expectations from cesarean section, pain during and after it is their greatest concern. 4 Individual variability in severity of pain after vaginal or operative delivery is influenced by multiple factors including sensitivity to pain, psychological factors, age, and genetics. The unique birth experience leads to unpredictable requirements for analgesics, from 'none at all' to 'very high' doses of pain medication. Pain after cesarean section is an excellent model to study post-operative pain because it is performed on otherwise young and healthy women. Therefore, it is recommended to attenuate the pain during the acute phase because this may lead to chronic pain disorders. The impact of developing persistent pain is immense, since it may impair not only the ability of women to care for their child in the immediate postpartum period, but also their own well being for a long period of time. In a series of projects, an international research network is currently investigating the effect of pregnancy on pain modulation and ways to predict who will suffer acute severe pain and potentially chronic pain, by using simple pain tests and questionnaires in combination with genetic analysis. A relatively recent approach to investigate pain modulation is via the psychophysical measure of Diffuse Noxious Inhibitory Control (DNIC). This pain-modulating process is the neurophysiological basis for the well-known phenomenon of 'pain inhibits pain' from remote areas of the body. The DNIC paradigm has evolved recently into a clinical tool and simple test and has been shown to be a predictor of post-operative pain.5 Since pregnancy is associated with decreased pain sensitivity and/or enhanced processes of pain modulation, using tests that investigate pain modulation should provide a better understanding of the pathways involved with pregnancy-induced analgesia and may help predict pain outcomes during labor and delivery. For those women delivering by cesarean section, a DNIC test performed prior to surgery along with psychosocial questionnaires and genetic tests should enable one to identify women prone to suffer severe post-cesarean pain and persistent pain. These clinical tests should allow anesthesiologists to offer not only personalized medicine to women with the promise to improve well-being and satisfaction, but also a reduction in the overall cost of perioperative and long term care due to pain and suffering. On a larger scale, these tests that explore pain modulation may become bedside screening tests to predict the development of pain disorders following surgery.
JoVE Medicine, Issue 35, diffuse noxious inhibitory control, DNIC, temporal summation, TS, psychophysical testing, endogenous analgesia, pain modulation, pregnancy-induced analgesia, cesarean section, post-operative pain, prediction
Play Button
Measuring Frailty in HIV-infected Individuals. Identification of Frail Patients is the First Step to Amelioration and Reversal of Frailty
Authors: Hilary C. Rees, Voichita Ianas, Patricia McCracken, Shannon Smith, Anca Georgescu, Tirdad Zangeneh, Jane Mohler, Stephen A. Klotz.
Institutions: University of Arizona, University of Arizona.
A simple, validated protocol consisting of a battery of tests is available to identify elderly patients with frailty syndrome. This syndrome of decreased reserve and resistance to stressors increases in incidence with increasing age. In the elderly, frailty may pursue a step-wise loss of function from non-frail to pre-frail to frail. We studied frailty in HIV-infected patients and found that ~20% are frail using the Fried phenotype using stringent criteria developed for the elderly1,2. In HIV infection the syndrome occurs at a younger age. HIV patients were checked for 1) unintentional weight loss; 2) slowness as determined by walking speed; 3) weakness as measured by a grip dynamometer; 4) exhaustion by responses to a depression scale; and 5) low physical activity was determined by assessing kilocalories expended in a week's time. Pre-frailty was present with any two of five criteria and frailty was present if any three of the five criteria were abnormal. The tests take approximately 10-15 min to complete and they can be performed by medical assistants during routine clinic visits. Test results are scored by referring to standard tables. Understanding which of the five components contribute to frailty in an individual patient can allow the clinician to address relevant underlying problems, many of which are not evident in routine HIV clinic visits.
Medicine, Issue 77, Infection, Virology, Infectious Diseases, Anatomy, Physiology, Molecular Biology, Biomedical Engineering, Retroviridae Infections, Body Weight Changes, Diagnostic Techniques and Procedures, Physical Examination, Muscle Strength, Behavior, Virus Diseases, Pathological Conditions, Signs and Symptoms, Diagnosis, Musculoskeletal and Neural Physiological Phenomena, HIV, HIV-1, AIDS, Frailty, Depression, Weight Loss, Weakness, Slowness, Exhaustion, Aging, clinical techniques
Play Button
Generation of Comprehensive Thoracic Oncology Database - Tool for Translational Research
Authors: Mosmi Surati, Matthew Robinson, Suvobroto Nandi, Leonardo Faoro, Carley Demchuk, Rajani Kanteti, Benjamin Ferguson, Tara Gangadhar, Thomas Hensing, Rifat Hasina, Aliya Husain, Mark Ferguson, Theodore Karrison, Ravi Salgia.
Institutions: University of Chicago, University of Chicago, Northshore University Health Systems, University of Chicago, University of Chicago, University of Chicago.
The Thoracic Oncology Program Database Project was created to serve as a comprehensive, verified, and accessible repository for well-annotated cancer specimens and clinical data to be available to researchers within the Thoracic Oncology Research Program. This database also captures a large volume of genomic and proteomic data obtained from various tumor tissue studies. A team of clinical and basic science researchers, a biostatistician, and a bioinformatics expert was convened to design the database. Variables of interest were clearly defined and their descriptions were written within a standard operating manual to ensure consistency of data annotation. Using a protocol for prospective tissue banking and another protocol for retrospective banking, tumor and normal tissue samples from patients consented to these protocols were collected. Clinical information such as demographics, cancer characterization, and treatment plans for these patients were abstracted and entered into an Access database. Proteomic and genomic data have been included in the database and have been linked to clinical information for patients described within the database. The data from each table were linked using the relationships function in Microsoft Access to allow the database manager to connect clinical and laboratory information during a query. The queried data can then be exported for statistical analysis and hypothesis generation.
Medicine, Issue 47, Database, Thoracic oncology, Bioinformatics, Biorepository, Microsoft Access, Proteomics, Genomics
Play Button
Modeling Spontaneous Metastatic Renal Cell Carcinoma (mRCC) in Mice Following Nephrectomy
Authors: Amanda Tracz, Michalis Mastri, Christina R. Lee, Roberto Pili, John M. L. Ebos.
Institutions: Roswell Park Cancer Institute, Sunnybrook Research Institute.
One of the key challenges to improved testing of new experimental therapeutics in renal cell carcinoma (RCC) is the development of models that faithfully recapitulate early- and late-stage metastatic disease progression. Typical tumor implantation models utilize ectopic or orthotopic primary tumor implantation, but few include systemic spontaneous metastatic disease that mimics the clinical setting. This protocol describes the key steps to develop RCC disease progression stages similar to patients. First, it uses a highly metastatic mouse tumor cell line in a syngeneic model to show orthotopic tumor cell implantation. Methods include superficial and internal implantation into the sub-capsular space with cells combined with matrigel to prevent leakage and early spread. Next it describes the procedures for excision of tumor-bearing kidney (nephrectomy), with critical pre- and post- surgical mouse care. Finally, it outlines the steps necessary to monitor and assess micro-and macro-metastatic disease progression, including bioluminescent imaging as well provides a detailed visual necropsy guide to score systemic disease distribution. The goal of this protocol description is to facilitate the widespread use of clinically relevant metastatic RCC models to improve the predictive value of future therapeutic testing. 
Medicine, Issue 86, Spontaneous metastasis, orthotopic, nephrectomy, renal cell carcinoma, RCC, necropsy, kidney, bioluminescence, sub-capsular
Play Button
5/6th Nephrectomy in Combination with High Salt Diet and Nitric Oxide Synthase Inhibition to Induce Chronic Kidney Disease in the Lewis Rat
Authors: Arianne van Koppen, Marianne C. Verhaar, Lennart G. Bongartz, Jaap A. Joles.
Institutions: University Medical Center Utrecht.
Chronic kidney disease (CKD) is a global problem. Slowing CKD progression is a major health priority. Since CKD is characterized by complex derangements of homeostasis, integrative animal models are necessary to study development and progression of CKD. To study development of CKD and novel therapeutic interventions in CKD, we use the 5/6th nephrectomy ablation model, a well known experimental model of progressive renal disease, resembling several aspects of human CKD. The gross reduction in renal mass causes progressive glomerular and tubulo-interstitial injury, loss of remnant nephrons and development of systemic and glomerular hypertension. It is also associated with progressive intrarenal capillary loss, inflammation and glomerulosclerosis. Risk factors for CKD invariably impact on endothelial function. To mimic this, we combine removal of 5/6th of renal mass with nitric oxide (NO) depletion and a high salt diet. After arrival and acclimatization, animals receive a NO synthase inhibitor (NG-nitro-L-Arginine) (L-NNA) supplemented to drinking water (20 mg/L) for a period of 4 weeks, followed by right sided uninephrectomy. One week later, a subtotal nephrectomy (SNX) is performed on the left side. After SNX, animals are allowed to recover for two days followed by LNNA in drinking water (20 mg/L) for a further period of 4 weeks. A high salt diet (6%), supplemented in ground chow (see time line Figure 1), is continued throughout the experiment. Progression of renal failure is followed over time by measuring plasma urea, systolic blood pressure and proteinuria. By six weeks after SNX, renal failure has developed. Renal function is measured using 'gold standard' inulin and para-amino hippuric acid (PAH) clearance technology. This model of CKD is characterized by a reduction in glomerular filtration rate (GFR) and effective renal plasma flow (ERPF), hypertension (systolic blood pressure>150 mmHg), proteinuria (> 50 mg/24 hr) and mild uremia (>10 mM). Histological features include tubulo-interstitial damage reflected by inflammation, tubular atrophy and fibrosis and focal glomerulosclerosis leading to massive reduction of healthy glomeruli within the remnant population (<10%). Follow-up until 12 weeks after SNX shows further progression of CKD.
Medicine, Issue 77, Anatomy, Physiology, Biomedical Engineering, Surgery, Nephrology Kidney Diseases, Glomerular Filtration Rate, Hemodynamics, Surgical Procedures, Operative, Chronic kidney disease, remnant kidney, chronic renal diseases, kidney, Nitric Oxide depletion, NO depletion, high salt diet, proteinuria, uremia, glomerulosclerosis, transgenic rat, animal model
Play Button
Flexible Colonoscopy in Mice to Evaluate the Severity of Colitis and Colorectal Tumors Using a Validated Endoscopic Scoring System
Authors: Tomohiro Kodani, Alex Rodriguez-Palacios, Daniele Corridoni, Loris Lopetuso, Luca Di Martino, Brian Marks, James Pizarro, Theresa Pizarro, Amitabh Chak, Fabio Cominelli.
Institutions: Case Western Reserve University School of Medicine, Cleveland, Case Western Reserve University School of Medicine, Cleveland, Case Western Reserve University School of Medicine, Cleveland.
The use of modern endoscopy for research purposes has greatly facilitated our understanding of gastrointestinal pathologies. In particular, experimental endoscopy has been highly useful for studies that require repeated assessments in a single laboratory animal, such as those evaluating mechanisms of chronic inflammatory bowel disease and the progression of colorectal cancer. However, the methods used across studies are highly variable. At least three endoscopic scoring systems have been published for murine colitis and published protocols for the assessment of colorectal tumors fail to address the presence of concomitant colonic inflammation. This study develops and validates a reproducible endoscopic scoring system that integrates evaluation of both inflammation and tumors simultaneously. This novel scoring system has three major components: 1) assessment of the extent and severity of colorectal inflammation (based on perianal findings, transparency of the wall, mucosal bleeding, and focal lesions), 2) quantitative recording of tumor lesions (grid map and bar graph), and 3) numerical sorting of clinical cases by their pathological and research relevance based on decimal units with assigned categories of observed lesions and endoscopic complications (decimal identifiers). The video and manuscript presented herein were prepared, following IACUC-approved protocols, to allow investigators to score their own experimental mice using a well-validated and highly reproducible endoscopic methodology, with the system option to differentiate distal from proximal endoscopic colitis (D-PECS).
Medicine, Issue 80, Crohn's disease, ulcerative colitis, colon cancer, Clostridium difficile, SAMP mice, DSS/AOM-colitis, decimal scoring identifier
Play Button
A Zebrafish Model of Diabetes Mellitus and Metabolic Memory
Authors: Robert V. Intine, Ansgar S. Olsen, Michael P. Sarras Jr..
Institutions: Rosalind Franklin University of Medicine and Science, Rosalind Franklin University of Medicine and Science.
Diabetes mellitus currently affects 346 million individuals and this is projected to increase to 400 million by 2030. Evidence from both the laboratory and large scale clinical trials has revealed that diabetic complications progress unimpeded via the phenomenon of metabolic memory even when glycemic control is pharmaceutically achieved. Gene expression can be stably altered through epigenetic changes which not only allow cells and organisms to quickly respond to changing environmental stimuli but also confer the ability of the cell to "memorize" these encounters once the stimulus is removed. As such, the roles that these mechanisms play in the metabolic memory phenomenon are currently being examined. We have recently reported the development of a zebrafish model of type I diabetes mellitus and characterized this model to show that diabetic zebrafish not only display the known secondary complications including the changes associated with diabetic retinopathy, diabetic nephropathy and impaired wound healing but also exhibit impaired caudal fin regeneration. This model is unique in that the zebrafish is capable to regenerate its damaged pancreas and restore a euglycemic state similar to what would be expected in post-transplant human patients. Moreover, multiple rounds of caudal fin amputation allow for the separation and study of pure epigenetic effects in an in vivo system without potential complicating factors from the previous diabetic state. Although euglycemia is achieved following pancreatic regeneration, the diabetic secondary complication of fin regeneration and skin wound healing persists indefinitely. In the case of impaired fin regeneration, this pathology is retained even after multiple rounds of fin regeneration in the daughter fin tissues. These observations point to an underlying epigenetic process existing in the metabolic memory state. Here we present the methods needed to successfully generate the diabetic and metabolic memory groups of fish and discuss the advantages of this model.
Medicine, Issue 72, Genetics, Genomics, Physiology, Anatomy, Biomedical Engineering, Metabolomics, Zebrafish, diabetes, metabolic memory, tissue regeneration, streptozocin, epigenetics, Danio rerio, animal model, diabetes mellitus, diabetes, drug discovery, hyperglycemia
Play Button
Implanting Glass Spinal Cord Windows in Adult Mice with Experimental Autoimmune Encephalomyelitis
Authors: Keith K. Fenrich, Pascal Weber, Genevieve Rougon, Franck Debarbieux.
Institutions: Aix Marseille University, European Research Center for Medical Imaging (CERIMED).
Experimental autoimmune encephalomyelitis (EAE) in adult rodents is the standard experimental model for studying autonomic demyelinating diseases such as multiple sclerosis. Here we present a low-cost and reproducible glass window implantation protocol that is suitable for intravital microscopy and studying the dynamics of spinal cord cytoarchitecture with subcellular resolution in live adult mice with EAE. Briefly, we surgically expose the vertebrae T12-L2 and construct a chamber around the exposed vertebrae using a combination of cyanoacrylate and dental cement. A laminectomy is performed from T13 to L1, and a thin layer of transparent silicone elastomer is applied to the dorsal surface of the exposed spinal cord. A modified glass cover slip is implanted over the exposed spinal cord taking care that the glass does not directly contact the spinal cord. To reduce the infiltration of inflammatory cells between the window and spinal cord, anti-inflammatory treatment is administered every 2 days (as recommended by ethics committee) for the first 10 days after implantation. EAE is induced only 2-3 weeks after the cessation of anti-inflammatory treatment. Using this approach we successfully induced EAE in 87% of animals with implanted windows and, using Thy1-CFP-23 mice (blue axons in dorsal spinal cord), quantified axonal loss throughout EAE progression. Taken together, this protocol may be useful for studying the recruitment of various cell populations as well as their interaction dynamics, with subcellular resolution and for extended periods of time. This intravital imaging modality represents a valuable tool for developing therapeutic strategies to treat autoimmune demyelinating diseases such as EAE.
Medicine, Issue 82, Spinal cord, two-photon microscopy, In vivo, intravital microscopy, EAE, Multiple Sclerosis, transgenic mouse
Play Button
Computerized Dynamic Posturography for Postural Control Assessment in Patients with Intermittent Claudication
Authors: Natalie Vanicek, Stephanie A. King, Risha Gohil, Ian C. Chetter, Patrick A Coughlin.
Institutions: University of Sydney, University of Hull, Hull and East Yorkshire Hospitals, Addenbrookes Hospital.
Computerized dynamic posturography with the EquiTest is an objective technique for measuring postural strategies under challenging static and dynamic conditions. As part of a diagnostic assessment, the early detection of postural deficits is important so that appropriate and targeted interventions can be prescribed. The Sensory Organization Test (SOT) on the EquiTest determines an individual's use of the sensory systems (somatosensory, visual, and vestibular) that are responsible for postural control. Somatosensory and visual input are altered by the calibrated sway-referenced support surface and visual surround, which move in the anterior-posterior direction in response to the individual's postural sway. This creates a conflicting sensory experience. The Motor Control Test (MCT) challenges postural control by creating unexpected postural disturbances in the form of backwards and forwards translations. The translations are graded in magnitude and the time to recover from the perturbation is computed. Intermittent claudication, the most common symptom of peripheral arterial disease, is characterized by a cramping pain in the lower limbs and caused by muscle ischemia secondary to reduced blood flow to working muscles during physical exertion. Claudicants often display poor balance, making them susceptible to falls and activity avoidance. The Ankle Brachial Pressure Index (ABPI) is a noninvasive method for indicating the presence of peripheral arterial disease and intermittent claudication, a common symptom in the lower extremities. ABPI is measured as the highest systolic pressure from either the dorsalis pedis or posterior tibial artery divided by the highest brachial artery systolic pressure from either arm. This paper will focus on the use of computerized dynamic posturography in the assessment of balance in claudicants.
Medicine, Issue 82, Posture, Computerized dynamic posturography, Ankle brachial pressure index, Peripheral arterial disease, Intermittent claudication, Balance, Posture, EquiTest, Sensory Organization Test, Motor Control Test
Play Button
Assessment of Vascular Function in Patients With Chronic Kidney Disease
Authors: Kristen L. Jablonski, Emily Decker, Loni Perrenoud, Jessica Kendrick, Michel Chonchol, Douglas R. Seals, Diana Jalal.
Institutions: University of Colorado, Denver, University of Colorado, Boulder.
Patients with chronic kidney disease (CKD) have significantly increased risk of cardiovascular disease (CVD) compared to the general population, and this is only partially explained by traditional CVD risk factors. Vascular dysfunction is an important non-traditional risk factor, characterized by vascular endothelial dysfunction (most commonly assessed as impaired endothelium-dependent dilation [EDD]) and stiffening of the large elastic arteries. While various techniques exist to assess EDD and large elastic artery stiffness, the most commonly used are brachial artery flow-mediated dilation (FMDBA) and aortic pulse-wave velocity (aPWV), respectively. Both of these noninvasive measures of vascular dysfunction are independent predictors of future cardiovascular events in patients with and without kidney disease. Patients with CKD demonstrate both impaired FMDBA, and increased aPWV. While the exact mechanisms by which vascular dysfunction develops in CKD are incompletely understood, increased oxidative stress and a subsequent reduction in nitric oxide (NO) bioavailability are important contributors. Cellular changes in oxidative stress can be assessed by collecting vascular endothelial cells from the antecubital vein and measuring protein expression of markers of oxidative stress using immunofluorescence. We provide here a discussion of these methods to measure FMDBA, aPWV, and vascular endothelial cell protein expression.
Medicine, Issue 88, chronic kidney disease, endothelial cells, flow-mediated dilation, immunofluorescence, oxidative stress, pulse-wave velocity
Play Button
Implantation of the Syncardia Total Artificial Heart
Authors: Daniel G. Tang, Keyur B. Shah, Micheal L. Hess, Vigneshwar Kasirajan.
Institutions: Virginia Commonwealth University, Virginia Commonwealth University.
With advances in technology, the use of mechanical circulatory support devices for end stage heart failure has rapidly increased. The vast majority of such patients are generally well served by left ventricular assist devices (LVADs). However, a subset of patients with late stage biventricular failure or other significant anatomic lesions are not adequately treated by isolated left ventricular mechanical support. Examples of concomitant cardiac pathology that may be better treated by resection and TAH replacement includes: post infarction ventricular septal defect, aortic root aneurysm / dissection, cardiac allograft failure, massive ventricular thrombus, refractory malignant arrhythmias (independent of filling pressures), hypertrophic / restrictive cardiomyopathy, and complex congenital heart disease. Patients often present with cardiogenic shock and multi system organ dysfunction. Excision of both ventricles and orthotopic replacement with a total artificial heart (TAH) is an effective, albeit extreme, therapy for rapid restoration of blood flow and resuscitation. Perioperative management is focused on end organ resuscitation and physical rehabilitation. In addition to the usual concerns of infection, bleeding, and thromboembolism common to all mechanically supported patients, TAH patients face unique risks with regard to renal failure and anemia. Supplementation of the abrupt decrease in brain natriuretic peptide following ventriculectomy appears to have protective renal effects. Anemia following TAH implantation can be profound and persistent. Nonetheless, the anemia is generally well tolerated and transfusion are limited to avoid HLA sensitization. Until recently, TAH patients were confined as inpatients tethered to a 500 lb pneumatic console driver. Recent introduction of a backpack sized portable driver (currently under clinical trial) has enabled patients to be discharged home and even return to work. Despite the profound presentation of these sick patients, there is a 79-87% success in bridge to transplantation.
Medicine, Issue 89, mechanical circulatory support, total artificial heart, biventricular failure, operative techniques
Play Button
Quantitative Autonomic Testing
Authors: Peter Novak.
Institutions: University of Massachusetts Medical School.
Disorders associated with dysfunction of autonomic nervous system are quite common yet frequently unrecognized. Quantitative autonomic testing can be invaluable tool for evaluation of these disorders, both in clinic and research. There are number of autonomic tests, however, only few were validated clinically or are quantitative. Here, fully quantitative and clinically validated protocol for testing of autonomic functions is presented. As a bare minimum the clinical autonomic laboratory should have a tilt table, ECG monitor, continuous noninvasive blood pressure monitor, respiratory monitor and a mean for evaluation of sudomotor domain. The software for recording and evaluation of autonomic tests is critical for correct evaluation of data. The presented protocol evaluates 3 major autonomic domains: cardiovagal, adrenergic and sudomotor. The tests include deep breathing, Valsalva maneuver, head-up tilt, and quantitative sudomotor axon test (QSART). The severity and distribution of dysautonomia is quantitated using Composite Autonomic Severity Scores (CASS). Detailed protocol is provided highlighting essential aspects of testing with emphasis on proper data acquisition, obtaining the relevant parameters and unbiased evaluation of autonomic signals. The normative data and CASS algorithm for interpretation of results are provided as well.
Medicine, Issue 53, Deep breathing, Valsalva maneuver, tilt test, sudomotor testing, Composite Autonomic Severity Score, CASS
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
Play Button
Getting to Compliance in Forced Exercise in Rodents: A Critical Standard to Evaluate Exercise Impact in Aging-related Disorders and Disease
Authors: Jennifer C. Arnold, Michael F. Salvatore.
Institutions: Louisiana State University Health Sciences Center.
There is a major increase in the awareness of the positive impact of exercise on improving several disease states with neurobiological basis; these include improving cognitive function and physical performance. As a result, there is an increase in the number of animal studies employing exercise. It is argued that one intrinsic value of forced exercise is that the investigator has control over the factors that can influence the impact of exercise on behavioral outcomes, notably exercise frequency, duration, and intensity of the exercise regimen. However, compliance in forced exercise regimens may be an issue, particularly if potential confounds of employing foot-shock are to be avoided. It is also important to consider that since most cognitive and locomotor impairments strike in the aged individual, determining impact of exercise on these impairments should consider using aged rodents with a highest possible level of compliance to ensure minimal need for test subjects. Here, the pertinent steps and considerations necessary to achieve nearly 100% compliance to treadmill exercise in an aged rodent model will be presented and discussed. Notwithstanding the particular exercise regimen being employed by the investigator, our protocol should be of use to investigators that are particularly interested in the potential impact of forced exercise on aging-related impairments, including aging-related Parkinsonism and Parkinson’s disease.
Behavior, Issue 90, Exercise, locomotor, Parkinson’s disease, aging, treadmill, bradykinesia, Parkinsonism
Play Button
Adaptation of Semiautomated Circulating Tumor Cell (CTC) Assays for Clinical and Preclinical Research Applications
Authors: Lori E. Lowes, Benjamin D. Hedley, Michael Keeney, Alison L. Allan.
Institutions: London Health Sciences Centre, Western University, London Health Sciences Centre, Lawson Health Research Institute, Western University.
The majority of cancer-related deaths occur subsequent to the development of metastatic disease. This highly lethal disease stage is associated with the presence of circulating tumor cells (CTCs). These rare cells have been demonstrated to be of clinical significance in metastatic breast, prostate, and colorectal cancers. The current gold standard in clinical CTC detection and enumeration is the FDA-cleared CellSearch system (CSS). This manuscript outlines the standard protocol utilized by this platform as well as two additional adapted protocols that describe the detailed process of user-defined marker optimization for protein characterization of patient CTCs and a comparable protocol for CTC capture in very low volumes of blood, using standard CSS reagents, for studying in vivo preclinical mouse models of metastasis. In addition, differences in CTC quality between healthy donor blood spiked with cells from tissue culture versus patient blood samples are highlighted. Finally, several commonly discrepant items that can lead to CTC misclassification errors are outlined. Taken together, these protocols will provide a useful resource for users of this platform interested in preclinical and clinical research pertaining to metastasis and CTCs.
Medicine, Issue 84, Metastasis, circulating tumor cells (CTCs), CellSearch system, user defined marker characterization, in vivo, preclinical mouse model, clinical research
Play Button
Identification of Disease-related Spatial Covariance Patterns using Neuroimaging Data
Authors: Phoebe Spetsieris, Yilong Ma, Shichun Peng, Ji Hyun Ko, Vijay Dhawan, Chris C. Tang, David Eidelberg.
Institutions: The Feinstein Institute for Medical Research.
The scaled subprofile model (SSM)1-4 is a multivariate PCA-based algorithm that identifies major sources of variation in patient and control group brain image data while rejecting lesser components (Figure 1). Applied directly to voxel-by-voxel covariance data of steady-state multimodality images, an entire group image set can be reduced to a few significant linearly independent covariance patterns and corresponding subject scores. Each pattern, termed a group invariant subprofile (GIS), is an orthogonal principal component that represents a spatially distributed network of functionally interrelated brain regions. Large global mean scalar effects that can obscure smaller network-specific contributions are removed by the inherent logarithmic conversion and mean centering of the data2,5,6. Subjects express each of these patterns to a variable degree represented by a simple scalar score that can correlate with independent clinical or psychometric descriptors7,8. Using logistic regression analysis of subject scores (i.e. pattern expression values), linear coefficients can be derived to combine multiple principal components into single disease-related spatial covariance patterns, i.e. composite networks with improved discrimination of patients from healthy control subjects5,6. Cross-validation within the derivation set can be performed using bootstrap resampling techniques9. Forward validation is easily confirmed by direct score evaluation of the derived patterns in prospective datasets10. Once validated, disease-related patterns can be used to score individual patients with respect to a fixed reference sample, often the set of healthy subjects that was used (with the disease group) in the original pattern derivation11. These standardized values can in turn be used to assist in differential diagnosis12,13 and to assess disease progression and treatment effects at the network level7,14-16. We present an example of the application of this methodology to FDG PET data of Parkinson's Disease patients and normal controls using our in-house software to derive a characteristic covariance pattern biomarker of disease.
Medicine, Issue 76, Neurobiology, Neuroscience, Anatomy, Physiology, Molecular Biology, Basal Ganglia Diseases, Parkinsonian Disorders, Parkinson Disease, Movement Disorders, Neurodegenerative Diseases, PCA, SSM, PET, imaging biomarkers, functional brain imaging, multivariate spatial covariance analysis, global normalization, differential diagnosis, PD, brain, imaging, clinical techniques
Play Button
Community-based Adapted Tango Dancing for Individuals with Parkinson's Disease and Older Adults
Authors: Madeleine E. Hackney, Kathleen McKee.
Institutions: Emory University School of Medicine, Brigham and Woman‘s Hospital and Massachusetts General Hospital.
Adapted tango dancing improves mobility and balance in older adults and additional populations with balance impairments. It is composed of very simple step elements. Adapted tango involves movement initiation and cessation, multi-directional perturbations, varied speeds and rhythms. Focus on foot placement, whole body coordination, and attention to partner, path of movement, and aesthetics likely underlie adapted tango’s demonstrated efficacy for improving mobility and balance. In this paper, we describe the methodology to disseminate the adapted tango teaching methods to dance instructor trainees and to implement the adapted tango by the trainees in the community for older adults and individuals with Parkinson’s Disease (PD). Efficacy in improving mobility (measured with the Timed Up and Go, Tandem stance, Berg Balance Scale, Gait Speed and 30 sec chair stand), safety and fidelity of the program is maximized through targeted instructor and volunteer training and a structured detailed syllabus outlining class practices and progression.
Behavior, Issue 94, Dance, tango, balance, pedagogy, dissemination, exercise, older adults, Parkinson's Disease, mobility impairments, falls
Play Button
Utility of Dissociated Intrinsic Hand Muscle Atrophy in the Diagnosis of Amyotrophic Lateral Sclerosis
Authors: Parvathi Menon, Steve Vucic.
Institutions: Westmead Hospital, University of Sydney, Australia.
The split hand phenomenon refers to predominant wasting of thenar muscles and is an early and specific feature of amyotrophic lateral sclerosis (ALS). A novel split hand index (SI) was developed to quantify the split hand phenomenon, and its diagnostic utility was assessed in ALS patients. The split hand index was derived by dividing the product of the compound muscle action potential (CMAP) amplitude recorded over the abductor pollicis brevis and first dorsal interosseous muscles by the CMAP amplitude recorded over the abductor digiti minimi muscle. In order to assess the diagnostic utility of the split hand index, ALS patients were prospectively assessed and their results were compared to neuromuscular disorder patients. The split hand index was significantly reduced in ALS when compared to neuromuscular disorder patients (P<0.0001). Limb-onset ALS patients exhibited the greatest reduction in the split hand index, and a value of 5.2 or less reliably differentiated ALS from other neuromuscular disorders. Consequently, the split hand index appears to be a novel diagnostic biomarker for ALS, perhaps facilitating an earlier diagnosis.
Medicine, Issue 85, Amyotrophic Lateral Sclerosis (ALS), dissociated muscle atrophy, hypothenar muscles, motor neuron disease, split-hand index, thenar muscles
Play Button
Characterization of Complex Systems Using the Design of Experiments Approach: Transient Protein Expression in Tobacco as a Case Study
Authors: Johannes Felix Buyel, Rainer Fischer.
Institutions: RWTH Aachen University, Fraunhofer Gesellschaft.
Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.
Bioengineering, Issue 83, design of experiments (DoE), transient protein expression, plant-derived biopharmaceuticals, promoter, 5'UTR, fluorescent reporter protein, model building, incubation conditions, monoclonal antibody
Play Button
Assessing Endothelial Vasodilator Function with the Endo-PAT 2000
Authors: Andrea L. Axtell, Fatemeh A. Gomari, John P. Cooke.
Institutions: Stanford University .
The endothelium is a delicate monolayer of cells that lines all blood vessels, and which comprises the systemic and lymphatic capillaries. By virtue of the panoply of paracrine factors that it secretes, the endothelium regulates the contractile and proliferative state of the underlying vascular smooth muscle, as well as the interaction of the vessel wall with circulating blood elements. Because of its central role in mediating vessel tone and growth, its position as gateway to circulating immune cells, and its local regulation of hemostasis and coagulation, the the properly functioning endothelium is the key to cardiovascular health. Conversely, the earliest disorder in most vascular diseases is endothelial dysfunction. In the arterial circulation, the healthy endothelium generally exerts a vasodilator influence on the vascular smooth muscle. There are a number of methods to assess endothelial vasodilator function. The Endo-PAT 2000 is a new device that is used to assess endothelial vasodilator function in a rapid and non-invasive fashion. Unlike the commonly used technique of duplex ultra-sonography to assess flow-mediated vasodilation, it is totally non-operator-dependent, and the equipment is an order of magnitude less expensive. The device records endothelium-mediated changes in the digital pulse waveform known as the PAT ( peripheral Arterial Tone) signal, measured with a pair of novel modified plethysmographic probes situated on the finger index of each hand. Endothelium-mediated changes in the PAT signal are elicited by creating a downstream hyperemic response. Hyperemia is induced by occluding blood flow through the brachial artery for 5 minutes using an inflatable cuff on one hand. The response to reactive hyperemia is calculated automatically by the system. A PAT ratio is created using the post and pre occlusion values. These values are normalized to measurements from the contra-lateral arm, which serves as control for non-endothelial dependent systemic effects. Most notably, this normalization controls for fluctuations in sympathetic nerve outflow that may induce changes in peripheral arterial tone that are superimposed on the hyperemic response. In this video we demonstrate how to use the Endo-PAT 2000 to perform a clinically relevant assessment of endothelial vasodilator function.
Medicine, Issue 44, endothelium, endothelial dysfunction, Endo-PAT 2000, peripheral arterial tone, reactive hyperemia
Play Button
Basics of Multivariate Analysis in Neuroimaging Data
Authors: Christian Georg Habeck.
Institutions: Columbia University.
Multivariate analysis techniques for neuroimaging data have recently received increasing attention as they have many attractive features that cannot be easily realized by the more commonly used univariate, voxel-wise, techniques1,5,6,7,8,9. Multivariate approaches evaluate correlation/covariance of activation across brain regions, rather than proceeding on a voxel-by-voxel basis. Thus, their results can be more easily interpreted as a signature of neural networks. Univariate approaches, on the other hand, cannot directly address interregional correlation in the brain. Multivariate approaches can also result in greater statistical power when compared with univariate techniques, which are forced to employ very stringent corrections for voxel-wise multiple comparisons. Further, multivariate techniques also lend themselves much better to prospective application of results from the analysis of one dataset to entirely new datasets. Multivariate techniques are thus well placed to provide information about mean differences and correlations with behavior, similarly to univariate approaches, with potentially greater statistical power and better reproducibility checks. In contrast to these advantages is the high barrier of entry to the use of multivariate approaches, preventing more widespread application in the community. To the neuroscientist becoming familiar with multivariate analysis techniques, an initial survey of the field might present a bewildering variety of approaches that, although algorithmically similar, are presented with different emphases, typically by people with mathematics backgrounds. We believe that multivariate analysis techniques have sufficient potential to warrant better dissemination. Researchers should be able to employ them in an informed and accessible manner. The current article is an attempt at a didactic introduction of multivariate techniques for the novice. A conceptual introduction is followed with a very simple application to a diagnostic data set from the Alzheimer s Disease Neuroimaging Initiative (ADNI), clearly demonstrating the superior performance of the multivariate approach.
JoVE Neuroscience, Issue 41, fMRI, PET, multivariate analysis, cognitive neuroscience, clinical neuroscience
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.