JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
A hybrid least squares and principal component analysis algorithm for Raman spectroscopy.
Raman spectroscopy is a powerful technique for detecting and quantifying analytes in chemical mixtures. A critical part of Raman spectroscopy is the use of a computer algorithm to analyze the measured Raman spectra. The most commonly used algorithm is the classical least squares method, which is popular due to its speed and ease of implementation. However, it is sensitive to inaccuracies or variations in the reference spectra of the analytes (compounds of interest) and the background. Many algorithms, primarily multivariate calibration methods, have been proposed that increase robustness to such variations. In this study, we propose a novel method that improves robustness even further by explicitly modeling variations in both the background and analyte signals. More specifically, it extends the classical least squares model by allowing the declared reference spectra to vary in accordance with the principal components obtained from training sets of spectra measured in prior characterization experiments. The amount of variation allowed is constrained by the eigenvalues of this principal component analysis. We compare the novel algorithm to the least squares method with a low-order polynomial residual model, as well as a state-of-the-art hybrid linear analysis method. The latter is a multivariate calibration method designed specifically to improve robustness to background variability in cases where training spectra of the background, as well as the mean spectrum of the analyte, are available. We demonstrate the novel algorithms superior performance by comparing quantitative error metrics generated by each method. The experiments consider both simulated data and experimental data acquired from in vitro solutions of Raman-enhanced gold-silica nanoparticles.
Authors: Miriam Votteler, Daniel A. Carvajal Berrio, Marieke Pudlas, Heike Walles, Katja Schenke-Layland.
Published: 05-29-2012
Non-destructive, non-contact and label-free technologies to monitor cell and tissue cultures are needed in the field of biomedical research.1-5 However, currently available routine methods require processing steps and alter sample integrity. Raman spectroscopy is a fast method that enables the measurement of biological samples without the need for further processing steps. This laser-based technology detects the inelastic scattering of monochromatic light.6 As every chemical vibration is assigned to a specific Raman band (wavenumber in cm-1), each biological sample features a typical spectral pattern due to their inherent biochemical composition.7-9 Within Raman spectra, the peak intensities correlate with the amount of the present molecular bonds.1 Similarities and differences of the spectral data sets can be detected by employing a multivariate analysis (e.g. principal component analysis (PCA)).10 Here, we perform Raman spectroscopy of living cells and native tissues. Cells are either seeded on glass bottom dishes or kept in suspension under normal cell culture conditions (37 °C, 5% CO2) before measurement. Native tissues are dissected and stored in phosphate buffered saline (PBS) at 4 °C prior measurements. Depending on our experimental set up, we then either focused on the cell nucleus or extracellular matrix (ECM) proteins such as elastin and collagen. For all studies, a minimum of 30 cells or 30 random points of interest within the ECM are measured. Data processing steps included background subtraction and normalization.
22 Related JoVE Articles!
Play Button
Differential Imaging of Biological Structures with Doubly-resonant Coherent Anti-stokes Raman Scattering (CARS)
Authors: Tyler J. Weeks, Thomas R. Huser.
Institutions: University of California, Davis, University of California, Davis.
Coherent Raman imaging techniques have seen a dramatic increase in activity over the past decade due to their promise to enable label-free optical imaging with high molecular specificity 1. The sensitivity of these techniques, however, is many orders of magnitude weaker than fluorescence, requiring milli-molar molecular concentrations 1,2. Here, we describe a technique that can enable the detection of weak or low concentrations of Raman-active molecules by amplifying their signal with that obtained from strong or abundant Raman scatterers. The interaction of short pulsed lasers in a biological sample generates a variety of coherent Raman scattering signals, each of which carry unique chemical information about the sample. Typically, only one of these signals, e.g. Coherent Anti-stokes Raman scattering (CARS), is used to generate an image while the others are discarded. However, when these other signals, including 3-color CARS and four-wave mixing (FWM), are collected and compared to the CARS signal, otherwise difficult to detect information can be extracted 3. For example, doubly-resonant CARS (DR-CARS) is the result of the constructive interference between two resonant signals 4. We demonstrate how tuning of the three lasers required to produce DR-CARS signals to the 2845 cm-1 CH stretch vibration in lipids and the 2120 cm-1 CD stretching vibration of a deuterated molecule (e.g. deuterated sugars, fatty acids, etc.) can be utilized to probe both Raman resonances simultaneously. Under these conditions, in addition to CARS signals from each resonance, a combined DR-CARS signal probing both is also generated. We demonstrate how detecting the difference between the DR-CARS signal and the amplifying signal from an abundant molecule's vibration can be used to enhance the sensitivity for the weaker signal. We further demonstrate that this approach even extends to applications where both signals are generated from different molecules, such that e.g. using the strong Raman signal of a solvent can enhance the weak Raman signal of a dilute solute.
Cellular Biology, Issue 44, Raman scattering, Four-wave mixing, Coherent anti-Stokes Raman scattering, Microscopy, Coherent Raman Scattering
Play Button
Measurement and Analysis of Atomic Hydrogen and Diatomic Molecular AlO, C2, CN, and TiO Spectra Following Laser-induced Optical Breakdown
Authors: Christian G. Parigger, Alexander C. Woods, Michael J. Witte, Lauren D. Swafford, David M. Surmick.
Institutions: University of Tennessee Space Institute.
In this work, we present time-resolved measurements of atomic and diatomic spectra following laser-induced optical breakdown. A typical LIBS arrangement is used. Here we operate a Nd:YAG laser at a frequency of 10 Hz at the fundamental wavelength of 1,064 nm. The 14 nsec pulses with anenergy of 190 mJ/pulse are focused to a 50 µm spot size to generate a plasma from optical breakdown or laser ablation in air. The microplasma is imaged onto the entrance slit of a 0.6 m spectrometer, and spectra are recorded using an 1,800 grooves/mm grating an intensified linear diode array and optical multichannel analyzer (OMA) or an ICCD. Of interest are Stark-broadened atomic lines of the hydrogen Balmer series to infer electron density. We also elaborate on temperature measurements from diatomic emission spectra of aluminum monoxide (AlO), carbon (C2), cyanogen (CN), and titanium monoxide (TiO). The experimental procedures include wavelength and sensitivity calibrations. Analysis of the recorded molecular spectra is accomplished by the fitting of data with tabulated line strengths. Furthermore, Monte-Carlo type simulations are performed to estimate the error margins. Time-resolved measurements are essential for the transient plasma commonly encountered in LIBS.
Physics, Issue 84, Laser Induced Breakdown Spectroscopy, Laser Ablation, Molecular Spectroscopy, Atomic Spectroscopy, Plasma Diagnostics
Play Button
Dependence of Laser-induced Breakdown Spectroscopy Results on Pulse Energies and Timing Parameters Using Soil Simulants
Authors: Lauren Kurek, Maya L. Najarian, David A. Cremers, Rosemarie C. Chinni.
Institutions: Alvernia University, Applied Research Associates (ARA), Inc..
The dependence of some LIBS detection capabilities on lower pulse energies (<100 mJ) and timing parameters were examined using synthetic silicate samples. These samples were used as simulants for soil and contained minor and trace elements commonly found in soil at a wide range of concentrations. For this study, over 100 calibration curves were prepared using different pulse energies and timing parameters; detection limits and sensitivities were determined from the calibration curves. Plasma temperatures were also measured using Boltzmann plots for the various energies and the timing parameters tested. The electron density of the plasma was calculated using the full-width half maximum (FWHM) of the hydrogen line at 656.5 nm over the energies tested. Overall, the results indicate that the use of lower pulse energies and non-gated detection do not seriously compromise the analytical results. These results are very relevant to the design of field- and person-portable LIBS instruments.
Chemistry, Issue 79, analytical chemistry, laser research, atomic physics, [LIBS, Laser-induced breakdown spectroscopy, gated and non-gated detection, energy study]
Play Button
Magnetic Resonance Spectroscopy of live Drosophila melanogaster using Magic Angle Spinning
Authors: Valeria Righi, Yiorgos Apidianakis, Laurence G. Rahme, A. Aria Tzika.
Institutions: Massachusetts General Hospital, Harvard Medical School, Shriners Burn Institute, Harvard Medical School, Massachusetts General Hospital, Harvard Medical School.
High-Resolution Magic Angle Spinning (HRMAS) proton magnetic resonance spectroscopy (1H-MRS) is a novel non-destructive technique that improves spectral line-widths and allows high-resolution spectra to be obtained from extracts, intact cells, cell cultures, and more importantly intact tissue to investigate relationships between metabolites and cellular processes. In vivo HRMAS 1H-MRS studies have yet to be reported in the live fruit fly Drosophila melanogaster. Drosophila, as a simpler genetic organism, allows the multiple biological functions and various evolutionarily conserved signaling pathways to be examined at the whole organism level and it is a useful model for investigating genetics and physiology. To this end, we developed and implemented an in vivo HRMAS 1H-MRS method to investigate live Drosophila at 14.1 T. Here, we outline an HRMAS 1H-MRS protocol for the molecular characterization of Drosophila with a conventional MR spectrometer equipped with an HRMAS probe. This technique is a novel, in vivo, non-destructive Drosophila metabolite measurement approach, which enables the identification of disease biomarkers and thus may contribute to novel therapeutic development.
Neuroscience, Issue 38, Magnetic Resonance Spectroscopy (MRS), High Resolution Magic Angle Spinning (HRMAS), Total Through Bond Correlation Spectroscopy (TOBSY), Drosophila melanogaster
Play Button
Thermodynamics of Membrane Protein Folding Measured by Fluorescence Spectroscopy
Authors: Diana E. Schlamadinger, Judy E. Kim.
Institutions: University of California San Diego - UCSD.
Membrane protein folding is an emerging topic with both fundamental and health-related significance. The abundance of membrane proteins in cells underlies the need for comprehensive study of the folding of this ubiquitous family of proteins. Additionally, advances in our ability to characterize diseases associated with misfolded proteins have motivated significant experimental and theoretical efforts in the field of protein folding. Rapid progress in this important field is unfortunately hindered by the inherent challenges associated with membrane proteins and the complexity of the folding mechanism. Here, we outline an experimental procedure for measuring the thermodynamic property of the Gibbs free energy of unfolding in the absence of denaturant, ΔH2O, for a representative integral membrane protein from E. coli. This protocol focuses on the application of fluorescence spectroscopy to determine equilibrium populations of folded and unfolded states as a function of denaturant concentration. Experimental considerations for the preparation of synthetic lipid vesicles as well as key steps in the data analysis procedure are highlighted. This technique is versatile and may be pursued with different types of denaturant, including temperature and pH, as well as in various folding environments of lipids and micelles. The current protocol is one that can be generalized to any membrane or soluble protein that meets the set of criteria discussed below.
Bioengineering, Issue 50, tryptophan, peptides, Gibbs free energy, protein stability, vesicles
Play Button
Identification of Disease-related Spatial Covariance Patterns using Neuroimaging Data
Authors: Phoebe Spetsieris, Yilong Ma, Shichun Peng, Ji Hyun Ko, Vijay Dhawan, Chris C. Tang, David Eidelberg.
Institutions: The Feinstein Institute for Medical Research.
The scaled subprofile model (SSM)1-4 is a multivariate PCA-based algorithm that identifies major sources of variation in patient and control group brain image data while rejecting lesser components (Figure 1). Applied directly to voxel-by-voxel covariance data of steady-state multimodality images, an entire group image set can be reduced to a few significant linearly independent covariance patterns and corresponding subject scores. Each pattern, termed a group invariant subprofile (GIS), is an orthogonal principal component that represents a spatially distributed network of functionally interrelated brain regions. Large global mean scalar effects that can obscure smaller network-specific contributions are removed by the inherent logarithmic conversion and mean centering of the data2,5,6. Subjects express each of these patterns to a variable degree represented by a simple scalar score that can correlate with independent clinical or psychometric descriptors7,8. Using logistic regression analysis of subject scores (i.e. pattern expression values), linear coefficients can be derived to combine multiple principal components into single disease-related spatial covariance patterns, i.e. composite networks with improved discrimination of patients from healthy control subjects5,6. Cross-validation within the derivation set can be performed using bootstrap resampling techniques9. Forward validation is easily confirmed by direct score evaluation of the derived patterns in prospective datasets10. Once validated, disease-related patterns can be used to score individual patients with respect to a fixed reference sample, often the set of healthy subjects that was used (with the disease group) in the original pattern derivation11. These standardized values can in turn be used to assist in differential diagnosis12,13 and to assess disease progression and treatment effects at the network level7,14-16. We present an example of the application of this methodology to FDG PET data of Parkinson's Disease patients and normal controls using our in-house software to derive a characteristic covariance pattern biomarker of disease.
Medicine, Issue 76, Neurobiology, Neuroscience, Anatomy, Physiology, Molecular Biology, Basal Ganglia Diseases, Parkinsonian Disorders, Parkinson Disease, Movement Disorders, Neurodegenerative Diseases, PCA, SSM, PET, imaging biomarkers, functional brain imaging, multivariate spatial covariance analysis, global normalization, differential diagnosis, PD, brain, imaging, clinical techniques
Play Button
Probing and Mapping Electrode Surfaces in Solid Oxide Fuel Cells
Authors: Kevin S. Blinn, Xiaxi Li, Mingfei Liu, Lawrence A. Bottomley, Meilin Liu.
Institutions: Georgia Institute of Technology , Georgia Institute of Technology .
Solid oxide fuel cells (SOFCs) are potentially the most efficient and cost-effective solution to utilization of a wide variety of fuels beyond hydrogen 1-7. The performance of SOFCs and the rates of many chemical and energy transformation processes in energy storage and conversion devices in general are limited primarily by charge and mass transfer along electrode surfaces and across interfaces. Unfortunately, the mechanistic understanding of these processes is still lacking, due largely to the difficulty of characterizing these processes under in situ conditions. This knowledge gap is a chief obstacle to SOFC commercialization. The development of tools for probing and mapping surface chemistries relevant to electrode reactions is vital to unraveling the mechanisms of surface processes and to achieving rational design of new electrode materials for more efficient energy storage and conversion2. Among the relatively few in situ surface analysis methods, Raman spectroscopy can be performed even with high temperatures and harsh atmospheres, making it ideal for characterizing chemical processes relevant to SOFC anode performance and degradation8-12. It can also be used alongside electrochemical measurements, potentially allowing direct correlation of electrochemistry to surface chemistry in an operating cell. Proper in situ Raman mapping measurements would be useful for pin-pointing important anode reaction mechanisms because of its sensitivity to the relevant species, including anode performance degradation through carbon deposition8, 10, 13, 14 ("coking") and sulfur poisoning11, 15 and the manner in which surface modifications stave off this degradation16. The current work demonstrates significant progress towards this capability. In addition, the family of scanning probe microscopy (SPM) techniques provides a special approach to interrogate the electrode surface with nanoscale resolution. Besides the surface topography that is routinely collected by AFM and STM, other properties such as local electronic states, ion diffusion coefficient and surface potential can also be investigated17-22. In this work, electrochemical measurements, Raman spectroscopy, and SPM were used in conjunction with a novel test electrode platform that consists of a Ni mesh electrode embedded in an yttria-stabilized zirconia (YSZ) electrolyte. Cell performance testing and impedance spectroscopy under fuel containing H2S was characterized, and Raman mapping was used to further elucidate the nature of sulfur poisoning. In situ Raman monitoring was used to investigate coking behavior. Finally, atomic force microscopy (AFM) and electrostatic force microscopy (EFM) were used to further visualize carbon deposition on the nanoscale. From this research, we desire to produce a more complete picture of the SOFC anode.
Materials Science, Issue 67, Chemistry, Electrical Engineering, Physics, electrochemistry, catalysts (chemical), spectroscopic chemical analysis (application), microscopes, Fuel cell, Raman, AFM, SOFC, Surface, Electrode
Play Button
Creating Objects and Object Categories for Studying Perception and Perceptual Learning
Authors: Karin Hauffen, Eugene Bart, Mark Brady, Daniel Kersten, Jay Hegdé.
Institutions: Georgia Health Sciences University, Georgia Health Sciences University, Georgia Health Sciences University, Palo Alto Research Center, Palo Alto Research Center, University of Minnesota .
In order to quantitatively study object perception, be it perception by biological systems or by machines, one needs to create objects and object categories with precisely definable, preferably naturalistic, properties1. Furthermore, for studies on perceptual learning, it is useful to create novel objects and object categories (or object classes) with such properties2. Many innovative and useful methods currently exist for creating novel objects and object categories3-6 (also see refs. 7,8). However, generally speaking, the existing methods have three broad types of shortcomings. First, shape variations are generally imposed by the experimenter5,9,10, and may therefore be different from the variability in natural categories, and optimized for a particular recognition algorithm. It would be desirable to have the variations arise independently of the externally imposed constraints. Second, the existing methods have difficulty capturing the shape complexity of natural objects11-13. If the goal is to study natural object perception, it is desirable for objects and object categories to be naturalistic, so as to avoid possible confounds and special cases. Third, it is generally hard to quantitatively measure the available information in the stimuli created by conventional methods. It would be desirable to create objects and object categories where the available information can be precisely measured and, where necessary, systematically manipulated (or 'tuned'). This allows one to formulate the underlying object recognition tasks in quantitative terms. Here we describe a set of algorithms, or methods, that meet all three of the above criteria. Virtual morphogenesis (VM) creates novel, naturalistic virtual 3-D objects called 'digital embryos' by simulating the biological process of embryogenesis14. Virtual phylogenesis (VP) creates novel, naturalistic object categories by simulating the evolutionary process of natural selection9,12,13. Objects and object categories created by these simulations can be further manipulated by various morphing methods to generate systematic variations of shape characteristics15,16. The VP and morphing methods can also be applied, in principle, to novel virtual objects other than digital embryos, or to virtual versions of real-world objects9,13. Virtual objects created in this fashion can be rendered as visual images using a conventional graphical toolkit, with desired manipulations of surface texture, illumination, size, viewpoint and background. The virtual objects can also be 'printed' as haptic objects using a conventional 3-D prototyper. We also describe some implementations of these computational algorithms to help illustrate the potential utility of the algorithms. It is important to distinguish the algorithms from their implementations. The implementations are demonstrations offered solely as a 'proof of principle' of the underlying algorithms. It is important to note that, in general, an implementation of a computational algorithm often has limitations that the algorithm itself does not have. Together, these methods represent a set of powerful and flexible tools for studying object recognition and perceptual learning by biological and computational systems alike. With appropriate extensions, these methods may also prove useful in the study of morphogenesis and phylogenesis.
Neuroscience, Issue 69, machine learning, brain, classification, category learning, cross-modal perception, 3-D prototyping, inference
Play Button
Coherent anti-Stokes Raman Scattering (CARS) Microscopy Visualizes Pharmaceutical Tablets During Dissolution
Authors: Andrew L. Fussell, Peter Kleinebudde, Jennifer Herek, Clare J. Strachan, Herman L. Offerhaus.
Institutions: University of Twente, Heinrich-Heine University, University of Helsinki.
Traditional pharmaceutical dissolution tests determine the amount of drug dissolved over time by measuring drug content in the dissolution medium. This method provides little direct information about what is happening on the surface of the dissolving tablet. As the tablet surface composition and structure can change during dissolution, it is essential to monitor it during dissolution testing. In this work coherent anti-Stokes Raman scattering microscopy is used to image the surface of tablets during dissolution while UV absorption spectroscopy is simultaneously providing inline analysis of dissolved drug concentration for tablets containing a 50% mixture of theophylline anhydrate and ethyl cellulose. The measurements showed that in situ CARS microscopy is capable of imaging selectively theophylline in the presence of ethyl cellulose. Additionally, the theophylline anhydrate converted to theophylline monohydrate during dissolution, with needle-shaped crystals growing on the tablet surface during dissolution. The conversion of theophylline anhydrate to monohydrate, combined with reduced exposure of the drug to the flowing dissolution medium resulted in decreased dissolution rates. Our results show that in situ CARS microscopy combined with inline UV absorption spectroscopy is capable of monitoring pharmaceutical tablet dissolution and correlating surface changes with changes in dissolution rate.
Physics, Issue 89, Coherent anti-Stokes Raman scattering, microscopy, pharmaceutics, dissolution, in situ analysis, theophylline, tablet
Play Button
Label-free in situ Imaging of Lignification in Plant Cell Walls
Authors: Martin Schmidt, Pradeep Perera, Adam M. Schwartzberg, Paul D. Adams, P. James Schuck.
Institutions: University of California, Berkeley, Lawrence Berkeley National Laboratory, Lawrence Berkeley National Laboratory.
Meeting growing energy demands safely and efficiently is a pressing global challenge. Therefore, research into biofuels production that seeks to find cost-effective and sustainable solutions has become a topical and critical task. Lignocellulosic biomass is poised to become the primary source of biomass for the conversion to liquid biofuels1-6. However, the recalcitrance of these plant cell wall materials to cost-effective and efficient degradation presents a major impediment for their use in the production of biofuels and chemicals4. In particular, lignin, a complex and irregular poly-phenylpropanoid heteropolymer, becomes problematic to the postharvest deconstruction of lignocellulosic biomass. For example in biomass conversion for biofuels, it inhibits saccharification in processes aimed at producing simple sugars for fermentation7. The effective use of plant biomass for industrial purposes is in fact largely dependent on the extent to which the plant cell wall is lignified. The removal of lignin is a costly and limiting factor8 and lignin has therefore become a key plant breeding and genetic engineering target in order to improve cell wall conversion. Analytical tools that permit the accurate rapid characterization of lignification of plant cell walls become increasingly important for evaluating a large number of breeding populations. Extractive procedures for the isolation of native components such as lignin are inevitably destructive, bringing about significant chemical and structural modifications9-11. Analytical chemical in situ methods are thus invaluable tools for the compositional and structural characterization of lignocellulosic materials. Raman microscopy is a technique that relies on inelastic or Raman scattering of monochromatic light, like that from a laser, where the shift in energy of the laser photons is related to molecular vibrations and presents an intrinsic label-free molecular "fingerprint" of the sample. Raman microscopy can afford non-destructive and comparatively inexpensive measurements with minimal sample preparation, giving insights into chemical composition and molecular structure in a close to native state. Chemical imaging by confocal Raman microscopy has been previously used for the visualization of the spatial distribution of cellulose and lignin in wood cell walls12-14. Based on these earlier results, we have recently adopted this method to compare lignification in wild type and lignin-deficient transgenic Populus trichocarpa (black cottonwood) stem wood15. Analyzing the lignin Raman bands16,17 in the spectral region between 1,600 and 1,700 cm-1, lignin signal intensity and localization were mapped in situ. Our approach visualized differences in lignin content, localization, and chemical composition. Most recently, we demonstrated Raman imaging of cell wall polymers in Arabidopsis thaliana with lateral resolution that is sub-μm18. Here, this method is presented affording visualization of lignin in plant cell walls and comparison of lignification in different tissues, samples or species without staining or labeling of the tissues.
Plant Biology, Issue 45, Raman microscopy, lignin, poplar wood, Arabidopsis thaliana
Play Button
Quantitative Detection of Trace Explosive Vapors by Programmed Temperature Desorption Gas Chromatography-Electron Capture Detector
Authors: Christopher R. Field, Adam Lubrano, Morgan Woytowitz, Braden C. Giordano, Susan L. Rose-Pehrsson.
Institutions: U.S. Naval Research Laboratory, NOVA Research, Inc., U.S. Naval Research Laboratory, U.S. Naval Research Laboratory.
The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples.
Chemistry, Issue 89, Gas Chromatography (GC), Electron Capture Detector, Explosives, Quantitation, Thermal Desorption, TNT, RDX
Play Button
Synthesis and Operation of Fluorescent-core Microcavities for Refractometric Sensing
Authors: Shalon McFarlane, C.P.K. Manchee, Joshua W. Silverstone, Jonathan Veinot, Al Meldrum.
Institutions: University of Alberta.
This paper discusses fluorescent core microcavity-based sensors that can operate in a microfluidic analysis setup. These structures are based on the formation of a fluorescent quantum-dot (QD) coating on the channel surface of a conventional microcapillary. Silicon QDs are especially attractive for this application, owing in part to their negligible toxicity compared to the II-VI and II-VI compound QDs, which are legislatively controlled substances in many countries. While the ensemble emission spectrum is broad and featureless, an Si-QD film on the channel wall of a capillary features a set of sharp, narrow peaks in the fluorescence spectrum, corresponding to the electromagnetic resonances for light trapped within the film. The peak wavelength of these resonances is sensitive to the external medium, thus permitting the device to function as a refractometric sensor in which the QDs never come into physical contact with the analyte. The experimental methods associated with the fabrication of the fluorescent-core microcapillaries are discussed in detail, as well as the analysis methods. Finally, a comparison is made between these structures and the more widely investigated liquid-core optical ring resonators, in terms of microfluidic sensing capabilities.
Physics, Issue 73, Microfluidics, Optics, Quantum Dots, Optics and Photonics, fluid flow sensors (general), luminescence (optics), optical waveguides, photonics, condensed matter physics, microcavities, whispering gallery modes, refractometric sensor, fluorescence, microcapillary, quantum dots
Play Button
In Situ SIMS and IR Spectroscopy of Well-defined Surfaces Prepared by Soft Landing of Mass-selected Ions
Authors: Grant E. Johnson, K. Don Dasitha Gunaratne, Julia Laskin.
Institutions: Pacific Northwest National Laboratory.
Soft landing of mass-selected ions onto surfaces is a powerful approach for the highly-controlled preparation of materials that are inaccessible using conventional synthesis techniques. Coupling soft landing with in situ characterization using secondary ion mass spectrometry (SIMS) and infrared reflection absorption spectroscopy (IRRAS) enables analysis of well-defined surfaces under clean vacuum conditions. The capabilities of three soft-landing instruments constructed in our laboratory are illustrated for the representative system of surface-bound organometallics prepared by soft landing of mass-selected ruthenium tris(bipyridine) dications, [Ru(bpy)3]2+ (bpy = bipyridine), onto carboxylic acid terminated self-assembled monolayer surfaces on gold (COOH-SAMs). In situ time-of-flight (TOF)-SIMS provides insight into the reactivity of the soft-landed ions. In addition, the kinetics of charge reduction, neutralization and desorption occurring on the COOH-SAM both during and after ion soft landing are studied using in situ Fourier transform ion cyclotron resonance (FT-ICR)-SIMS measurements. In situ IRRAS experiments provide insight into how the structure of organic ligands surrounding metal centers is perturbed through immobilization of organometallic ions on COOH-SAM surfaces by soft landing. Collectively, the three instruments provide complementary information about the chemical composition, reactivity and structure of well-defined species supported on surfaces.
Chemistry, Issue 88, soft landing, mass selected ions, electrospray, secondary ion mass spectrometry, infrared spectroscopy, organometallic, catalysis
Play Button
Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries Using Synchrotron Radiation Techniques
Authors: Marca M. Doeff, Guoying Chen, Jordi Cabana, Thomas J. Richardson, Apurva Mehta, Mona Shirpour, Hugues Duncan, Chunjoong Kim, Kinson C. Kam, Thomas Conry.
Institutions: Lawrence Berkeley National Laboratory, University of Illinois at Chicago, Stanford Synchrotron Radiation Lightsource, Haldor Topsøe A/S, PolyPlus Battery Company.
Intercalation compounds such as transition metal oxides or phosphates are the most commonly used electrode materials in Li-ion and Na-ion batteries. During insertion or removal of alkali metal ions, the redox states of transition metals in the compounds change and structural transformations such as phase transitions and/or lattice parameter increases or decreases occur. These behaviors in turn determine important characteristics of the batteries such as the potential profiles, rate capabilities, and cycle lives. The extremely bright and tunable x-rays produced by synchrotron radiation allow rapid acquisition of high-resolution data that provide information about these processes. Transformations in the bulk materials, such as phase transitions, can be directly observed using X-ray diffraction (XRD), while X-ray absorption spectroscopy (XAS) gives information about the local electronic and geometric structures (e.g. changes in redox states and bond lengths). In situ experiments carried out on operating cells are particularly useful because they allow direct correlation between the electrochemical and structural properties of the materials. These experiments are time-consuming and can be challenging to design due to the reactivity and air-sensitivity of the alkali metal anodes used in the half-cell configurations, and/or the possibility of signal interference from other cell components and hardware. For these reasons, it is appropriate to carry out ex situ experiments (e.g. on electrodes harvested from partially charged or cycled cells) in some cases. Here, we present detailed protocols for the preparation of both ex situ and in situ samples for experiments involving synchrotron radiation and demonstrate how these experiments are done.
Physics, Issue 81, X-Ray Absorption Spectroscopy, X-Ray Diffraction, inorganic chemistry, electric batteries (applications), energy storage, Electrode materials, Li-ion battery, Na-ion battery, X-ray Absorption Spectroscopy (XAS), in situ X-ray diffraction (XRD)
Play Button
Diffusion Tensor Magnetic Resonance Imaging in the Analysis of Neurodegenerative Diseases
Authors: Hans-Peter Müller, Jan Kassubek.
Institutions: University of Ulm.
Diffusion tensor imaging (DTI) techniques provide information on the microstructural processes of the cerebral white matter (WM) in vivo. The present applications are designed to investigate differences of WM involvement patterns in different brain diseases, especially neurodegenerative disorders, by use of different DTI analyses in comparison with matched controls. DTI data analysis is performed in a variate fashion, i.e. voxelwise comparison of regional diffusion direction-based metrics such as fractional anisotropy (FA), together with fiber tracking (FT) accompanied by tractwise fractional anisotropy statistics (TFAS) at the group level in order to identify differences in FA along WM structures, aiming at the definition of regional patterns of WM alterations at the group level. Transformation into a stereotaxic standard space is a prerequisite for group studies and requires thorough data processing to preserve directional inter-dependencies. The present applications show optimized technical approaches for this preservation of quantitative and directional information during spatial normalization in data analyses at the group level. On this basis, FT techniques can be applied to group averaged data in order to quantify metrics information as defined by FT. Additionally, application of DTI methods, i.e. differences in FA-maps after stereotaxic alignment, in a longitudinal analysis at an individual subject basis reveal information about the progression of neurological disorders. Further quality improvement of DTI based results can be obtained during preprocessing by application of a controlled elimination of gradient directions with high noise levels. In summary, DTI is used to define a distinct WM pathoanatomy of different brain diseases by the combination of whole brain-based and tract-based DTI analysis.
Medicine, Issue 77, Neuroscience, Neurobiology, Molecular Biology, Biomedical Engineering, Anatomy, Physiology, Neurodegenerative Diseases, nuclear magnetic resonance, NMR, MR, MRI, diffusion tensor imaging, fiber tracking, group level comparison, neurodegenerative diseases, brain, imaging, clinical techniques
Play Button
Rejection of Fluorescence Background in Resonance and Spontaneous Raman Microspectroscopy
Authors: Zachary J. Smith, Florian Knorr, Cynthia V. Pagba, Sebastian Wachsmann-Hogiu.
Institutions: University of California, Davis, University of California, Davis.
Raman spectroscopy is often plagued by a strong fluorescent background, particularly for biological samples. If a sample is excited with a train of ultrafast pulses, a system that can temporally separate spectrally overlapping signals on a picosecond timescale can isolate promptly arriving Raman scattered light from late-arriving fluorescence light. Here we discuss the construction and operation of a complex nonlinear optical system that uses all-optical switching in the form of a low-power optical Kerr gate to isolate Raman and fluorescence signals. A single 808 nm laser with 2.4 W of average power and 80 MHz repetition rate is split, with approximately 200 mW of 808 nm light being converted to < 5 mW of 404 nm light sent to the sample to excite Raman scattering. The remaining unconverted 808 nm light is then sent to a nonlinear medium where it acts as the pump for the all-optical shutter. The shutter opens and closes in 800 fs with a peak efficiency of approximately 5%. Using this system we are able to successfully separate Raman and fluorescence signals at an 80 MHz repetition rate using pulse energies and average powers that remain biologically safe. Because the system has no spare capacity in terms of optical power, we detail several design and alignment considerations that aid in maximizing the throughput of the system. We also discuss our protocol for obtaining the spatial and temporal overlap of the signal and pump beams within the Kerr medium, as well as a detailed protocol for spectral acquisition. Finally, we report a few representative results of Raman spectra obtained in the presence of strong fluorescence using our time-gating system.
Microbiology, Issue 51, Raman scattering, all-optical gating, nonlinear optics, fluorescence, timeresolved spectroscopy.
Play Button
Simultaneous Multicolor Imaging of Biological Structures with Fluorescence Photoactivation Localization Microscopy
Authors: Nikki M. Curthoys, Michael J. Mlodzianoski, Dahan Kim, Samuel T. Hess.
Institutions: University of Maine.
Localization-based super resolution microscopy can be applied to obtain a spatial map (image) of the distribution of individual fluorescently labeled single molecules within a sample with a spatial resolution of tens of nanometers. Using either photoactivatable (PAFP) or photoswitchable (PSFP) fluorescent proteins fused to proteins of interest, or organic dyes conjugated to antibodies or other molecules of interest, fluorescence photoactivation localization microscopy (FPALM) can simultaneously image multiple species of molecules within single cells. By using the following approach, populations of large numbers (thousands to hundreds of thousands) of individual molecules are imaged in single cells and localized with a precision of ~10-30 nm. Data obtained can be applied to understanding the nanoscale spatial distributions of multiple protein types within a cell. One primary advantage of this technique is the dramatic increase in spatial resolution: while diffraction limits resolution to ~200-250 nm in conventional light microscopy, FPALM can image length scales more than an order of magnitude smaller. As many biological hypotheses concern the spatial relationships among different biomolecules, the improved resolution of FPALM can provide insight into questions of cellular organization which have previously been inaccessible to conventional fluorescence microscopy. In addition to detailing the methods for sample preparation and data acquisition, we here describe the optical setup for FPALM. One additional consideration for researchers wishing to do super-resolution microscopy is cost: in-house setups are significantly cheaper than most commercially available imaging machines. Limitations of this technique include the need for optimizing the labeling of molecules of interest within cell samples, and the need for post-processing software to visualize results. We here describe the use of PAFP and PSFP expression to image two protein species in fixed cells. Extension of the technique to living cells is also described.
Basic Protocol, Issue 82, Microscopy, Super-resolution imaging, Multicolor, single molecule, FPALM, Localization microscopy, fluorescent proteins
Play Button
Metabolomic Analysis of Rat Brain by High Resolution Nuclear Magnetic Resonance Spectroscopy of Tissue Extracts
Authors: Norbert W. Lutz, Evelyne Béraud, Patrick J. Cozzone.
Institutions: Aix-Marseille Université, Aix-Marseille Université.
Studies of gene expression on the RNA and protein levels have long been used to explore biological processes underlying disease. More recently, genomics and proteomics have been complemented by comprehensive quantitative analysis of the metabolite pool present in biological systems. This strategy, termed metabolomics, strives to provide a global characterization of the small-molecule complement involved in metabolism. While the genome and the proteome define the tasks cells can perform, the metabolome is part of the actual phenotype. Among the methods currently used in metabolomics, spectroscopic techniques are of special interest because they allow one to simultaneously analyze a large number of metabolites without prior selection for specific biochemical pathways, thus enabling a broad unbiased approach. Here, an optimized experimental protocol for metabolomic analysis by high-resolution NMR spectroscopy is presented, which is the method of choice for efficient quantification of tissue metabolites. Important strengths of this method are (i) the use of crude extracts, without the need to purify the sample and/or separate metabolites; (ii) the intrinsically quantitative nature of NMR, permitting quantitation of all metabolites represented by an NMR spectrum with one reference compound only; and (iii) the nondestructive nature of NMR enabling repeated use of the same sample for multiple measurements. The dynamic range of metabolite concentrations that can be covered is considerable due to the linear response of NMR signals, although metabolites occurring at extremely low concentrations may be difficult to detect. For the least abundant compounds, the highly sensitive mass spectrometry method may be advantageous although this technique requires more intricate sample preparation and quantification procedures than NMR spectroscopy. We present here an NMR protocol adjusted to rat brain analysis; however, the same protocol can be applied to other tissues with minor modifications.
Neuroscience, Issue 91, metabolomics, brain tissue, rodents, neurochemistry, tissue extracts, NMR spectroscopy, quantitative metabolite analysis, cerebral metabolism, metabolic profile
Play Button
Dithranol as a Matrix for Matrix Assisted Laser Desorption/Ionization Imaging on a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer
Authors: Cuong H. Le, Jun Han, Christoph H. Borchers.
Institutions: University of Victoria, University of Victoria.
Mass spectrometry imaging (MSI) determines the spatial localization and distribution patterns of compounds on the surface of a tissue section, mainly using MALDI (matrix assisted laser desorption/ionization)-based analytical techniques. New matrices for small-molecule MSI, which can improve the analysis of low-molecular weight (MW) compounds, are needed. These matrices should provide increased analyte signals while decreasing MALDI background signals. In addition, the use of ultrahigh-resolution instruments, such as Fourier transform ion cyclotron resonance (FTICR) mass spectrometers, has the ability to resolve analyte signals from matrix signals, and this can partially overcome many problems associated with the background originating from the MALDI matrix. The reduction in the intensities of the metastable matrix clusters by FTICR MS can also help to overcome some of the interferences associated with matrix peaks on other instruments. High-resolution instruments such as the FTICR mass spectrometers are advantageous as they can produce distribution patterns of many compounds simultaneously while still providing confidence in chemical identifications. Dithranol (DT; 1,8-dihydroxy-9,10-dihydroanthracen-9-one) has previously been reported as a MALDI matrix for tissue imaging. In this work, a protocol for the use of DT for MALDI imaging of endogenous lipids from the surfaces of mammalian tissue sections, by positive-ion MALDI-MS, on an ultrahigh-resolution hybrid quadrupole FTICR instrument has been provided.
Basic Protocol, Issue 81, eye, molecular imaging, chemistry technique, analytical, mass spectrometry, matrix assisted laser desorption/ionization (MALDI), tandem mass spectrometry, lipid, tissue imaging, bovine lens, dithranol, matrix, FTICR (Fourier Transform Ion Cyclotron Resonance)
Play Button
Detection of Architectural Distortion in Prior Mammograms via Analysis of Oriented Patterns
Authors: Rangaraj M. Rangayyan, Shantanu Banik, J.E. Leo Desautels.
Institutions: University of Calgary , University of Calgary .
We demonstrate methods for the detection of architectural distortion in prior mammograms of interval-cancer cases based on analysis of the orientation of breast tissue patterns in mammograms. We hypothesize that architectural distortion modifies the normal orientation of breast tissue patterns in mammographic images before the formation of masses or tumors. In the initial steps of our methods, the oriented structures in a given mammogram are analyzed using Gabor filters and phase portraits to detect node-like sites of radiating or intersecting tissue patterns. Each detected site is then characterized using the node value, fractal dimension, and a measure of angular dispersion specifically designed to represent spiculating patterns associated with architectural distortion. Our methods were tested with a database of 106 prior mammograms of 56 interval-cancer cases and 52 mammograms of 13 normal cases using the features developed for the characterization of architectural distortion, pattern classification via quadratic discriminant analysis, and validation with the leave-one-patient out procedure. According to the results of free-response receiver operating characteristic analysis, our methods have demonstrated the capability to detect architectural distortion in prior mammograms, taken 15 months (on the average) before clinical diagnosis of breast cancer, with a sensitivity of 80% at about five false positives per patient.
Medicine, Issue 78, Anatomy, Physiology, Cancer Biology, angular spread, architectural distortion, breast cancer, Computer-Assisted Diagnosis, computer-aided diagnosis (CAD), entropy, fractional Brownian motion, fractal dimension, Gabor filters, Image Processing, Medical Informatics, node map, oriented texture, Pattern Recognition, phase portraits, prior mammograms, spectral analysis
Play Button
Free Radicals in Chemical Biology: from Chemical Behavior to Biomarker Development
Authors: Chryssostomos Chatgilialoglu, Carla Ferreri, Annalisa Masi, Michele Melchiorre, Anna Sansone, Michael A. Terzidis, Armida Torreggiani.
Institutions: Consiglio Nazionale delle Ricerche.
The involvement of free radicals in life sciences has constantly increased with time and has been connected to several physiological and pathological processes. This subject embraces diverse scientific areas, spanning from physical, biological and bioorganic chemistry to biology and medicine, with applications to the amelioration of quality of life, health and aging. Multidisciplinary skills are required for the full investigation of the many facets of radical processes in the biological environment and chemical knowledge plays a crucial role in unveiling basic processes and mechanisms. We developed a chemical biology approach able to connect free radical chemical reactivity with biological processes, providing information on the mechanistic pathways and products. The core of this approach is the design of biomimetic models to study biomolecule behavior (lipids, nucleic acids and proteins) in aqueous systems, obtaining insights of the reaction pathways as well as building up molecular libraries of the free radical reaction products. This context can be successfully used for biomarker discovery and examples are provided with two classes of compounds: mono-trans isomers of cholesteryl esters, which are synthesized and used as references for detection in human plasma, and purine 5',8-cyclo-2'-deoxyribonucleosides, prepared and used as reference in the protocol for detection of such lesions in DNA samples, after ionizing radiations or obtained from different health conditions.
Chemistry, Issue 74, Biochemistry, Chemical Engineering, Chemical Biology, chemical analysis techniques, chemistry (general), life sciences, radiation effects (biological, animal and plant), biomarker, biomimetic chemistry, free radicals, trans lipids, cyclopurine lesions, DNA, chromatography, spectroscopy, synthesis
Play Button
MALDI Sample Preparation: the Ultra Thin Layer Method
Authors: David Fenyo, Qingjun Wang, Jeffrey A. DeGrasse, Julio C. Padovan, Martine Cadene, Brian T. Chait.
Institutions: Rockefeller University.
This video demonstrates the preparation of an ultra-thin matrix/analyte layer for analyzing peptides and proteins by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry (MALDI-MS) 1,2. The ultra-thin layer method involves the production of a substrate layer of matrix crystals (alpha-cyano-4-hydroxycinnamic acid) on the sample plate, which serves as a seeding ground for subsequent crystallization of a matrix/analyte mixture. Advantages of the ultra-thin layer method over other sample deposition approaches (e.g. dried droplet) are that it provides (i) greater tolerance to impurities such as salts and detergents, (ii) better resolution, and (iii) higher spatial uniformity. This method is especially useful for the accurate mass determination of proteins. The protocol was initially developed and optimized for the analysis of membrane proteins and used to successfully analyze ion channels, metabolite transporters, and receptors, containing between 2 and 12 transmembrane domains 2. Since the original publication, it has also shown to be equally useful for the analysis of soluble proteins. Indeed, we have used it for a large number of proteins having a wide range of properties, including those with molecular masses as high as 380 kDa 3. It is currently our method of choice for the molecular mass analysis of all proteins. The described procedure consistently produces high-quality spectra, and it is sensitive, robust, and easy to implement.
Cellular Biology, Issue 3, mass-spectrometry, ultra-thin layer, MALDI, MS, proteins
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.