JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Impact of H1N1 on socially disadvantaged populations: systematic review.
PLoS ONE
The burden of H1N1 among socially disadvantaged populations is unclear. We aimed to synthesize hospitalization, severe illness, and mortality data associated with pandemic A/H1N1/2009 among socially disadvantaged populations.
Authors: Pawan Kumar, Allison E. Bartoszek, Thomas M. Moran, Jack Gorski, Sanjib Bhattacharyya, Jose F. Navidad, Monica S. Thakar, Subramaniam Malarkannan.
Published: 02-04-2012
ABSTRACT
Influenza virus is a respiratory pathogen that causes a high degree of morbidity and mortality every year in multiple parts of the world. Therefore, precise diagnosis of the infecting strain and rapid high-throughput screening of vast numbers of clinical samples is paramount to control the spread of pandemic infections. Current clinical diagnoses of influenza infections are based on serologic testing, polymerase chain reaction, direct specimen immunofluorescence and cell culture 1,2. Here, we report the development of a novel diagnostic technique used to detect live influenza viruses. We used the mouse-adapted human A/PR/8/34 (PR8, H1N1) virus 3 to test the efficacy of this technique using MDCK cells 4. MDCK cells (104 or 5 x 103 per well) were cultured in 96- or 384-well plates, infected with PR8 and viral proteins were detected using anti-M2 followed by an IR dye-conjugated secondary antibody. M2 5 and hemagglutinin 1 are two major marker proteins used in many different diagnostic assays. Employing IR-dye-conjugated secondary antibodies minimized the autofluorescence associated with other fluorescent dyes. The use of anti-M2 antibody allowed us to use the antigen-specific fluorescence intensity as a direct metric of viral quantity. To enumerate the fluorescence intensity, we used the LI-COR Odyssey-based IR scanner. This system uses two channel laser-based IR detections to identify fluorophores and differentiate them from background noise. The first channel excites at 680 nm and emits at 700 nm to help quantify the background. The second channel detects fluorophores that excite at 780 nm and emit at 800 nm. Scanning of PR8-infected MDCK cells in the IR scanner indicated a viral titer-dependent bright fluorescence. A positive correlation of fluorescence intensity to virus titer starting from 102-105 PFU could be consistently observed. Minimal but detectable positivity consistently seen with 102-103 PFU PR8 viral titers demonstrated the high sensitivity of the near-IR dyes. The signal-to-noise ratio was determined by comparing the mock-infected or isotype antibody-treated MDCK cells. Using the fluorescence intensities from 96- or 384-well plate formats, we constructed standard titration curves. In these calculations, the first variable is the viral titer while the second variable is the fluorescence intensity. Therefore, we used the exponential distribution to generate a curve-fit to determine the polynomial relationship between the viral titers and fluorescence intensities. Collectively, we conclude that IR dye-based protein detection system can help diagnose infecting viral strains and precisely enumerate the titer of the infecting pathogens.
21 Related JoVE Articles!
Play Button
Expression of Functional Recombinant Hemagglutinin and Neuraminidase Proteins from the Novel H7N9 Influenza Virus Using the Baculovirus Expression System
Authors: Irina Margine, Peter Palese, Florian Krammer.
Institutions: Icahn School of Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai.
The baculovirus expression system is a powerful tool for expression of recombinant proteins. Here we use it to produce correctly folded and glycosylated versions of the influenza A virus surface glycoproteins - the hemagglutinin (HA) and the neuraminidase (NA). As an example, we chose the HA and NA proteins expressed by the novel H7N9 virus that recently emerged in China. However the protocol can be easily adapted for HA and NA proteins expressed by any other influenza A and B virus strains. Recombinant HA (rHA) and NA (rNA) proteins are important reagents for immunological assays such as ELISPOT and ELISA, and are also in wide use for vaccine standardization, antibody discovery, isolation and characterization. Furthermore, recombinant NA molecules can be used to screen for small molecule inhibitors and are useful for characterization of the enzymatic function of the NA, as well as its sensitivity to antivirals. Recombinant HA proteins are also being tested as experimental vaccines in animal models, and a vaccine based on recombinant HA was recently licensed by the FDA for use in humans. The method we describe here to produce these molecules is straight forward and can facilitate research in influenza laboratories, since it allows for production of large amounts of proteins fast and at a low cost. Although here we focus on influenza virus surface glycoproteins, this method can also be used to produce other viral and cellular surface proteins.
Infection, Issue 81, Influenza A virus, Orthomyxoviridae Infections, Influenza, Human, Influenza in Birds, Influenza Vaccines, hemagglutinin, neuraminidase, H7N9, baculovirus, insect cells, recombinant protein expression
51112
Play Button
ampliPHOX Colorimetric Detection on a DNA Microarray for Influenza
Authors: Kevin R. Moulton, Amber W. Taylor, Kathy L. Rowlen, Erica D. Dawson.
Institutions: Inc..
DNA microarrays have emerged as a powerful tool for pathogen detection.1-5 For instance, many examples of the ability to type and subtype influenza virus have been demonstrated.6-11 The identification and subtyping of influenza on DNA microarrays has applications in both public health and the clinic for early detection, rapid intervention, and minimizing the impact of an influenza pandemic. Traditional fluorescence is currently the most commonly used microarray detection method. However, as microarray technology progresses towards clinical use,1 replacing expensive instrumentation with low cost detection technology exhibiting similar performance characteristics to fluorescence will make microarray assays more attractive and cost-effective. The ampliPHOX colorimetric detection technology is intended for research applications, and has a limit of detection within one order of magnitude of traditional fluorescence11, with a main advantage being an approximate ten-fold lower instrument cost compared to the confocal microarray scanners required for fluorescence microarray detection. Another advantage is the compact size of the instrument which allows for portability and flexibility, unlike traditional fluorescence instruments. Because the polymerization technology is not as inherently linear as fluorescence detection, however, it is best suited for lower density microarray applications in which a yes/no answer for the presence of a certain sequence is desired, such as for pathogen detection arrays. Currently the maximum spot density compatible with ampliPHOX detection is ˜1800 spots/array. Because of the spot density limitations, higher density microarrays are not suitable for ampliPHOX detection. Here, we present ampliPHOX colorimetric detection technology as a method of signal amplification on a low density microarray developed for the detection and characterization of influenza viruses (FluChip). Although this protocol uses the FluChip (a DNA microarray) as one specific application of ampliPHOX detection, any microarray incorporating biotinylated target can be labeled and detected in a similar manner. The microarray design and biotinylation of the target to be captured are the responsibility of the user. Once the biotinylated target has been captured on the array, ampliPHOX detection can be performed by first tagging the array with a streptavidin-label conjugate (ampliTAG). Upon light exposure using the ampliPHOX Reader instrument, polymerization of a monomer solution (ampliPHY) occurs only in regions containing ampliTAG-labeled targets. The polymer formed can be subsequently stained with a non-toxic solution to improve visual contrast, followed by imaging and analysis using a simple software package (ampliVIEW). The entire FluChip assay from un-extracted sample to result can be performed in about 6 hours, and the ampliPHOX detection steps described above can be completed in about 30 min.
Immunology, Issue 52, microarrays, colorimetric detection, ampliPHOX, diagnostic, low-density, pathogen detection, influenza
2682
Play Button
Isolation of Mouse Salivary Gland Stem Cells
Authors: Sarah Pringle, Lalitha S. Y. Nanduri, van der Zwaag Marianne, van Os Ronald, Rob P. Coppes.
Institutions: University Medical Center Groningen, University of Groningen, University Medical Center Groningen, University of Groningen.
Mature salivary glands of both human and mouse origin comprise a minimum of five cell types, each of which facilitates the production and excretion of saliva into the oral cavity. Serous and mucous acinar cells are the protein and mucous producing factories of the gland respectively, and represent the origin of saliva production. Once synthesised, the various enzymatic and other proteinaceous components of saliva are secreted through a series of ductal cells bearing epithelial-type morphology, until the eventual expulsion of the saliva through one major duct into the cavity of the mouth. The composition of saliva is also modified by the ductal cells during this process. In the manifestation of diseases such as Sjögren's syndrome, and in some clinical situations such as radiotherapy treatment for head and neck cancers, saliva production by the glands is dramatically reduced 1,2. The resulting xerostomia, a subjective feeling of dry mouth, affects not only the ability of the patient to swallow and speak, but also encourages the development of dental caries and can be socially debilitating for the sufferer. The restoration of saliva production in the above-mentioned clinical conditions therefore represents an unmet clinical need, and as such several studies have demonstrated the regenerative capacity of the salivary glands 3-5. Further to the isolation of stem cell-like populations of cells from various tissues within the mouse and human bodies 6-8, we have shown using the described method that stem cells isolated from mouse salivary glands can be used to rescue saliva production in irradiated salivary glands 9,10. This discovery paves the way for the development of stem cell-based therapies for the treatment of xerostomic conditions in humans, and also for the exploration of the salivary gland as a microenvironment containing cells with multipotent self-renewing capabilities.
Stem Cell Biology, Issue 48, Murine salivary glands, stem cells, isolation, tissue culture.
2484
Play Button
The Use of Magnetic Resonance Spectroscopy as a Tool for the Measurement of Bi-hemispheric Transcranial Electric Stimulation Effects on Primary Motor Cortex Metabolism
Authors: Sara Tremblay, Vincent Beaulé, Sébastien Proulx, Louis-Philippe Lafleur, Julien Doyon, Małgorzata Marjańska, Hugo Théoret.
Institutions: University of Montréal, McGill University, University of Minnesota.
Transcranial direct current stimulation (tDCS) is a neuromodulation technique that has been increasingly used over the past decade in the treatment of neurological and psychiatric disorders such as stroke and depression. Yet, the mechanisms underlying its ability to modulate brain excitability to improve clinical symptoms remains poorly understood 33. To help improve this understanding, proton magnetic resonance spectroscopy (1H-MRS) can be used as it allows the in vivo quantification of brain metabolites such as γ-aminobutyric acid (GABA) and glutamate in a region-specific manner 41. In fact, a recent study demonstrated that 1H-MRS is indeed a powerful means to better understand the effects of tDCS on neurotransmitter concentration 34. This article aims to describe the complete protocol for combining tDCS (NeuroConn MR compatible stimulator) with 1H-MRS at 3 T using a MEGA-PRESS sequence. We will describe the impact of a protocol that has shown great promise for the treatment of motor dysfunctions after stroke, which consists of bilateral stimulation of primary motor cortices 27,30,31. Methodological factors to consider and possible modifications to the protocol are also discussed.
Neuroscience, Issue 93, proton magnetic resonance spectroscopy, transcranial direct current stimulation, primary motor cortex, GABA, glutamate, stroke
51631
Play Button
Oscillation and Reaction Board Techniques for Estimating Inertial Properties of a Below-knee Prosthesis
Authors: Jeremy D. Smith, Abbie E. Ferris, Gary D. Heise, Richard N. Hinrichs, Philip E. Martin.
Institutions: University of Northern Colorado, Arizona State University, Iowa State University.
The purpose of this study was two-fold: 1) demonstrate a technique that can be used to directly estimate the inertial properties of a below-knee prosthesis, and 2) contrast the effects of the proposed technique and that of using intact limb inertial properties on joint kinetic estimates during walking in unilateral, transtibial amputees. An oscillation and reaction board system was validated and shown to be reliable when measuring inertial properties of known geometrical solids. When direct measurements of inertial properties of the prosthesis were used in inverse dynamics modeling of the lower extremity compared with inertial estimates based on an intact shank and foot, joint kinetics at the hip and knee were significantly lower during the swing phase of walking. Differences in joint kinetics during stance, however, were smaller than those observed during swing. Therefore, researchers focusing on the swing phase of walking should consider the impact of prosthesis inertia property estimates on study outcomes. For stance, either one of the two inertial models investigated in our study would likely lead to similar outcomes with an inverse dynamics assessment.
Bioengineering, Issue 87, prosthesis inertia, amputee locomotion, below-knee prosthesis, transtibial amputee
50977
Play Button
Cortical Source Analysis of High-Density EEG Recordings in Children
Authors: Joe Bathelt, Helen O'Reilly, Michelle de Haan.
Institutions: UCL Institute of Child Health, University College London.
EEG is traditionally described as a neuroimaging technique with high temporal and low spatial resolution. Recent advances in biophysical modelling and signal processing make it possible to exploit information from other imaging modalities like structural MRI that provide high spatial resolution to overcome this constraint1. This is especially useful for investigations that require high resolution in the temporal as well as spatial domain. In addition, due to the easy application and low cost of EEG recordings, EEG is often the method of choice when working with populations, such as young children, that do not tolerate functional MRI scans well. However, in order to investigate which neural substrates are involved, anatomical information from structural MRI is still needed. Most EEG analysis packages work with standard head models that are based on adult anatomy. The accuracy of these models when used for children is limited2, because the composition and spatial configuration of head tissues changes dramatically over development3.  In the present paper, we provide an overview of our recent work in utilizing head models based on individual structural MRI scans or age specific head models to reconstruct the cortical generators of high density EEG. This article describes how EEG recordings are acquired, processed, and analyzed with pediatric populations at the London Baby Lab, including laboratory setup, task design, EEG preprocessing, MRI processing, and EEG channel level and source analysis. 
Behavior, Issue 88, EEG, electroencephalogram, development, source analysis, pediatric, minimum-norm estimation, cognitive neuroscience, event-related potentials 
51705
Play Button
Perceptual and Category Processing of the Uncanny Valley Hypothesis' Dimension of Human Likeness: Some Methodological Issues
Authors: Marcus Cheetham, Lutz Jancke.
Institutions: University of Zurich.
Mori's Uncanny Valley Hypothesis1,2 proposes that the perception of humanlike characters such as robots and, by extension, avatars (computer-generated characters) can evoke negative or positive affect (valence) depending on the object's degree of visual and behavioral realism along a dimension of human likeness (DHL) (Figure 1). But studies of affective valence of subjective responses to variously realistic non-human characters have produced inconsistent findings 3, 4, 5, 6. One of a number of reasons for this is that human likeness is not perceived as the hypothesis assumes. While the DHL can be defined following Mori's description as a smooth linear change in the degree of physical humanlike similarity, subjective perception of objects along the DHL can be understood in terms of the psychological effects of categorical perception (CP) 7. Further behavioral and neuroimaging investigations of category processing and CP along the DHL and of the potential influence of the dimension's underlying category structure on affective experience are needed. This protocol therefore focuses on the DHL and allows examination of CP. Based on the protocol presented in the video as an example, issues surrounding the methodology in the protocol and the use in "uncanny" research of stimuli drawn from morph continua to represent the DHL are discussed in the article that accompanies the video. The use of neuroimaging and morph stimuli to represent the DHL in order to disentangle brain regions neurally responsive to physical human-like similarity from those responsive to category change and category processing is briefly illustrated.
Behavior, Issue 76, Neuroscience, Neurobiology, Molecular Biology, Psychology, Neuropsychology, uncanny valley, functional magnetic resonance imaging, fMRI, categorical perception, virtual reality, avatar, human likeness, Mori, uncanny valley hypothesis, perception, magnetic resonance imaging, MRI, imaging, clinical techniques
4375
Play Button
Transcranial Direct Current Stimulation and Simultaneous Functional Magnetic Resonance Imaging
Authors: Marcus Meinzer, Robert Lindenberg, Robert Darkow, Lena Ulm, David Copland, Agnes Flöel.
Institutions: University of Queensland, Charité Universitätsmedizin.
Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that uses weak electrical currents administered to the scalp to manipulate cortical excitability and, consequently, behavior and brain function. In the last decade, numerous studies have addressed short-term and long-term effects of tDCS on different measures of behavioral performance during motor and cognitive tasks, both in healthy individuals and in a number of different patient populations. So far, however, little is known about the neural underpinnings of tDCS-action in humans with regard to large-scale brain networks. This issue can be addressed by combining tDCS with functional brain imaging techniques like functional magnetic resonance imaging (fMRI) or electroencephalography (EEG). In particular, fMRI is the most widely used brain imaging technique to investigate the neural mechanisms underlying cognition and motor functions. Application of tDCS during fMRI allows analysis of the neural mechanisms underlying behavioral tDCS effects with high spatial resolution across the entire brain. Recent studies using this technique identified stimulation induced changes in task-related functional brain activity at the stimulation site and also in more distant brain regions, which were associated with behavioral improvement. In addition, tDCS administered during resting-state fMRI allowed identification of widespread changes in whole brain functional connectivity. Future studies using this combined protocol should yield new insights into the mechanisms of tDCS action in health and disease and new options for more targeted application of tDCS in research and clinical settings. The present manuscript describes this novel technique in a step-by-step fashion, with a focus on technical aspects of tDCS administered during fMRI.
Behavior, Issue 86, noninvasive brain stimulation, transcranial direct current stimulation (tDCS), anodal stimulation (atDCS), cathodal stimulation (ctDCS), neuromodulation, task-related fMRI, resting-state fMRI, functional magnetic resonance imaging (fMRI), electroencephalography (EEG), inferior frontal gyrus (IFG)
51730
Play Button
Using a Pan-Viral Microarray Assay (Virochip) to Screen Clinical Samples for Viral Pathogens
Authors: Eunice C. Chen, Steve A. Miller, Joseph L. DeRisi, Charles Y. Chiu.
Institutions: University of California, San Francisco, University of California, San Francisco.
The diagnosis of viral causes of many infectious diseases is difficult due to the inherent sequence diversity of viruses as well as the ongoing emergence of novel viral pathogens, such as SARS coronavirus and 2009 pandemic H1N1 influenza virus, that are not detectable by traditional methods. To address these challenges, we have previously developed and validated a pan-viral microarray platform called the Virochip with the capacity to detect all known viruses as well as novel variants on the basis of conserved sequence homology1. Using the Virochip, we have identified the full spectrum of viruses associated with respiratory infections, including cases of unexplained critical illness in hospitalized patients, with a sensitivity equivalent to or superior to conventional clinical testing2-5. The Virochip has also been used to identify novel viruses, including the SARS coronavirus6,7, a novel rhinovirus clade5, XMRV (a retrovirus linked to prostate cancer)8, avian bornavirus (the cause of a wasting disease in parrots)9, and a novel cardiovirus in children with respiratory and diarrheal illness10. The current version of the Virochip has been ported to an Agilent microarray platform and consists of ~36,000 probes derived from over ~1,500 viruses in GenBank as of December of 2009. Here we demonstrate the steps involved in processing a Virochip assay from start to finish (~24 hour turnaround time), including sample nucleic acid extraction, PCR amplification using random primers, fluorescent dye incorporation, and microarray hybridization, scanning, and analysis.
Immunology, Issue 50, virus, microarray, Virochip, viral detection, genomics, clinical diagnostics, viral discovery, metagenomics, novel pathogen discovery
2536
Play Button
A Neuroscientific Approach to the Examination of Concussions in Student-Athletes
Authors: Caroline J. Ketcham, Eric Hall, Walter R. Bixby, Srikant Vallabhajosula, Stephen E. Folger, Matthew C. Kostek, Paul C. Miller, Kenneth P. Barnes, Kirtida Patel.
Institutions: Elon University, Elon University, Duquesne University, Elon University.
Concussions are occurring at alarming rates in the United States and have become a serious public health concern. The CDC estimates that 1.6 to 3.8 million concussions occur in sports and recreational activities annually. Concussion as defined by the 2013 Concussion Consensus Statement “may be caused either by a direct blow to the head, face, neck or elsewhere on the body with an ‘impulsive’ force transmitted to the head.” Concussions leave the individual with both short- and long-term effects. The short-term effects of sport related concussions may include changes in playing ability, confusion, memory disturbance, the loss of consciousness, slowing of reaction time, loss of coordination, headaches, dizziness, vomiting, changes in sleep patterns and mood changes. These symptoms typically resolve in a matter of days. However, while some individuals recover from a single concussion rather quickly, many experience lingering effects that can last for weeks or months. The factors related to concussion susceptibility and the subsequent recovery times are not well known or understood at this time. Several factors have been suggested and they include the individual’s concussion history, the severity of the initial injury, history of migraines, history of learning disabilities, history of psychiatric comorbidities, and possibly, genetic factors. Many studies have individually investigated certain factors both the short-term and long-term effects of concussions, recovery time course, susceptibility and recovery. What has not been clearly established is an effective multifaceted approach to concussion evaluation that would yield valuable information related to the etiology, functional changes, and recovery. The purpose of this manuscript is to show one such multifaceted approached which examines concussions using computerized neurocognitive testing, event related potentials, somatosensory perceptual responses, balance assessment, gait assessment and genetic testing.
Medicine, Issue 94, Concussions, Student-Athletes, Mild Traumatic Brain Injury, Genetics, Cognitive Function, Balance, Gait, Somatosensory
52046
Play Button
Microfluidic Chip Fabrication and Method to Detect Influenza
Authors: Qingqing Cao, Andy Fan, Catherine Klapperich.
Institutions: Boston University , Boston University .
Fast and effective diagnostics play an important role in controlling infectious disease by enabling effective patient management and treatment. Here, we present an integrated microfluidic thermoplastic chip with the ability to amplify influenza A virus in patient nasopharyngeal (NP) swabs and aspirates. Upon loading the patient sample, the microfluidic device sequentially carries out on-chip cell lysis, RNA purification and concentration steps within the solid phase extraction (SPE), reverse transcription (RT) and polymerase chain reaction (PCR) in RT-PCR chambers, respectively. End-point detection is performed using an off-chip Bioanalyzer (Agilent Technologies, Santa Clara, CA). For peripherals, we used a single syringe pump to drive reagent and samples, while two thin film heaters were used as the heat sources for the RT and PCR chambers. The chip is designed to be single layer and suitable for high throughput manufacturing to reduce the fabrication time and cost. The microfluidic chip provides a platform to analyze a wide variety of virus and bacteria, limited only by changes in reagent design needed to detect new pathogens of interest.
Bioengineering, Issue 73, Biomedical Engineering, Infection, Infectious Diseases, Virology, Microbiology, Genetics, Molecular Biology, Biochemistry, Mechanical Engineering, Microfluidics, Virus, Diseases, Respiratory Tract Diseases, Diagnosis, Microfluidic chip, influenza virus, flu, solid phase extraction (SPE), reverse transcriptase polymerase chain reaction, RT-PCR, PCR, DNA, RNA, on chip, assay, clinical, diagnostics
50325
Play Button
Sublingual Immunotherapy as an Alternative to Induce Protection Against Acute Respiratory Infections
Authors: Natalia Muñoz-Wolf, Analía Rial, José M. Saavedra, José A. Chabalgoity.
Institutions: Universidad de la República, Trinity College Dublin.
Sublingual route has been widely used to deliver small molecules into the bloodstream and to modulate the immune response at different sites. It has been shown to effectively induce humoral and cellular responses at systemic and mucosal sites, namely the lungs and urogenital tract. Sublingual vaccination can promote protection against infections at the lower and upper respiratory tract; it can also promote tolerance to allergens and ameliorate asthma symptoms. Modulation of lung’s immune response by sublingual immunotherapy (SLIT) is safer than direct administration of formulations by intranasal route because it does not require delivery of potentially harmful molecules directly into the airways. In contrast to intranasal delivery, side effects involving brain toxicity or facial paralysis are not promoted by SLIT. The immune mechanisms underlying SLIT remain elusive and its use for the treatment of acute lung infections has not yet been explored. Thus, development of appropriate animal models of SLIT is needed to further explore its potential advantages. This work shows how to perform sublingual administration of therapeutic agents in mice to evaluate their ability to protect against acute pneumococcal pneumonia. Technical aspects of mouse handling during sublingual inoculation, precise identification of sublingual mucosa, draining lymph nodes and isolation of tissues, bronchoalveolar lavage and lungs are illustrated. Protocols for single cell suspension preparation for FACS analysis are described in detail. Other downstream applications for the analysis of the immune response are discussed. Technical aspects of the preparation of Streptococcus pneumoniae inoculum and intranasal challenge of mice are also explained. SLIT is a simple technique that allows screening of candidate molecules to modulate lungs’ immune response. Parameters affecting the success of SLIT are related to molecular size, susceptibility to degradation and stability of highly concentrated formulations.
Medicine, Issue 90, Sublingual immunotherapy, Pneumonia, Streptococcus pneumoniae, Lungs, Flagellin, TLR5, NLRC4
52036
Play Button
Development of a Virtual Reality Assessment of Everyday Living Skills
Authors: Stacy A. Ruse, Vicki G. Davis, Alexandra S. Atkins, K. Ranga R. Krishnan, Kolleen H. Fox, Philip D. Harvey, Richard S.E. Keefe.
Institutions: NeuroCog Trials, Inc., Duke-NUS Graduate Medical Center, Duke University Medical Center, Fox Evaluation and Consulting, PLLC, University of Miami Miller School of Medicine.
Cognitive impairments affect the majority of patients with schizophrenia and these impairments predict poor long term psychosocial outcomes.  Treatment studies aimed at cognitive impairment in patients with schizophrenia not only require demonstration of improvements on cognitive tests, but also evidence that any cognitive changes lead to clinically meaningful improvements.  Measures of “functional capacity” index the extent to which individuals have the potential to perform skills required for real world functioning.  Current data do not support the recommendation of any single instrument for measurement of functional capacity.  The Virtual Reality Functional Capacity Assessment Tool (VRFCAT) is a novel, interactive gaming based measure of functional capacity that uses a realistic simulated environment to recreate routine activities of daily living. Studies are currently underway to evaluate and establish the VRFCAT’s sensitivity, reliability, validity, and practicality. This new measure of functional capacity is practical, relevant, easy to use, and has several features that improve validity and sensitivity of measurement of function in clinical trials of patients with CNS disorders.
Behavior, Issue 86, Virtual Reality, Cognitive Assessment, Functional Capacity, Computer Based Assessment, Schizophrenia, Neuropsychology, Aging, Dementia
51405
Play Button
Characterization of Inflammatory Responses During Intranasal Colonization with Streptococcus pneumoniae
Authors: Alicja Puchta, Chris P. Verschoor, Tanja Thurn, Dawn M. E. Bowdish.
Institutions: McMaster University .
Nasopharyngeal colonization by Streptococcus pneumoniae is a prerequisite to invasion to the lungs or bloodstream1. This organism is capable of colonizing the mucosal surface of the nasopharynx, where it can reside, multiply and eventually overcome host defences to invade to other tissues of the host. Establishment of an infection in the normally lower respiratory tract results in pneumonia. Alternatively, the bacteria can disseminate into the bloodstream causing bacteraemia, which is associated with high mortality rates2, or else lead directly to the development of pneumococcal meningitis. Understanding the kinetics of, and immune responses to, nasopharyngeal colonization is an important aspect of S. pneumoniae infection models. Our mouse model of intranasal colonization is adapted from human models3 and has been used by multiple research groups in the study of host-pathogen responses in the nasopharynx4-7. In the first part of the model, we use a clinical isolate of S. pneumoniae to establish a self-limiting bacterial colonization that is similar to carriage events in human adults. The procedure detailed herein involves preparation of a bacterial inoculum, followed by the establishment of a colonization event through delivery of the inoculum via an intranasal route of administration. Resident macrophages are the predominant cell type in the nasopharynx during the steady state. Typically, there are few lymphocytes present in uninfected mice8, however mucosal colonization will lead to low- to high-grade inflammation (depending on the virulence of the bacterial species and strain) that will result in an immune response and the subsequent recruitment of host immune cells. These cells can be isolated by a lavage of the tracheal contents through the nares, and correlated to the density of colonization bacteria to better understand the kinetics of the infection.
Immunology, Issue 83, Streptococcus pneumoniae, Nasal lavage, nasopharynx, murine, flow cytometry, RNA, Quantitative PCR, recruited macrophages, neutrophils, T-cells, effector cells, intranasal colonization
50490
Play Button
Optimization and Utilization of Agrobacterium-mediated Transient Protein Production in Nicotiana
Authors: Moneim Shamloul, Jason Trusa, Vadim Mett, Vidadi Yusibov.
Institutions: Fraunhofer USA Center for Molecular Biotechnology.
Agrobacterium-mediated transient protein production in plants is a promising approach to produce vaccine antigens and therapeutic proteins within a short period of time. However, this technology is only just beginning to be applied to large-scale production as many technological obstacles to scale up are now being overcome. Here, we demonstrate a simple and reproducible method for industrial-scale transient protein production based on vacuum infiltration of Nicotiana plants with Agrobacteria carrying launch vectors. Optimization of Agrobacterium cultivation in AB medium allows direct dilution of the bacterial culture in Milli-Q water, simplifying the infiltration process. Among three tested species of Nicotiana, N. excelsiana (N. benthamiana × N. excelsior) was selected as the most promising host due to the ease of infiltration, high level of reporter protein production, and about two-fold higher biomass production under controlled environmental conditions. Induction of Agrobacterium harboring pBID4-GFP (Tobacco mosaic virus-based) using chemicals such as acetosyringone and monosaccharide had no effect on the protein production level. Infiltrating plant under 50 to 100 mbar for 30 or 60 sec resulted in about 95% infiltration of plant leaf tissues. Infiltration with Agrobacterium laboratory strain GV3101 showed the highest protein production compared to Agrobacteria laboratory strains LBA4404 and C58C1 and wild-type Agrobacteria strains at6, at10, at77 and A4. Co-expression of a viral RNA silencing suppressor, p23 or p19, in N. benthamiana resulted in earlier accumulation and increased production (15-25%) of target protein (influenza virus hemagglutinin).
Plant Biology, Issue 86, Agroinfiltration, Nicotiana benthamiana, transient protein production, plant-based expression, viral vector, Agrobacteria
51204
Play Button
Following in Real Time the Impact of Pneumococcal Virulence Factors in an Acute Mouse Pneumonia Model Using Bioluminescent Bacteria
Authors: Malek Saleh, Mohammed R. Abdullah, Christian Schulz, Thomas Kohler, Thomas Pribyl, Inga Jensch, Sven Hammerschmidt.
Institutions: University of Greifswald.
Pneumonia is one of the major health care problems in developing and industrialized countries and is associated with considerable morbidity and mortality. Despite advances in knowledge of this illness, the availability of intensive care units (ICU), and the use of potent antimicrobial agents and effective vaccines, the mortality rates remain high1. Streptococcus pneumoniae is the leading pathogen of community-acquired pneumonia (CAP) and one of the most common causes of bacteremia in humans. This pathogen is equipped with an armamentarium of surface-exposed adhesins and virulence factors contributing to pneumonia and invasive pneumococcal disease (IPD). The assessment of the in vivo role of bacterial fitness or virulence factors is of utmost importance to unravel S. pneumoniae pathogenicity mechanisms. Murine models of pneumonia, bacteremia, and meningitis are being used to determine the impact of pneumococcal factors at different stages of the infection. Here we describe a protocol to monitor in real-time pneumococcal dissemination in mice after intranasal or intraperitoneal infections with bioluminescent bacteria. The results show the multiplication and dissemination of pneumococci in the lower respiratory tract and blood, which can be visualized and evaluated using an imaging system and the accompanying analysis software.
Infection, Issue 84, Gram-Positive Bacteria, Streptococcus pneumoniae, Pneumonia, Bacterial, Respiratory Tract Infections, animal models, community-acquired pneumonia, invasive pneumococcal diseases, Pneumococci, bioimaging, virulence factor, dissemination, bioluminescence, IVIS Spectrum
51174
Play Button
Multi-target Parallel Processing Approach for Gene-to-structure Determination of the Influenza Polymerase PB2 Subunit
Authors: Brianna L. Armour, Steve R. Barnes, Spencer O. Moen, Eric Smith, Amy C. Raymond, James W. Fairman, Lance J. Stewart, Bart L. Staker, Darren W. Begley, Thomas E. Edwards, Donald D. Lorimer.
Institutions: Emerald Bio, Emerald Bio, Emerald Bio, Emerald Bio, Emerald Bio, Emerald Bio, Emerald Bio, Emerald Bio, Emerald Bio.
Pandemic outbreaks of highly virulent influenza strains can cause widespread morbidity and mortality in human populations worldwide. In the United States alone, an average of 41,400 deaths and 1.86 million hospitalizations are caused by influenza virus infection each year 1. Point mutations in the polymerase basic protein 2 subunit (PB2) have been linked to the adaptation of the viral infection in humans 2. Findings from such studies have revealed the biological significance of PB2 as a virulence factor, thus highlighting its potential as an antiviral drug target. The structural genomics program put forth by the National Institute of Allergy and Infectious Disease (NIAID) provides funding to Emerald Bio and three other Pacific Northwest institutions that together make up the Seattle Structural Genomics Center for Infectious Disease (SSGCID). The SSGCID is dedicated to providing the scientific community with three-dimensional protein structures of NIAID category A-C pathogens. Making such structural information available to the scientific community serves to accelerate structure-based drug design. Structure-based drug design plays an important role in drug development. Pursuing multiple targets in parallel greatly increases the chance of success for new lead discovery by targeting a pathway or an entire protein family. Emerald Bio has developed a high-throughput, multi-target parallel processing pipeline (MTPP) for gene-to-structure determination to support the consortium. Here we describe the protocols used to determine the structure of the PB2 subunit from four different influenza A strains.
Infection, Issue 76, Structural Biology, Virology, Genetics, Medicine, Biomedical Engineering, Molecular Biology, Infectious Diseases, Microbiology, Genomics, high throughput, multi-targeting, structural genomics, protein crystallization, purification, protein production, X-ray crystallography, Gene Composer, Protein Maker, expression, E. coli, fermentation, influenza, virus, vector, plasmid, cell, cell culture, PCR, sequencing
4225
Play Button
Isolation of Early Hematopoietic Stem Cells from Murine Yolk Sac and AGM
Authors: Kelly Morgan, Michael Kharas, Elaine Dzierzak, D. Gary Gilliland.
Institutions: Brigham and Women's Hospital and Harvard Medical School, Erasmus University Medical Center, Brigham and Women's Hospital and Harvard Medical School.
In the mouse embryo, early hematopoiesis occurs simultaneously in multiple organs, which includes the yolk sac and aorta-gonad-mesonephros region. These regions are crucial in establishing the blood system in the embryos and leads to the eventual movement of stem cells into the fetal liver and then development of adult stem cells in the bonemarrow. Early hematopoietic stem cells can be isolated from these organs through microdissection of the embryo followed by flow cytometric sorting to obtain a more pure population. It remains unclear how these stem cell populations contribute to the fetal and adult stem cell pool. Also, our lab investigates how early stem cells functionally differ from fetal and adult hematopoietic stem cells. Furthermore, our lab sorts different populations of hematopoietic stem cells and test their functional role in the context of a variety of genetic models. In this video, we demonstrate the micro-dissection procedure we commonly use and also show the results of a typical FACS plotfter isolating these rare populations, it is possible to perform a variety of functional assays including: colony assays and bone marrow transplants.
Cell biology, Issue 16, yolk sac, aorta-gonad-mesonephros, AGM, stem cell, dissection, embryo
789
Play Button
Microsurgical Clip Obliteration of Middle Cerebral Aneurysm Using Intraoperative Flow Assessment
Authors: Bob S. Carter, Christopher Farrell, Christopher Owen.
Institutions: Havard Medical School, Massachusetts General Hospital.
Cerebral aneurysms are abnormal widening or ballooning of a localized segment of an intracranial blood vessel. Surgical clipping is an important treatment for aneurysms which attempts to exclude blood from flowing into the aneurysmal segment of the vessel while preserving blood flow in a normal fashion. Improper clip placement may result in residual aneurysm with the potential for subsequent aneurysm rupture or partial or full occlusion of distal arteries resulting in cerebral infarction. Here we describe the use of an ultrasonic flow probe to provide quantitative evaluation of arterial flow before and after microsurgical clip placement at the base of a middle cerebral artery aneurysm. This information helps ensure adequate aneurysm reconstruction with preservation of normal distal blood flow.
Medicine, Issue 31, Aneurysm, intraoperative, brain, surgery, surgical clipping, blood flow, aneurysmal segment, ultrasonic flow probe
1294
Play Button
The Resident-intruder Paradigm: A Standardized Test for Aggression, Violence and Social Stress
Authors: Jaap M. Koolhaas, Caroline M. Coppens, Sietse F. de Boer, Bauke Buwalda, Peter Meerlo, Paul J.A. Timmermans.
Institutions: University Groningen, Radboud University Nijmegen.
This video publication explains in detail the experimental protocol of the resident-intruder paradigm in rats. This test is a standardized method to measure offensive aggression and defensive behavior in a semi natural setting. The most important behavioral elements performed by the resident and the intruder are demonstrated in the video and illustrated using artistic drawings. The use of the resident intruder paradigm for acute and chronic social stress experiments is explained as well. Finally, some brief tests and criteria are presented to distinguish aggression from its more violent and pathological forms.
Behavior, Issue 77, Neuroscience, Medicine, Anatomy, Physiology, Genetics, Basic Protocols, Psychology, offensive aggression, defensive behavior, aggressive behavior, pathological, violence, social stress, rat, Wistar rat, animal model
4367
Play Button
Population Replacement Strategies for Controlling Vector Populations and the Use of Wolbachia pipientis for Genetic Drive
Authors: Jason Rasgon.
Institutions: Johns Hopkins University.
In this video, Jason Rasgon discusses population replacement strategies to control vector-borne diseases such as malaria and dengue. "Population replacement" is the replacement of wild vector populations (that are competent to transmit pathogens) with those that are not competent to transmit pathogens. There are several theoretical strategies to accomplish this. One is to exploit the maternally-inherited symbiotic bacteria Wolbachia pipientis. Wolbachia is a widespread reproductive parasite that spreads in a selfish manner at the extent of its host's fitness. Jason Rasgon discusses, in detail, the basic biology of this bacterial symbiont and various ways to use it for control of vector-borne diseases.
Cellular Biology, Issue 5, mosquito, malaria, genetics, infectious disease, Wolbachia
225
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.