JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Macrostructural alterations of subcortical grey matter in psychogenic erectile dysfunction.
PLoS ONE
Psychogenic erectile dysfunction (ED) has been defined as the persistent inability to attain and maintain an erection sufficient to permit sexual performance. It shows a high incidence and prevalence among men, with a significant impact on the quality of life. Few neuroimaging studies have investigated the cerebral basis of erectile dysfunctions observing the role played by prefrontal, cingulate, and parietal cortices during erotic stimulation. In spite of the well-known involvement of subcortical regions such as hypothalamus and caudate nucleus in male sexual response, and the key role of nucleus accumbens in pleasure and reward, poor attention was paid to their role in male sexual dysfunction. In this study, we determined the presence of grey matter (GM) atrophy patterns in subcortical structures such as amygdala, hippocampus, nucleus accumbens, caudate nucleus, putamen, pallidum, thalamus, and hypothalamus in patients with psychogenic ED and healthy men. After Rigiscan evaluation, urological, general medical, metabolic and hormonal, psychological and psychiatric assessment, 17 outpatients with psychogenic ED and 25 healthy controls were recruited for structural MRI session. Significant GM atrophy of nucleus accumbens was observed bilaterally in patients with respect to controls. Shape analysis showed that this atrophy was located in the left medial-anterior and posterior portion of accumbens. Left nucleus accumbens volumes in patients correlated with low erectile functioning as measured by IIEF-5 (International Index of Erectile Function). In addition, a GM atrophy of left hypothalamus was also observed. Our results suggest that atrophy of nucleus accumbens plays an important role in psychogenic erectile dysfunction. We believe that this change can influence the motivation-related component of sexual behavior. Our findings help to elucidate a neural basis of psychogenic erectile dysfunction.
Authors: Matthew Moore, Yifan Hu, Sarah Woo, Dylan O'Hearn, Alexandru D. Iordan, Sanda Dolcos, Florin Dolcos.
Published: 07-02-2014
ABSTRACT
The present paper describes a comprehensive protocol for manual tracing of the set of brain regions comprising the medial temporal lobe (MTL): amygdala, hippocampus, and the associated parahippocampal regions (perirhinal, entorhinal, and parahippocampal proper). Unlike most other tracing protocols available, typically focusing on certain MTL areas (e.g., amygdala and/or hippocampus), the integrative perspective adopted by the present tracing guidelines allows for clear localization of all MTL subregions. By integrating information from a variety of sources, including extant tracing protocols separately targeting various MTL structures, histological reports, and brain atlases, and with the complement of illustrative visual materials, the present protocol provides an accurate, intuitive, and convenient guide for understanding the MTL anatomy. The need for such tracing guidelines is also emphasized by illustrating possible differences between automatic and manual segmentation protocols. This knowledge can be applied toward research involving not only structural MRI investigations but also structural-functional colocalization and fMRI signal extraction from anatomically defined ROIs, in healthy and clinical groups alike.
21 Related JoVE Articles!
Play Button
A General Method for Evaluating Incubation of Sucrose Craving in Rats
Authors: Jeffrey W. Grimm, Jesse Barnes, Kindsey North, Stefan Collins, Rachel Weber.
Institutions: Western Washington University.
For someone on a food-restricted diet, food craving in response to food-paired cues may serve as a key behavioral transition point between abstinence and relapse to food taking 1. Food craving conceptualized in this way is akin to drug craving in response to drug-paired cues. A rich literature has been developed around understanding the behavioral and neurobiological determinants of drug craving; we and others have been focusing recently on translating techniques from basic addiction research to better understand addiction-like behaviors related to food 2-4. As done in previous studies of drug craving, we examine sucrose craving behavior by utilizing a rat model of relapse. In this model, rats self-administer either drug or food in sessions over several days. In a session, lever responding delivers the reward along with a tone+light stimulus. Craving behavior is then operationally defined as responding in a subsequent session where the reward is not available. Rats will reliably respond for the tone+light stimulus, likely due to its acquired conditioned reinforcing properties 5. This behavior is sometimes referred to as sucrose seeking or cue reactivity. In the present discussion we will use the term "sucrose craving" to subsume both of these constructs. In the past decade, we have focused on how the length of time following reward self-administration influences reward craving. Interestingly, rats increase responding for the reward-paired cue over the course of several weeks of a period of forced-abstinence. This "incubation of craving" is observed in rats that have self-administered either food or drugs of abuse 4,6. This time-dependent increase in craving we have identified in the animal model may have great potential relevance to human drug and food addiction behaviors. Here we present a protocol for assessing incubation of sucrose craving in rats. Variants of the procedure will be indicated where craving is assessed as responding for a discrete sucrose-paired cue following extinction of lever pressing within the sucrose self-administration context (Extinction without cues) or as responding for sucrose-paired cues in a general extinction context (Extinction with cues).
Neuroscience, Issue 57, addiction, craving, cue-reactivity, extinction, reinstatement, relapse, sucrose seeking
3335
Play Button
Network Analysis of the Default Mode Network Using Functional Connectivity MRI in Temporal Lobe Epilepsy
Authors: Zulfi Haneef, Agatha Lenartowicz, Hsiang J. Yeh, Jerome Engel Jr., John M. Stern.
Institutions: Baylor College of Medicine, Michael E. DeBakey VA Medical Center, University of California, Los Angeles, University of California, Los Angeles.
Functional connectivity MRI (fcMRI) is an fMRI method that examines the connectivity of different brain areas based on the correlation of BOLD signal fluctuations over time. Temporal Lobe Epilepsy (TLE) is the most common type of adult epilepsy and involves multiple brain networks. The default mode network (DMN) is involved in conscious, resting state cognition and is thought to be affected in TLE where seizures cause impairment of consciousness. The DMN in epilepsy was examined using seed based fcMRI. The anterior and posterior hubs of the DMN were used as seeds in this analysis. The results show a disconnection between the anterior and posterior hubs of the DMN in TLE during the basal state. In addition, increased DMN connectivity to other brain regions in left TLE along with decreased connectivity in right TLE is revealed. The analysis demonstrates how seed-based fcMRI can be used to probe cerebral networks in brain disorders such as TLE.
Medicine, Issue 90, Default Mode Network (DMN), Temporal Lobe Epilepsy (TLE), fMRI, MRI, functional connectivity MRI (fcMRI), blood oxygenation level dependent (BOLD)
51442
Play Button
Comprehensive Profiling of Dopamine Regulation in Substantia Nigra and Ventral Tegmental Area
Authors: Michael F. Salvatore, Brandon S. Pruett, Charles Dempsey, Victoria Fields.
Institutions: Louisiana State University Health Sciences Center.
Dopamine is a vigorously studied neurotransmitter in the CNS. Indeed, its involvement in locomotor activity and reward-related behaviour has fostered five decades of inquiry into the molecular deficiencies associated with dopamine regulation. The majority of these inquiries of dopamine regulation in the brain focus upon the molecular basis for its regulation in the terminal field regions of the nigrostriatal and mesoaccumbens pathways; striatum and nucleus accumbens. Furthermore, such studies have concentrated on analysis of dopamine tissue content with normalization to only wet tissue weight. Investigation of the proteins that regulate dopamine, such as tyrosine hydroxylase (TH) protein, TH phosphorylation, dopamine transporter (DAT), and vesicular monoamine transporter 2 (VMAT2) protein often do not include analysis of dopamine tissue content in the same sample. The ability to analyze both dopamine tissue content and its regulating proteins (including post-translational modifications) not only gives inherent power to interpreting the relationship of dopamine with the protein level and function of TH, DAT, or VMAT2, but also extends sample economy. This translates into less cost, and yet produces insights into the molecular regulation of dopamine in virtually any paradigm of the investigators' choice. We focus the analyses in the midbrain. Although the SN and VTA are typically neglected in most studies of dopamine regulation, these nuclei are easily dissected with practice. A comprehensive readout of dopamine tissue content and TH, DAT, or VMAT2 can be conducted. There is burgeoning literature on the impact of dopamine function in the SN and VTA on behavior, and the impingements of exogenous substances or disease processes therein 1-5. Furthermore, compounds such as growth factors have a profound effect on dopamine and dopamine-regulating proteins, to a comparatively greater extent in the SN or VTA 6-8. Therefore, this methodology is presented for reference to laboratories that want to extend their inquiries on how specific treatments modulate behaviour and dopamine regulation. Here, a multi-step method is presented for the analyses of dopamine tissue content, the protein levels of TH, DAT, or VMAT2, and TH phosphorylation from the substantia nigra and VTA from rodent midbrain. The analysis of TH phosphorylation can yield significant insights into not only how TH activity is regulated, but also the signaling cascades affected in the somatodendritic nuclei in a given paradigm. We will illustrate the dissection technique to segregate these two nuclei and the sample processing of dissected tissue that produces a profile revealing molecular mechanisms of dopamine regulation in vivo, specific for each nuclei (Figure 1).
Neuroscience, Issue 66, Medicine, Physiology, midbrain, substantia nigra, ventral tegmental area, tyrosine hydroxylase, phosphorylation, nigrostriatal, mesoaccumbens, dopamine transporter
4171
Play Button
Utility of Dissociated Intrinsic Hand Muscle Atrophy in the Diagnosis of Amyotrophic Lateral Sclerosis
Authors: Parvathi Menon, Steve Vucic.
Institutions: Westmead Hospital, University of Sydney, Australia.
The split hand phenomenon refers to predominant wasting of thenar muscles and is an early and specific feature of amyotrophic lateral sclerosis (ALS). A novel split hand index (SI) was developed to quantify the split hand phenomenon, and its diagnostic utility was assessed in ALS patients. The split hand index was derived by dividing the product of the compound muscle action potential (CMAP) amplitude recorded over the abductor pollicis brevis and first dorsal interosseous muscles by the CMAP amplitude recorded over the abductor digiti minimi muscle. In order to assess the diagnostic utility of the split hand index, ALS patients were prospectively assessed and their results were compared to neuromuscular disorder patients. The split hand index was significantly reduced in ALS when compared to neuromuscular disorder patients (P<0.0001). Limb-onset ALS patients exhibited the greatest reduction in the split hand index, and a value of 5.2 or less reliably differentiated ALS from other neuromuscular disorders. Consequently, the split hand index appears to be a novel diagnostic biomarker for ALS, perhaps facilitating an earlier diagnosis.
Medicine, Issue 85, Amyotrophic Lateral Sclerosis (ALS), dissociated muscle atrophy, hypothenar muscles, motor neuron disease, split-hand index, thenar muscles
51056
Play Button
Cortical Source Analysis of High-Density EEG Recordings in Children
Authors: Joe Bathelt, Helen O'Reilly, Michelle de Haan.
Institutions: UCL Institute of Child Health, University College London.
EEG is traditionally described as a neuroimaging technique with high temporal and low spatial resolution. Recent advances in biophysical modelling and signal processing make it possible to exploit information from other imaging modalities like structural MRI that provide high spatial resolution to overcome this constraint1. This is especially useful for investigations that require high resolution in the temporal as well as spatial domain. In addition, due to the easy application and low cost of EEG recordings, EEG is often the method of choice when working with populations, such as young children, that do not tolerate functional MRI scans well. However, in order to investigate which neural substrates are involved, anatomical information from structural MRI is still needed. Most EEG analysis packages work with standard head models that are based on adult anatomy. The accuracy of these models when used for children is limited2, because the composition and spatial configuration of head tissues changes dramatically over development3.  In the present paper, we provide an overview of our recent work in utilizing head models based on individual structural MRI scans or age specific head models to reconstruct the cortical generators of high density EEG. This article describes how EEG recordings are acquired, processed, and analyzed with pediatric populations at the London Baby Lab, including laboratory setup, task design, EEG preprocessing, MRI processing, and EEG channel level and source analysis. 
Behavior, Issue 88, EEG, electroencephalogram, development, source analysis, pediatric, minimum-norm estimation, cognitive neuroscience, event-related potentials 
51705
Play Button
Isolation and Functional Characterization of Human Ventricular Cardiomyocytes from Fresh Surgical Samples
Authors: Raffaele Coppini, Cecila Ferrantini, Alessandro Aiazzi, Luca Mazzoni, Laura Sartiani, Alessandro Mugelli, Corrado Poggesi, Elisabetta Cerbai.
Institutions: University of Florence, University of Florence.
Cardiomyocytes from diseased hearts are subjected to complex remodeling processes involving changes in cell structure, excitation contraction coupling and membrane ion currents. Those changes are likely to be responsible for the increased arrhythmogenic risk and the contractile alterations leading to systolic and diastolic dysfunction in cardiac patients. However, most information on the alterations of myocyte function in cardiac diseases has come from animal models. Here we describe and validate a protocol to isolate viable myocytes from small surgical samples of ventricular myocardium from patients undergoing cardiac surgery operations. The protocol is described in detail. Electrophysiological and intracellular calcium measurements are reported to demonstrate the feasibility of a number of single cell measurements in human ventricular cardiomyocytes obtained with this method. The protocol reported here can be useful for future investigations of the cellular and molecular basis of functional alterations of the human heart in the presence of different cardiac diseases. Further, this method can be used to identify novel therapeutic targets at cellular level and to test the effectiveness of new compounds on human cardiomyocytes, with direct translational value.
Medicine, Issue 86, cardiology, cardiac cells, electrophysiology, excitation-contraction coupling, action potential, calcium, myocardium, hypertrophic cardiomyopathy, cardiac patients, cardiac disease
51116
Play Button
A Contusive Model of Unilateral Cervical Spinal Cord Injury Using the Infinite Horizon Impactor
Authors: Jae H.T. Lee, Femke Streijger, Seth Tigchelaar, Michael Maloon, Jie Liu, Wolfram Tetzlaff, Brian K. Kwon.
Institutions: University of British Columbia , University of British Columbia .
While the majority of human spinal cord injuries occur in the cervical spinal cord, the vast majority of laboratory research employs animal models of spinal cord injury (SCI) in which the thoracic spinal cord is injured. Additionally, because most human cord injuries occur as the result of blunt, non-penetrating trauma (e.g. motor vehicle accident, sporting injury) where the spinal cord is violently struck by displaced bone or soft tissues, the majority of SCI researchers are of the opinion that the most clinically relevant injury models are those in which the spinal cord is rapidly contused.1 Therefore, an important step in the preclinical evaluation of novel treatments on their way to human translation is an assessment of their efficacy in a model of contusion SCI within the cervical spinal cord. Here, we describe the technical aspects and resultant anatomical and behavioral outcomes of an unilateral contusive model of cervical SCI that employs the Infinite Horizon spinal cord injury impactor. Sprague Dawley rats underwent a left-sided unilateral laminectomy at C5. To optimize the reproducibility of the biomechanical, functional, and histological outcomes of the injury model, we contused the spinal cords using an impact force of 150 kdyn, an impact trajectory of 22.5° (animals rotated at 22.5°), and an impact location off of midline of 1.4 mm. Functional recovery was assessed using the cylinder rearing test, horizontal ladder test, grooming test and modified Montoya's staircase test for up to 6 weeks, after which the spinal cords were evaluated histologically for white and grey matter sparing. The injury model presented here imparts consistent and reproducible biomechanical forces to the spinal cord, an important feature of any experimental SCI model. This results in discrete histological damage to the lateral half of the spinal cord which is largely contained to the ipsilateral side of injury. The injury is well tolerated by the animals, but does result in functional deficits of the forelimb that are significant and sustained in the weeks following injury. The cervical unilateral injury model presented here may be a resource to researchers who wish to evaluate potentially promising therapies prior to human translation.
Medicine, Issue 65, Neuroscience, Physiology, Infinite Horizon Spinal Cord Injury Device, SCI, cervical, unilateral, contusion, forelimb function
3313
Play Button
Fundus Photography as a Convenient Tool to Study Microvascular Responses to Cardiovascular Disease Risk Factors in Epidemiological Studies
Authors: Patrick De Boever, Tijs Louwies, Eline Provost, Luc Int Panis, Tim S. Nawrot.
Institutions: Flemish Institute for Technological Research (VITO), Hasselt University, Hasselt University, Leuven University.
The microcirculation consists of blood vessels with diameters less than 150 µm. It makes up a large part of the circulatory system and plays an important role in maintaining cardiovascular health. The retina is a tissue that lines the interior of the eye and it is the only tissue that allows for a non-invasive analysis of the microvasculature. Nowadays, high-quality fundus images can be acquired using digital cameras. Retinal images can be collected in 5 min or less, even without dilatation of the pupils. This unobtrusive and fast procedure for visualizing the microcirculation is attractive to apply in epidemiological studies and to monitor cardiovascular health from early age up to old age. Systemic diseases that affect the circulation can result in progressive morphological changes in the retinal vasculature. For example, changes in the vessel calibers of retinal arteries and veins have been associated with hypertension, atherosclerosis, and increased risk of stroke and myocardial infarction. The vessel widths are derived using image analysis software and the width of the six largest arteries and veins are summarized in the Central Retinal Arteriolar Equivalent (CRAE) and the Central Retinal Venular Equivalent (CRVE). The latter features have been shown useful to study the impact of modifiable lifestyle and environmental cardiovascular disease risk factors. The procedures to acquire fundus images and the analysis steps to obtain CRAE and CRVE are described. Coefficients of variation of repeated measures of CRAE and CRVE are less than 2% and within-rater reliability is very high. Using a panel study, the rapid response of the retinal vessel calibers to short-term changes in particulate air pollution, a known risk factor for cardiovascular mortality and morbidity, is reported. In conclusion, retinal imaging is proposed as a convenient and instrumental tool for epidemiological studies to study microvascular responses to cardiovascular disease risk factors.
Medicine, Issue 92, retina, microvasculature, image analysis, Central Retinal Arteriolar Equivalent, Central Retinal Venular Equivalent, air pollution, particulate matter, black carbon
51904
Play Button
Presynaptic Dopamine Dynamics in Striatal Brain Slices with Fast-scan Cyclic Voltammetry
Authors: Francis K. Maina, Madiha Khalid, Aaron K. Apawu, Tiffany A. Mathews.
Institutions: Wayne State University , .
Extensive research has focused on the neurotransmitter dopamine because of its importance in the mechanism of action of drugs of abuse (e.g. cocaine and amphetamine), the role it plays in psychiatric illnesses (e.g. schizophrenia and Attention Deficit Hyperactivity Disorder), and its involvement in degenerative disorders like Parkinson's and Huntington's disease. Under normal physiological conditions, dopamine is known to regulate locomotor activity, cognition, learning, emotional affect, and neuroendocrine hormone secretion. One of the largest densities of dopamine neurons is within the striatum, which can be divided in two distinct neuroanatomical regions known as the nucleus accumbens and the caudate-putamen. The objective is to illustrate a general protocol for slice fast-scan cyclic voltammetry (FSCV) within the mouse striatum. FSCV is a well-defined electrochemical technique providing the opportunity to measure dopamine release and uptake in real time in discrete brain regions. Carbon fiber microelectrodes (diameter of ~ 7 μm) are used in FSCV to detect dopamine oxidation. The analytical advantage of using FSCV to detect dopamine is its enhanced temporal resolution of 100 milliseconds and spatial resolution of less than ten microns, providing complementary information to in vivo microdialysis.
Neuroscience, Issue 59, caudate-putamen, nucleus accumbens, microelectrodes, dopamine transporter, dopamine release
3464
Play Button
Preparation of Acute Hippocampal Slices from Rats and Transgenic Mice for the Study of Synaptic Alterations during Aging and Amyloid Pathology
Authors: Diana M. Mathis, Jennifer L. Furman, Christopher M. Norris.
Institutions: University of Kentucky College of Public Health, University of Kentucky College of Medicine, University of Kentucky College of Medicine.
The rodent hippocampal slice preparation is perhaps the most broadly used tool for investigating mammalian synaptic function and plasticity. The hippocampus can be extracted quickly and easily from rats and mice and slices remain viable for hours in oxygenated artificial cerebrospinal fluid. Moreover, basic electrophysisologic techniques are easily applied to the investigation of synaptic function in hippocampal slices and have provided some of the best biomarkers for cognitive impairments. The hippocampal slice is especially popular for the study of synaptic plasticity mechanisms involved in learning and memory. Changes in the induction of long-term potentiation and depression (LTP and LTD) of synaptic efficacy in hippocampal slices (or lack thereof) are frequently used to describe the neurologic phenotype of cognitively-impaired animals and/or to evaluate the mechanism of action of nootropic compounds. This article outlines the procedures we use for preparing hippocampal slices from rats and transgenic mice for the study of synaptic alterations associated with brain aging and Alzheimer's disease (AD)1-3. Use of aged rats and AD model mice can present a unique set of challenges to researchers accustomed to using younger rats and/or mice in their research. Aged rats have thicker skulls and tougher connective tissue than younger rats and mice, which can delay brain extraction and/or dissection and consequently negate or exaggerate real age-differences in synaptic function and plasticity. Aging and amyloid pathology may also exacerbate hippocampal damage sustained during the dissection procedure, again complicating any inferences drawn from physiologic assessment. Here, we discuss the steps taken during the dissection procedure to minimize these problems. Examples of synaptic responses acquired in "healthy" and "unhealthy" slices from rats and mice are provided, as well as representative synaptic plasticity experiments. The possible impact of other methodological factors on synaptic function in these animal models (e.g. recording solution components, stimulation parameters) are also discussed. While the focus of this article is on the use of aged rats and transgenic mice, novices to slice physiology should find enough detail here to get started on their own studies, using a variety of rodent models.
Neuroscience, Issue 49, aging, amyloid, hippocampal slice, synaptic plasticity, Ca2+, CA1, electrophysiology
2330
Play Button
3D-Neuronavigation In Vivo Through a Patient's Brain During a Spontaneous Migraine Headache
Authors: Alexandre F. DaSilva, Thiago D. Nascimento, Tiffany Love, Marcos F. DosSantos, Ilkka K. Martikainen, Chelsea M. Cummiford, Misty DeBoer, Sarah R. Lucas, MaryCatherine A. Bender, Robert A. Koeppe, Theodore Hall, Sean Petty, Eric Maslowski, Yolanda R. Smith, Jon-Kar Zubieta.
Institutions: University of Michigan School of Dentistry, University of Michigan School of Dentistry, University of Michigan, University of Michigan, University of Michigan, University of Michigan.
A growing body of research, generated primarily from MRI-based studies, shows that migraine appears to occur, and possibly endure, due to the alteration of specific neural processes in the central nervous system. However, information is lacking on the molecular impact of these changes, especially on the endogenous opioid system during migraine headaches, and neuronavigation through these changes has never been done. This study aimed to investigate, using a novel 3D immersive and interactive neuronavigation (3D-IIN) approach, the endogenous µ-opioid transmission in the brain during a migraine headache attack in vivo. This is arguably one of the most central neuromechanisms associated with pain regulation, affecting multiple elements of the pain experience and analgesia. A 36 year-old female, who has been suffering with migraine for 10 years, was scanned in the typical headache (ictal) and nonheadache (interictal) migraine phases using Positron Emission Tomography (PET) with the selective radiotracer [11C]carfentanil, which allowed us to measure µ-opioid receptor availability in the brain (non-displaceable binding potential - µOR BPND). The short-life radiotracer was produced by a cyclotron and chemical synthesis apparatus on campus located in close proximity to the imaging facility. Both PET scans, interictal and ictal, were scheduled during separate mid-late follicular phases of the patient's menstrual cycle. During the ictal PET session her spontaneous headache attack reached severe intensity levels; progressing to nausea and vomiting at the end of the scan session. There were reductions in µOR BPND in the pain-modulatory regions of the endogenous µ-opioid system during the ictal phase, including the cingulate cortex, nucleus accumbens (NAcc), thalamus (Thal), and periaqueductal gray matter (PAG); indicating that µORs were already occupied by endogenous opioids released in response to the ongoing pain. To our knowledge, this is the first time that changes in µOR BPND during a migraine headache attack have been neuronavigated using a novel 3D approach. This method allows for interactive research and educational exploration of a migraine attack in an actual patient's neuroimaging dataset.
Medicine, Issue 88, μ-opioid, opiate, migraine, headache, pain, Positron Emission Tomography, molecular neuroimaging, 3D, neuronavigation
50682
Play Button
The 5-Choice Serial Reaction Time Task: A Task of Attention and Impulse Control for Rodents
Authors: Samuel K. Asinof, Tracie A. Paine.
Institutions: Oberlin College.
This protocol describes the 5-choice serial reaction time task, which is an operant based task used to study attention and impulse control in rodents. Test day challenges, modifications to the standard task, can be used to systematically tax the neural systems controlling either attention or impulse control. Importantly, these challenges have consistent effects on behavior across laboratories in intact animals and can reveal either enhancements or deficits in cognitive function that are not apparent when rats are only tested on the standard task. The variety of behavioral measures that are collected can be used to determine if other factors (i.e., sedation, motivation deficits, locomotor impairments) are contributing to changes in performance. The versatility of the 5CSRTT is further enhanced because it is amenable to combination with pharmacological, molecular, and genetic techniques.
Neuroscience, Issue 90, attention, impulse control, neuroscience, cognition, rodent
51574
Play Button
Lesion Explorer: A Video-guided, Standardized Protocol for Accurate and Reliable MRI-derived Volumetrics in Alzheimer's Disease and Normal Elderly
Authors: Joel Ramirez, Christopher J.M. Scott, Alicia A. McNeely, Courtney Berezuk, Fuqiang Gao, Gregory M. Szilagyi, Sandra E. Black.
Institutions: Sunnybrook Health Sciences Centre, University of Toronto.
Obtaining in vivo human brain tissue volumetrics from MRI is often complicated by various technical and biological issues. These challenges are exacerbated when significant brain atrophy and age-related white matter changes (e.g. Leukoaraiosis) are present. Lesion Explorer (LE) is an accurate and reliable neuroimaging pipeline specifically developed to address such issues commonly observed on MRI of Alzheimer's disease and normal elderly. The pipeline is a complex set of semi-automatic procedures which has been previously validated in a series of internal and external reliability tests1,2. However, LE's accuracy and reliability is highly dependent on properly trained manual operators to execute commands, identify distinct anatomical landmarks, and manually edit/verify various computer-generated segmentation outputs. LE can be divided into 3 main components, each requiring a set of commands and manual operations: 1) Brain-Sizer, 2) SABRE, and 3) Lesion-Seg. Brain-Sizer's manual operations involve editing of the automatic skull-stripped total intracranial vault (TIV) extraction mask, designation of ventricular cerebrospinal fluid (vCSF), and removal of subtentorial structures. The SABRE component requires checking of image alignment along the anterior and posterior commissure (ACPC) plane, and identification of several anatomical landmarks required for regional parcellation. Finally, the Lesion-Seg component involves manual checking of the automatic lesion segmentation of subcortical hyperintensities (SH) for false positive errors. While on-site training of the LE pipeline is preferable, readily available visual teaching tools with interactive training images are a viable alternative. Developed to ensure a high degree of accuracy and reliability, the following is a step-by-step, video-guided, standardized protocol for LE's manual procedures.
Medicine, Issue 86, Brain, Vascular Diseases, Magnetic Resonance Imaging (MRI), Neuroimaging, Alzheimer Disease, Aging, Neuroanatomy, brain extraction, ventricles, white matter hyperintensities, cerebrovascular disease, Alzheimer disease
50887
Play Button
Diffusion Tensor Magnetic Resonance Imaging in the Analysis of Neurodegenerative Diseases
Authors: Hans-Peter Müller, Jan Kassubek.
Institutions: University of Ulm.
Diffusion tensor imaging (DTI) techniques provide information on the microstructural processes of the cerebral white matter (WM) in vivo. The present applications are designed to investigate differences of WM involvement patterns in different brain diseases, especially neurodegenerative disorders, by use of different DTI analyses in comparison with matched controls. DTI data analysis is performed in a variate fashion, i.e. voxelwise comparison of regional diffusion direction-based metrics such as fractional anisotropy (FA), together with fiber tracking (FT) accompanied by tractwise fractional anisotropy statistics (TFAS) at the group level in order to identify differences in FA along WM structures, aiming at the definition of regional patterns of WM alterations at the group level. Transformation into a stereotaxic standard space is a prerequisite for group studies and requires thorough data processing to preserve directional inter-dependencies. The present applications show optimized technical approaches for this preservation of quantitative and directional information during spatial normalization in data analyses at the group level. On this basis, FT techniques can be applied to group averaged data in order to quantify metrics information as defined by FT. Additionally, application of DTI methods, i.e. differences in FA-maps after stereotaxic alignment, in a longitudinal analysis at an individual subject basis reveal information about the progression of neurological disorders. Further quality improvement of DTI based results can be obtained during preprocessing by application of a controlled elimination of gradient directions with high noise levels. In summary, DTI is used to define a distinct WM pathoanatomy of different brain diseases by the combination of whole brain-based and tract-based DTI analysis.
Medicine, Issue 77, Neuroscience, Neurobiology, Molecular Biology, Biomedical Engineering, Anatomy, Physiology, Neurodegenerative Diseases, nuclear magnetic resonance, NMR, MR, MRI, diffusion tensor imaging, fiber tracking, group level comparison, neurodegenerative diseases, brain, imaging, clinical techniques
50427
Play Button
The Use of Magnetic Resonance Spectroscopy as a Tool for the Measurement of Bi-hemispheric Transcranial Electric Stimulation Effects on Primary Motor Cortex Metabolism
Authors: Sara Tremblay, Vincent Beaulé, Sébastien Proulx, Louis-Philippe Lafleur, Julien Doyon, Małgorzata Marjańska, Hugo Théoret.
Institutions: University of Montréal, McGill University, University of Minnesota.
Transcranial direct current stimulation (tDCS) is a neuromodulation technique that has been increasingly used over the past decade in the treatment of neurological and psychiatric disorders such as stroke and depression. Yet, the mechanisms underlying its ability to modulate brain excitability to improve clinical symptoms remains poorly understood 33. To help improve this understanding, proton magnetic resonance spectroscopy (1H-MRS) can be used as it allows the in vivo quantification of brain metabolites such as γ-aminobutyric acid (GABA) and glutamate in a region-specific manner 41. In fact, a recent study demonstrated that 1H-MRS is indeed a powerful means to better understand the effects of tDCS on neurotransmitter concentration 34. This article aims to describe the complete protocol for combining tDCS (NeuroConn MR compatible stimulator) with 1H-MRS at 3 T using a MEGA-PRESS sequence. We will describe the impact of a protocol that has shown great promise for the treatment of motor dysfunctions after stroke, which consists of bilateral stimulation of primary motor cortices 27,30,31. Methodological factors to consider and possible modifications to the protocol are also discussed.
Neuroscience, Issue 93, proton magnetic resonance spectroscopy, transcranial direct current stimulation, primary motor cortex, GABA, glutamate, stroke
51631
Play Button
Developing Neuroimaging Phenotypes of the Default Mode Network in PTSD: Integrating the Resting State, Working Memory, and Structural Connectivity
Authors: Noah S. Philip, S. Louisa Carpenter, Lawrence H. Sweet.
Institutions: Alpert Medical School, Brown University, University of Georgia.
Complementary structural and functional neuroimaging techniques used to examine the Default Mode Network (DMN) could potentially improve assessments of psychiatric illness severity and provide added validity to the clinical diagnostic process. Recent neuroimaging research suggests that DMN processes may be disrupted in a number of stress-related psychiatric illnesses, such as posttraumatic stress disorder (PTSD). Although specific DMN functions remain under investigation, it is generally thought to be involved in introspection and self-processing. In healthy individuals it exhibits greatest activity during periods of rest, with less activity, observed as deactivation, during cognitive tasks, e.g., working memory. This network consists of the medial prefrontal cortex, posterior cingulate cortex/precuneus, lateral parietal cortices and medial temporal regions. Multiple functional and structural imaging approaches have been developed to study the DMN. These have unprecedented potential to further the understanding of the function and dysfunction of this network. Functional approaches, such as the evaluation of resting state connectivity and task-induced deactivation, have excellent potential to identify targeted neurocognitive and neuroaffective (functional) diagnostic markers and may indicate illness severity and prognosis with increased accuracy or specificity. Structural approaches, such as evaluation of morphometry and connectivity, may provide unique markers of etiology and long-term outcomes. Combined, functional and structural methods provide strong multimodal, complementary and synergistic approaches to develop valid DMN-based imaging phenotypes in stress-related psychiatric conditions. This protocol aims to integrate these methods to investigate DMN structure and function in PTSD, relating findings to illness severity and relevant clinical factors.
Medicine, Issue 89, default mode network, neuroimaging, functional magnetic resonance imaging, diffusion tensor imaging, structural connectivity, functional connectivity, posttraumatic stress disorder
51651
Play Button
Perceptual and Category Processing of the Uncanny Valley Hypothesis' Dimension of Human Likeness: Some Methodological Issues
Authors: Marcus Cheetham, Lutz Jancke.
Institutions: University of Zurich.
Mori's Uncanny Valley Hypothesis1,2 proposes that the perception of humanlike characters such as robots and, by extension, avatars (computer-generated characters) can evoke negative or positive affect (valence) depending on the object's degree of visual and behavioral realism along a dimension of human likeness (DHL) (Figure 1). But studies of affective valence of subjective responses to variously realistic non-human characters have produced inconsistent findings 3, 4, 5, 6. One of a number of reasons for this is that human likeness is not perceived as the hypothesis assumes. While the DHL can be defined following Mori's description as a smooth linear change in the degree of physical humanlike similarity, subjective perception of objects along the DHL can be understood in terms of the psychological effects of categorical perception (CP) 7. Further behavioral and neuroimaging investigations of category processing and CP along the DHL and of the potential influence of the dimension's underlying category structure on affective experience are needed. This protocol therefore focuses on the DHL and allows examination of CP. Based on the protocol presented in the video as an example, issues surrounding the methodology in the protocol and the use in "uncanny" research of stimuli drawn from morph continua to represent the DHL are discussed in the article that accompanies the video. The use of neuroimaging and morph stimuli to represent the DHL in order to disentangle brain regions neurally responsive to physical human-like similarity from those responsive to category change and category processing is briefly illustrated.
Behavior, Issue 76, Neuroscience, Neurobiology, Molecular Biology, Psychology, Neuropsychology, uncanny valley, functional magnetic resonance imaging, fMRI, categorical perception, virtual reality, avatar, human likeness, Mori, uncanny valley hypothesis, perception, magnetic resonance imaging, MRI, imaging, clinical techniques
4375
Play Button
Comprehensive Analysis of Transcription Dynamics from Brain Samples Following Behavioral Experience
Authors: Hagit Turm, Diptendu Mukherjee, Doron Haritan, Maayan Tahor, Ami Citri.
Institutions: The Hebrew University of Jerusalem.
The encoding of experiences in the brain and the consolidation of long-term memories depend on gene transcription. Identifying the function of specific genes in encoding experience is one of the main objectives of molecular neuroscience. Furthermore, the functional association of defined genes with specific behaviors has implications for understanding the basis of neuropsychiatric disorders. Induction of robust transcription programs has been observed in the brains of mice following various behavioral manipulations. While some genetic elements are utilized recurrently following different behavioral manipulations and in different brain nuclei, transcriptional programs are overall unique to the inducing stimuli and the structure in which they are studied1,2. In this publication, a protocol is described for robust and comprehensive transcriptional profiling from brain nuclei of mice in response to behavioral manipulation. The protocol is demonstrated in the context of analysis of gene expression dynamics in the nucleus accumbens following acute cocaine experience. Subsequent to a defined in vivo experience, the target neural tissue is dissected; followed by RNA purification, reverse transcription and utilization of microfluidic arrays for comprehensive qPCR analysis of multiple target genes. This protocol is geared towards comprehensive analysis (addressing 50-500 genes) of limiting quantities of starting material, such as small brain samples or even single cells. The protocol is most advantageous for parallel analysis of multiple samples (e.g. single cells, dynamic analysis following pharmaceutical, viral or behavioral perturbations). However, the protocol could also serve for the characterization and quality assurance of samples prior to whole-genome studies by microarrays or RNAseq, as well as validation of data obtained from whole-genome studies.
Behavior, Issue 90, Brain, behavior, RNA, transcription, nucleus accumbens, cocaine, high-throughput qPCR, experience-dependent plasticity, gene regulatory networks, microdissection
51642
Play Button
Identification of Disease-related Spatial Covariance Patterns using Neuroimaging Data
Authors: Phoebe Spetsieris, Yilong Ma, Shichun Peng, Ji Hyun Ko, Vijay Dhawan, Chris C. Tang, David Eidelberg.
Institutions: The Feinstein Institute for Medical Research.
The scaled subprofile model (SSM)1-4 is a multivariate PCA-based algorithm that identifies major sources of variation in patient and control group brain image data while rejecting lesser components (Figure 1). Applied directly to voxel-by-voxel covariance data of steady-state multimodality images, an entire group image set can be reduced to a few significant linearly independent covariance patterns and corresponding subject scores. Each pattern, termed a group invariant subprofile (GIS), is an orthogonal principal component that represents a spatially distributed network of functionally interrelated brain regions. Large global mean scalar effects that can obscure smaller network-specific contributions are removed by the inherent logarithmic conversion and mean centering of the data2,5,6. Subjects express each of these patterns to a variable degree represented by a simple scalar score that can correlate with independent clinical or psychometric descriptors7,8. Using logistic regression analysis of subject scores (i.e. pattern expression values), linear coefficients can be derived to combine multiple principal components into single disease-related spatial covariance patterns, i.e. composite networks with improved discrimination of patients from healthy control subjects5,6. Cross-validation within the derivation set can be performed using bootstrap resampling techniques9. Forward validation is easily confirmed by direct score evaluation of the derived patterns in prospective datasets10. Once validated, disease-related patterns can be used to score individual patients with respect to a fixed reference sample, often the set of healthy subjects that was used (with the disease group) in the original pattern derivation11. These standardized values can in turn be used to assist in differential diagnosis12,13 and to assess disease progression and treatment effects at the network level7,14-16. We present an example of the application of this methodology to FDG PET data of Parkinson's Disease patients and normal controls using our in-house software to derive a characteristic covariance pattern biomarker of disease.
Medicine, Issue 76, Neurobiology, Neuroscience, Anatomy, Physiology, Molecular Biology, Basal Ganglia Diseases, Parkinsonian Disorders, Parkinson Disease, Movement Disorders, Neurodegenerative Diseases, PCA, SSM, PET, imaging biomarkers, functional brain imaging, multivariate spatial covariance analysis, global normalization, differential diagnosis, PD, brain, imaging, clinical techniques
50319
Play Button
Micro-dissection of Rat Brain for RNA or Protein Extraction from Specific Brain Region
Authors: Kin Chiu, Wui Man Lau, Ho Tak Lau, Kwok-Fai So, Raymond Chuen-Chung Chang.
Institutions: The University of Hong Kong - HKU.
Micro-dissection of rat brain into various regions is extremely important for the study of different neurodegenerative diseases. This video demonstrates micro-dissection of four major brain regions include olfactory bulb, frontal cortex, striatum and hippocampus in fresh rat brain tissue. Useful tips for quick removal of respective regions to avoid RNA and protein degradation of the tissue are given.
Issue 7, Neuroscience, brain, dissection
269
Play Button
Survivable Stereotaxic Surgery in Rodents
Authors: Brenda M. Geiger, Lauren E. Frank, Angela D. Caldera-Siu, Emmanuel N. Pothos.
Institutions: Tufts University.
The ability to measure extracellular basal levels of neurotransmitters in the brain of awake animals allows for the determination of effects of different systemic challenges (pharmacological or physiological) to the CNS. For example, one can directly measure how the animal's midbrain dopamine projections respond to dopamine-releasing drugs like d-amphetamine or natural stimuli like food. In this video, we show you how to implant guide cannulas targeting specific sites in the rat brain, how to insert and implant a microdialysis probe and how to use high performance liquid chromatography coupled with electrochemical detection (HPLC-EC) to measure extracellular levels of oxidizable neurotransmitters and metabolites. Local precise introduction of drugs through the microdialysis probe allows for refined work on site specificity in a compound s mechanism of action. This technique has excellent anatomical and chemical resolution but only modest time resolution as microdialysis samples are usually processed every 20-30 minutes to ensure detectable neurotransmitter levels. Complementary ex vivo tools (i.e., slice and cell culture electrophysiology) can assist with monitoring real-time neurotransmission.
Neuroscience, Issue 20, microdialysis, nucleus accumbens, catecholamines, dopamine, rats. mice, brain
880
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.