JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Locomotion of C. elegans: a piecewise-harmonic curvature representation of nematode behavior.
Caenorhabditis elegans, a free-living soil nematode, displays a rich variety of body shapes and trajectories during its undulatory locomotion in complex environments. Here we show that the individual body postures and entire trails of C. elegans have a simple analytical description in curvature representation. Our model is based on the assumption that the curvature wave is generated in the head segment of the worm body and propagates backwards. We have found that a simple harmonic function for the curvature can capture multiple worm shapes during the undulatory movement. The worm body trajectories can be well represented in terms of piecewise sinusoidal curvature with abrupt changes in amplitude, wavevector, and phase.
Authors: Alicia Jago, Tewa Kpulun, Kathleen M. Raley-Susman, Jenny Magnes.
Published: 04-18-2014
This study demonstrates an inexpensive and straightforward technique that allows the measurement of physical properties such as position, velocity, acceleration and forces involved in the locomotory behavior of nematodes suspended in a column of water in response to single wavelengths of light. We demonstrate how to evaluate the locomotion of a microscopic organism using Single Wavelength Shadow Imaging (SWSI) using two different examples. The first example is a systematic and statistically viable study of the average descent of C. elegans in a column of water. For this study, we used living and dead wildtype C. elegans. When we compared the velocity and direction of nematode active movement with the passive descent of dead worms within the gravitational field, this study showed no difference in descent-times. The average descent was 1.5 mm/sec ± 0.1 mm/sec for both the live and dead worms using 633 nm coherent light. The second example is a case study of select individual C. elegans changing direction during the descent in a vertical water column. Acceleration and force are analyzed in this example. This case study demonstrates the scope of other physical properties that can be evaluated using SWSI while evaluating the behavior using single wavelengths in an environment that is not accessible with traditional microscopes. Using this analysis we estimated an individual nematode is capable of thrusting with a force in excess of 28 nN. Our findings indicate that living nematodes exert 28 nN when turning, or moving against the gravitational field. The findings further suggest that nematodes passively descend in a column of water, but can actively resist the force of gravity primarily by turning direction.
18 Related JoVE Articles!
Play Button
RNAi Mediated Gene Knockdown and Transgenesis by Microinjection in the Necromenic Nematode Pristionchus pacificus
Authors: Jessica K. Cinkornpumin, Ray L. Hong.
Institutions: California State University.
Although it is increasingly affordable for emerging model organisms to obtain completely sequenced genomes, further in-depth gene function and expression analyses by RNA interference and stable transgenesis remain limited in many species due to the particular anatomy and molecular cellular biology of the organism. For example, outside of the crown group Caenorhabditis that includes Caenorhabditis elegans3, stably transmitted transgenic lines in non-Caenorhabditis species have not been reported in this specious phylum (Nematoda), with the exception of Strongyloides stercoralis4 and Pristionchus pacificus5. To facilitate the expanding role of P. pacificus in the study of development, evolution, and behavior6-7, we describe here the current methods to use microinjection for making transgenic animals and gene knock down by RNAi. Like the gonads of C. elegans and most other nematodes, the gonads of P. pacificus is syncitial and capable of incorporating DNA and RNA into the oocytes when delivered by direct microinjection. Unlike C. elegans however, stable transgene inheritance and somatic expression in P. pacificus requires the addition of self genomic DNA digested with endonucleases complementary to the ends of target transgenes and coinjection markers5. The addition of carrier genomic DNA is similar to the requirement for transgene expression in Strongyloides stercoralis4 and in the germ cells of C. elegans. However, it is not clear if the specific requirement for the animals' own genomic DNA is because P. pacificus soma is very efficient at silencing non-complex multi-copy genes or that extrachromosomal arrays in P. pacificus require genomic sequences for proper kinetochore assembly during mitosis. The ventral migration of the two-armed (didelphic) gonads in hermaphrodites further complicates the ability to inject both gonads in individual worms8. We also demonstrate the use of microinjection to knockdown a dominant mutant (roller,tu92) by injecting double-stranded RNA (dsRNA) into the gonads to obtain non-rolling F1 progeny. Unlike C. elegans, but like most other nematodes, P. pacificus PS312 is not receptive to systemic RNAi via feeding and soaking and therefore dsRNA must be administered by microinjection into the syncitial gonads. In this current study, we hope to describe the microinjection process needed to transform a Ppa-egl-4 promoter::GFP fusion reporter and knockdown a dominant roller prl-1 (tu92) mutant in a visually informative protocol.
Developmental Biology, Issue 56, RNA interference, Pristionchus pacificus, microinjection, transgenesis, Caenorhabditis elegans, developmental biology, behavior, gene expression
Play Button
Simple Microfluidic Devices for in vivo Imaging of C. elegans, Drosophila and Zebrafish
Authors: Sudip Mondal, Shikha Ahlawat, Sandhya P. Koushika.
Institutions: NCBS-TIFR, TIFR.
Micro fabricated fluidic devices provide an accessible micro-environment for in vivo studies on small organisms. Simple fabrication processes are available for microfluidic devices using soft lithography techniques 1-3. Microfluidic devices have been used for sub-cellular imaging 4,5, in vivo laser microsurgery 2,6 and cellular imaging 4,7. In vivo imaging requires immobilization of organisms. This has been achieved using suction 5,8, tapered channels 6,7,9, deformable membranes 2-4,10, suction with additional cooling 5, anesthetic gas 11, temperature sensitive gels 12, cyanoacrylate glue 13 and anesthetics such as levamisole 14,15. Commonly used anesthetics influence synaptic transmission 16,17 and are known to have detrimental effects on sub-cellular neuronal transport 4. In this study we demonstrate a membrane based poly-dimethyl-siloxane (PDMS) device that allows anesthetic free immobilization of intact genetic model organisms such as Caenorhabditis elegans (C. elegans), Drosophila larvae and zebrafish larvae. These model organisms are suitable for in vivo studies in microfluidic devices because of their small diameters and optically transparent or translucent bodies. Body diameters range from ~10 μm to ~800 μm for early larval stages of C. elegans and zebrafish larvae and require microfluidic devices of different sizes to achieve complete immobilization for high resolution time-lapse imaging. These organisms are immobilized using pressure applied by compressed nitrogen gas through a liquid column and imaged using an inverted microscope. Animals released from the trap return to normal locomotion within 10 min. We demonstrate four applications of time-lapse imaging in C. elegans namely, imaging mitochondrial transport in neurons, pre-synaptic vesicle transport in a transport-defective mutant, glutamate receptor transport and Q neuroblast cell division. Data obtained from such movies show that microfluidic immobilization is a useful and accurate means of acquiring in vivo data of cellular and sub-cellular events when compared to anesthetized animals (Figure 1J and 3C-F 4). Device dimensions were altered to allow time-lapse imaging of different stages of C. elegans, first instar Drosophila larvae and zebrafish larvae. Transport of vesicles marked with synaptotagmin tagged with GFP (syt.eGFP) in sensory neurons shows directed motion of synaptic vesicle markers expressed in cholinergic sensory neurons in intact first instar Drosophila larvae. A similar device has been used to carry out time-lapse imaging of heartbeat in ~30 hr post fertilization (hpf) zebrafish larvae. These data show that the simple devices we have developed can be applied to a variety of model systems to study several cell biological and developmental phenomena in vivo.
Bioengineering, Issue 67, Molecular Biology, Neuroscience, Microfluidics, C. elegans, Drosophila larvae, zebrafish larvae, anesthetic, pre-synaptic vesicle transport, dendritic transport of glutamate receptors, mitochondrial transport, synaptotagmin transport, heartbeat
Play Button
Using RNA-mediated Interference Feeding Strategy to Screen for Genes Involved in Body Size Regulation in the Nematode C. elegans
Authors: Jun Liang, Sheng Xiong, Cathy Savage-Dunn.
Institutions: Borough of Manhattan Community College, City Universtiy of New York (CUNY), Queens College, The City University of New York (CUNY), Queens College, The City University of New York (CUNY).
Double-strand RNA-mediated interference (RNAi) is an effective strategy to knock down target gene expression1-3. It has been applied to many model systems including plants, invertebrates and vertebrates. There are various methods to achieve RNAi in vivo4,5. For example, the target gene may be transformed into an RNAi vector, and then either permanently or transiently transformed into cell lines or primary cells to achieve gene knockdown effects; alternatively synthesized double-strand oligonucleotides from specific target genes (RNAi oligos) may be transiently transformed into cell lines or primary cells to silence target genes; or synthesized double-strand RNA molecules may be microinjected into an organism. Since the nematode C. elegans uses bacteria as a food source, feeding the animals with bacteria expressing double-strand RNA against target genes provides a viable strategy6. Here we present an RNAi feeding method to score body size phenotype. Body size in C. elegans is regulated primarily by the TGF- β - like ligand DBL-1, so this assay is appropriate for identification of TGF-β signaling components7. We used different strains including two RNAi hypersensitive strains to repeat the RNAi feeding experiments. Our results showed that rrf-3 strain gave us the best expected RNAi phenotype. The method is easy to perform, reproducible, and easily quantified. Furthermore, our protocol minimizes the use of specialized equipment, so it is suitable for smaller laboratories or those at predominantly undergraduate institutions.
Developmental Biology, Issue 72, Genetics, Cellular Biology, Molecular Biology, Biochemistry, Basic Protocols, RNAi feeding technique, genetic screen, TGF-beta, body size, C. elegans, Caenorhabditis elegans, RNA-mediated Interference, RNAi, RNA, DNA, gene expression knock down, animal model
Play Button
Assaying β-amyloid Toxicity using a Transgenic C. elegans Model
Authors: Vishantie Dostal, Christopher D. Link.
Institutions: University of Colorado, University of Colorado.
Accumulation of the β-amyloid peptide (Aβ) is generally believed to be central to the induction of Alzheimer's disease, but the relevant mechanism(s) of toxicity are still unclear. Aβ is also deposited intramuscularly in Inclusion Body Myositis, a severe human myopathy. The intensely studied nematode worm Caenorhabditis elegans can be transgenically engineered to express human Aβ. Depending on the tissue or timing of Aβ expression, transgenic worms can have readily measurable phenotypes that serve as a read-out of Aβ toxicity. For example, transgenic worms with pan-neuronal Aβ expression have defects is associative learning (Dosanjh et al. 2009), while transgenic worms with constitutive muscle-specific expression show a progressive, age-dependent paralysis phenotype (Link, 1995; Cohen et al. 2006). One particularly useful C. elegans model employs a temperature-sensitive mutation in the mRNA surveillance system to engineer temperature-inducible muscle expression of an Aβ transgene, resulting in a reproducible paralysis phenotype upon temperature upshift (Link et al. 2003). Treatments that counter Aβ toxicity in this model [e.g., expression of a protective transgene (Hassan et al. 2009) or exposure to Ginkgo biloba extracts (Wu et al. 2006)] reproducibly alter the rate of paralysis induced by temperature upshift of these transgenic worms. Here we describe our protocol for measuring the rate of paralysis in this transgenic C. elegans model, with particular attention to experimental variables that can influence this measurement.
Neuroscience, Issue 44, Alzheimer's disease, paralysis, compound screening, Inclusion Body Myositis, invertebrate model
Play Button
Isolation and In vitro Activation of Caenorhabditis elegans Sperm
Authors: Gunasekaran Singaravelu, Indrani Chatterjee, Matthew R. Marcello, Andrew Singson.
Institutions: Rutgers University.
Males and hermaphrodites are the two naturally found sexual forms in the nematode C. elegans. The amoeboid sperm are produced by both males and hermaphrodites. In the earlier phase of gametogenesis, the germ cells of hermaphrodites differentiate into limited number of sperm - around 300 - and are stored in a small 'bag' called the spermatheca. Later on, hermaphrodites continually produce oocytes1. In contrast, males produce exclusively sperm throughout their adulthood. The males produce so much sperm that it accounts for >50% of the total cells in a typical adult worm2. Therefore, isolating sperm from males is easier than from that of hermaphrodites. Only a small proportion of males are naturally generated due to spontaneous non-disjunction of X chromosome3. Crossing hermaphrodites with males or more conveniently, the introduction of mutations to give rise to Him (High Incidence of Males) phenotype are some of strategies through which one can enrich the male population3. Males can be easily distinguished from hermaphrodites by observing the tail morphology4. Hermaphrodite's tail is pointed, whereas male tail is rounded with mating structures. Cutting the tail releases vast number of spermatids stored inside the male reproductive tract. Dissection is performed under a stereo microscope using 27 gauge needles. Since spermatids are not physically connected with any other cells, hydraulic pressure expels internal contents of male body, including spermatids2. Males are directly dissected on a small drop of 'Sperm Medium'. Spermatids are sensitive to alteration in the pH. Hence, HEPES, a compound with good buffering capacity is used in sperm media. Glucose and other salts present in sperm media help maintain osmotic pressure to maintain the integrity of sperm. Post-meiotic differentiation of spermatids into spermatozoa is termed spermiogenesis or sperm activation. Shakes5, and Nelson6 previously showed that round spermatids can be induced to differentiate into spermatozoa by adding various activating compounds including Pronase E. Here we demonstrate in vitro spermiogenesis of C. elegans spermatids using Pronase E. Successful spermiogenesis is pre-requisite for fertility and hence the mutants defective in spermiogenesis are sterile. Hitherto several mutants have been shown to be defective specifically in spermiogenesis process7. Abnormality found during in vitro activation of novel Spe (Spermatogenesis defective) mutants would help us discover additional players participating in this event.
Developmental Biology, Issue 47, spermatid, spermatozoa, spermiogenesis, protease, pseudopod, nematode
Play Button
Paradigms for Pharmacological Characterization of C. elegans Synaptic Transmission Mutants
Authors: Cody Locke, Kalen Berry, Bwarenaba Kautu, Kyle Lee, Kim Caldwell, Guy Caldwell.
Institutions: University of Alabama.
The nematode, Caenorhabditis elegans, has become an expedient model for studying neurotransmission. C. elegans is unique among animal models, as the anatomy and connectivity of its nervous system has been determined from electron micrographs and refined by pharmacological assays. In this video, we describe how two complementary neural stimulants, an acetylcholinesterase inhibitor, called aldicarb, and a gamma-aminobutyric acid (GABA) receptor antagonist, called pentylenetetrazole (PTZ), may be employed to specifically characterize signaling at C. elegans neuromuscular junctions (NMJs) and facilitate our understanding of antagonistic neural circuits. Of 302 C. elegans neurons, nineteen GABAergic D-type motor neurons innervate body wall muscles (BWMs), while four GABAergic neurons, called RMEs, innervate head muscles. Conversely, thirty-nine motor neurons express the excitatory neurotransmitter, acetylcholine (ACh), and antagonize GABA transmission at BWMs to coordinate locomotion. The antagonistic nature of GABAergic and cholinergic motor neurons at body wall NMJs was initially determined by laser ablation and later buttressed by aldicarb exposure. Acute aldicarb exposure results in a time-course or dose-responsive paralysis in wild-type worms. Yet, loss of excitatory ACh transmission confers resistance to aldicarb, as less ACh accumulates at worm NMJs, leading to less stimulation of BWMs. Resistance to aldicarb may be observed with ACh-specific or general synaptic function mutants. Consistent with antagonistic GABA and ACh transmission, loss of GABA transmission, or a failure to negatively regulate ACh release, confers hypersensitivity to aldicarb. Although aldicarb exposure has led to the isolation of numerous worm homologs of neurotransmission genes, aldicarb exposure alone cannot efficiently determine prevailing roles for genes and pathways in specific C. elegans motor neurons. For this purpose, we have introduced a complementary experimental approach, which uses PTZ. Neurotransmission mutants display clear phenotypes, distinct from aldicarb-induced paralysis, in response to PTZ. Wild-type worms, as well as mutants with specific inabilities to release or receive ACh, do not show apparent sensitivity to PTZ. However, GABA mutants, as well as general synaptic function mutants, display anterior convulsions in a time-course or dose-responsive manner. Mutants that cannot negatively regulate general neurotransmitter release and, thus, secrete excessive amounts of ACh onto BWMs, become paralyzed on PTZ. The PTZ-induced phenotypes of discrete mutant classes indicate that a complementary approach with aldicarb and PTZ exposure paradigms in C. elegans may accelerate our understanding of neurotransmission. Moreover, videos demonstrating how we perform pharmacological assays should establish consistent methods for C. elegans research.
Neuroscience, Issue 18, epilepsy, seizure, Caenorhabditis elegans, genetics, worm, nematode, aldicarb, pentylenetetrazole, synaptic, GABA
Play Button
Antibody Staining in C. Elegans Using "Freeze-Cracking"
Authors: Janet S. Duerr.
Institutions: Ohio University.
To stain C. elegans with antibodies, the relatively impermeable cuticle must be bypassed by chemical or mechanical methods. "Freeze-cracking" is one method used to physically pull the cuticle from nematodes by compressing nematodes between two adherent slides, freezing them, and pulling the slides apart. Freeze-cracking provides a simple and rapid way to gain access to the tissues without chemical treatment and can be used with a variety of fixatives. However, it leads to the loss of many of the specimens and the required compression mechanically distorts the sample. Practice is required to maximize recovery of samples with good morphology. Freeze-cracking can be optimized for specific fixation conditions, recovery of samples, or low non-specific staining, but not for all parameters at once. For antibodies that require very hard fixation conditions and tolerate the chemical treatments needed to chemically permeabilize the cuticle, treatment of intact nematodes in solution may be preferred. If the antibody requires a lighter fix or if the optimum fixation conditions are unknown, freeze-cracking provides a very useful way to rapidly assay the antibody and can yield specific subcellular and cellular localization information for the antigen of interest.
Molecular Biology, Issue 80, Caenorhabditis elegans (C. elegans), Fluorescent Antibody Technique, nematode, labeling, localization, in situ
Play Button
Simultaneous Multicolor Imaging of Biological Structures with Fluorescence Photoactivation Localization Microscopy
Authors: Nikki M. Curthoys, Michael J. Mlodzianoski, Dahan Kim, Samuel T. Hess.
Institutions: University of Maine.
Localization-based super resolution microscopy can be applied to obtain a spatial map (image) of the distribution of individual fluorescently labeled single molecules within a sample with a spatial resolution of tens of nanometers. Using either photoactivatable (PAFP) or photoswitchable (PSFP) fluorescent proteins fused to proteins of interest, or organic dyes conjugated to antibodies or other molecules of interest, fluorescence photoactivation localization microscopy (FPALM) can simultaneously image multiple species of molecules within single cells. By using the following approach, populations of large numbers (thousands to hundreds of thousands) of individual molecules are imaged in single cells and localized with a precision of ~10-30 nm. Data obtained can be applied to understanding the nanoscale spatial distributions of multiple protein types within a cell. One primary advantage of this technique is the dramatic increase in spatial resolution: while diffraction limits resolution to ~200-250 nm in conventional light microscopy, FPALM can image length scales more than an order of magnitude smaller. As many biological hypotheses concern the spatial relationships among different biomolecules, the improved resolution of FPALM can provide insight into questions of cellular organization which have previously been inaccessible to conventional fluorescence microscopy. In addition to detailing the methods for sample preparation and data acquisition, we here describe the optical setup for FPALM. One additional consideration for researchers wishing to do super-resolution microscopy is cost: in-house setups are significantly cheaper than most commercially available imaging machines. Limitations of this technique include the need for optimizing the labeling of molecules of interest within cell samples, and the need for post-processing software to visualize results. We here describe the use of PAFP and PSFP expression to image two protein species in fixed cells. Extension of the technique to living cells is also described.
Basic Protocol, Issue 82, Microscopy, Super-resolution imaging, Multicolor, single molecule, FPALM, Localization microscopy, fluorescent proteins
Play Button
Biochemical and High Throughput Microscopic Assessment of Fat Mass in Caenorhabditis Elegans
Authors: Elizabeth C. Pino, Christopher M. Webster, Christopher E. Carr, Alexander A. Soukas.
Institutions: Massachusetts General Hospital and Harvard Medical School, Massachusetts Institute of Technology.
The nematode C. elegans has emerged as an important model for the study of conserved genetic pathways regulating fat metabolism as it relates to human obesity and its associated pathologies. Several previous methodologies developed for the visualization of C. elegans triglyceride-rich fat stores have proven to be erroneous, highlighting cellular compartments other than lipid droplets. Other methods require specialized equipment, are time-consuming, or yield inconsistent results. We introduce a rapid, reproducible, fixative-based Nile red staining method for the accurate and rapid detection of neutral lipid droplets in C. elegans. A short fixation step in 40% isopropanol makes animals completely permeable to Nile red, which is then used to stain animals. Spectral properties of this lipophilic dye allow it to strongly and selectively fluoresce in the yellow-green spectrum only when in a lipid-rich environment, but not in more polar environments. Thus, lipid droplets can be visualized on a fluorescent microscope equipped with simple GFP imaging capability after only a brief Nile red staining step in isopropanol. The speed, affordability, and reproducibility of this protocol make it ideally suited for high throughput screens. We also demonstrate a paired method for the biochemical determination of triglycerides and phospholipids using gas chromatography mass-spectrometry. This more rigorous protocol should be used as confirmation of results obtained from the Nile red microscopic lipid determination. We anticipate that these techniques will become new standards in the field of C. elegans metabolic research.
Genetics, Issue 73, Biochemistry, Cellular Biology, Molecular Biology, Developmental Biology, Physiology, Anatomy, Caenorhabditis elegans, Obesity, Energy Metabolism, Lipid Metabolism, C. elegans, fluorescent lipid staining, lipids, Nile red, fat, high throughput screening, obesity, gas chromatography, mass spectrometry, GC/MS, animal model
Play Button
Microfluidic-based Electrotaxis for On-demand Quantitative Analysis of Caenorhabditis elegans' Locomotion
Authors: Justin Tong, Pouya Rezai, Sangeena Salam, P. Ravi Selvaganapathy, Bhagwati P. Gupta.
Institutions: McMaster University , McMaster University .
The nematode Caenorhabditis elegans is a versatile model organism for biomedical research because of its conservation of disease-related genes and pathways as well as its ease of cultivation. Several C. elegans disease models have been reported, including neurodegenerative disorders such as Parkinson's disease (PD), which involves the degeneration of dopaminergic (DA) neurons 1. Both transgenes and neurotoxic chemicals have been used to induce DA neurodegeneration and consequent movement defects in worms, allowing for investigations into the basis of neurodegeneration and screens for neuroprotective genes and compounds 2,3. Screens in lower eukaryotes like C. elegans provide an efficient and economical means to identify compounds and genes affecting neuronal signaling. Conventional screens are typically performed manually and scored by visual inspection; consequently, they are time-consuming and prone to human errors. Additionally, most focus on cellular level analysis while ignoring locomotion, which is an especially important parameter for movement disorders. We have developed a novel microfluidic screening system (Figure 1) that controls and quantifies C. elegans' locomotion using electric field stimuli inside microchannels. We have shown that a Direct Current (DC) field can robustly induce on-demand locomotion towards the cathode ("electrotaxis") 4. Reversing the field's polarity causes the worm to quickly reverse its direction as well. We have also shown that defects in dopaminergic and other sensory neurons alter the swimming response 5. Therefore, abnormalities in neuronal signaling can be determined using locomotion as a read-out. The movement response can be accurately quantified using a range of parameters such as swimming speed, body bending frequency and reversal time. Our work has revealed that the electrotactic response varies with age. Specifically, young adults respond to a lower range of electric fields and move faster compared to larvae 4. These findings led us to design a new microfluidic device to passively sort worms by age and phenotype 6. We have also tested the response of worms to pulsed DC and Alternating Current (AC) electric fields. Pulsed DC fields of various duty cycles effectively generated electrotaxis in both C. elegans and its cousin C. briggsae 7. In another experiment, symmetrical AC fields with frequencies ranging from 1 Hz to 3 KHz immobilized worms inside the channel 8. Implementation of the electric field in a microfluidic environment enables rapid and automated execution of the electrotaxis assay. This approach promises to facilitate high-throughput genetic and chemical screens for factors affecting neuronal function and viability.
Bioengineering, Issue 75, Behavior, Molecular Biology, Cellular Biology, Neuroscience, Neurobiology, Biophysics, Mechanical Engineering, Microfluidics, Caenorhabditis elegans, C. elegans, Neurotoxicity Syndromes, Drug Toxicity, Neurotoxicity Syndromes, Biological Agents, High-Throughput Screening Assays, Toxicity Tests, Locomotion, Nervous System Diseases, electrotaxis, locomotion, swimming, movement, neurodegeneration, neuronal signaling, dopamine, neurons, animal model
Play Button
Quantitative Locomotion Study of Freely Swimming Micro-organisms Using Laser Diffraction
Authors: Jenny Magnes, Kathleen Susman, Rebecca Eells.
Institutions: Vassar College, Vassar College.
Soil and aquatic microscopic organisms live and behave in a complex three-dimensional environment. Most studies of microscopic organism behavior, in contrast, have been conducted using microscope-based approaches, which limit the movement and behavior to a narrow, nearly two-dimensional focal field.1 We present a novel analytical approach that provides real-time analysis of freely swimming C. elegans in a cuvette without dependence on microscope-based equipment. This approach consists of tracking the temporal periodicity of diffraction patterns generated by directing laser light through the cuvette. We measure oscillation frequencies for freely swimming nematodes. Analysis of the far-field diffraction patterns reveals clues about the waveforms of the nematodes. Diffraction is the process of light bending around an object. In this case light is diffracted by the organisms. The light waves interfere and can form a diffraction pattern. A far-field, or Fraunhofer, diffraction pattern is formed if the screen-to-object distance is much larger than the diffracting object. In this case, the diffraction pattern can be calculated (modeled) using a Fourier transform.2 C. elegans are free-living soil-dwelling nematodes that navigate in three dimensions. They move both on a solid matrix like soil or agar in a sinusoidal locomotory pattern called crawling and in liquid in a different pattern called swimming.3 The roles played by sensory information provided by mechanosensory, chemosensory, and thermosensory cells that govern plastic changes in locomotory patterns and switches in patterns are only beginning to be elucidated.4 We describe an optical approach to measuring nematode locomotion in three dimensions that does not require a microscope and will enable us to begin to explore the complexities of nematode locomotion under different conditions.
Bioengineering, Issue 68, Caenorhabditis elegans, C. elegans, diffraction, video analysis, freely swimming, autocorrelation, laser, locomotion
Play Button
Culturing Caenorhabditis elegans in Axenic Liquid Media and Creation of Transgenic Worms by Microparticle Bombardment
Authors: Tamika K. Samuel, Jason W. Sinclair, Katherine L. Pinter, Iqbal Hamza.
Institutions: University of Maryland, University of Maryland.
In this protocol, we present the required materials, and the procedure for making modified C. elegans Habituation and Reproduction media (mCeHR). Additionally, the steps for exposing and acclimatizing C. elegans grown on E. coli to axenic liquid media are described. Finally, downstream experiments that utilize axenic C. elegans illustrate the benefits of this procedure. The ability to analyze and determine C. elegans nutrient requirement was illustrated by growing N2 wild type worms in axenic liquid media with varying heme concentrations. This procedure can be replicated with other nutrients to determine the optimal concentration for worm growth and development or, to determine the toxicological effects of drug treatments. The effects of varied heme concentrations on the growth of wild type worms were determined through qualitative microscopic observation and by quantitating the number of worms that grew in each heme concentration. In addition, the effect of varied nutrient concentrations can be assayed by utilizing worms that express fluorescent sensors that respond to changes in the nutrient of interest. Furthermore, a large number of worms were easily produced for the generation of transgenic C. elegans using microparticle bombardment.
Molecular Biology, Issue 90, C. elegans, axenic media, transgenics, microparticle bombardment, heme, nutrition
Play Button
Visualizing Neuroblast Cytokinesis During C. elegans Embryogenesis
Authors: Denise Wernike, Chloe van Oostende, Alisa Piekny.
Institutions: Concordia University.
This protocol describes the use of fluorescence microscopy to image dividing cells within developing Caenorhabditis elegans embryos. In particular, this protocol focuses on how to image dividing neuroblasts, which are found underneath the epidermal cells and may be important for epidermal morphogenesis. Tissue formation is crucial for metazoan development and relies on external cues from neighboring tissues. C. elegans is an excellent model organism to study tissue morphogenesis in vivo due to its transparency and simple organization, making its tissues easy to study via microscopy. Ventral enclosure is the process where the ventral surface of the embryo is covered by a single layer of epithelial cells. This event is thought to be facilitated by the underlying neuroblasts, which provide chemical guidance cues to mediate migration of the overlying epithelial cells. However, the neuroblasts are highly proliferative and also may act as a mechanical substrate for the ventral epidermal cells. Studies using this experimental protocol could uncover the importance of intercellular communication during tissue formation, and could be used to reveal the roles of genes involved in cell division within developing tissues.
Neuroscience, Issue 85, C. elegans, morphogenesis, cytokinesis, neuroblasts, anillin, microscopy, cell division
Play Button
Large-scale Gene Knockdown in C. elegans Using dsRNA Feeding Libraries to Generate Robust Loss-of-function Phenotypes
Authors: Kathryn N. Maher, Mary Catanese, Daniel L. Chase.
Institutions: University of Massachusetts, Amherst, University of Massachusetts, Amherst, University of Massachusetts, Amherst.
RNA interference by feeding worms bacteria expressing dsRNAs has been a useful tool to assess gene function in C. elegans. While this strategy works well when a small number of genes are targeted for knockdown, large scale feeding screens show variable knockdown efficiencies, which limits their utility. We have deconstructed previously published RNAi knockdown protocols and found that the primary source of the reduced knockdown can be attributed to the loss of dsRNA-encoding plasmids from the bacteria fed to the animals. Based on these observations, we have developed a dsRNA feeding protocol that greatly reduces or eliminates plasmid loss to achieve efficient, high throughput knockdown. We demonstrate that this protocol will produce robust, reproducible knock down of C. elegans genes in multiple tissue types, including neurons, and will permit efficient knockdown in large scale screens. This protocol uses a commercially available dsRNA feeding library and describes all steps needed to duplicate the library and perform dsRNA screens. The protocol does not require the use of any sophisticated equipment, and can therefore be performed by any C. elegans lab.
Developmental Biology, Issue 79, Caenorhabditis elegans (C. elegans), Gene Knockdown Techniques, C. elegans, dsRNA interference, gene knockdown, large scale feeding screen
Play Button
Methods to Assess Subcellular Compartments of Muscle in C. elegans
Authors: Christopher J. Gaffney, Joseph J. Bass, Thomas F. Barratt, Nathaniel J. Szewczyk.
Institutions: University of Nottingham.
Muscle is a dynamic tissue that responds to changes in nutrition, exercise, and disease state. The loss of muscle mass and function with disease and age are significant public health burdens. We currently understand little about the genetic regulation of muscle health with disease or age. The nematode C. elegans is an established model for understanding the genomic regulation of biological processes of interest. This worm’s body wall muscles display a large degree of homology with the muscles of higher metazoan species. Since C. elegans is a transparent organism, the localization of GFP to mitochondria and sarcomeres allows visualization of these structures in vivo. Similarly, feeding animals cationic dyes, which accumulate based on the existence of a mitochondrial membrane potential, allows the assessment of mitochondrial function in vivo. These methods, as well as assessment of muscle protein homeostasis, are combined with assessment of whole animal muscle function, in the form of movement assays, to allow correlation of sub-cellular defects with functional measures of muscle performance. Thus, C. elegans provides a powerful platform with which to assess the impact of mutations, gene knockdown, and/or chemical compounds upon muscle structure and function. Lastly, as GFP, cationic dyes, and movement assays are assessed non-invasively, prospective studies of muscle structure and function can be conducted across the whole life course and this at present cannot be easily investigated in vivo in any other organism.
Developmental Biology, Issue 93, Physiology, C. elegans, muscle, mitochondria, sarcomeres, ageing
Play Button
C. elegans Tracking and Behavioral Measurement
Authors: Jirapat Likitlersuang, Greg Stephens, Konstantine Palanski, William S. Ryu.
Institutions: University of Toronto, Vrije Universiteit, Okinawa Institute of Science and Technology, University of Toronto.
We have developed instrumentation, image processing, and data analysis techniques to quantify the locomotory behavior of C. elegans as it crawls on the surface of an agar plate. For the study of the genetic, biochemical, and neuronal basis of behavior, C. elegans is an ideal organism because it is genetically tractable, amenable to microscopy, and shows a number of complex behaviors, including taxis, learning, and social interaction1,2. Behavioral analysis based on tracking the movements of worms as they crawl on agar plates have been particularly useful in the study of sensory behavior3, locomotion4, and general mutational phenotyping5. Our system works by moving the camera and illumination system as the worms crawls on a stationary agar plate, which ensures no mechanical stimulus is transmitted to the worm. Our tracking system is easy to use and includes a semi-automatic calibration feature. A challenge of all video tracking systems is that it generates an enormous amount of data that is intrinsically high dimensional. Our image processing and data analysis programs deal with this challenge by reducing the worms shape into a set of independent components, which comprehensively reconstruct the worms behavior as a function of only 3-4 dimensions6,7. As an example of the process we show that the worm enters and exits its reversal state in a phase specific manner.
Neuroscience, Issue 69, Physics, Biophysics, Anatomy, Microscopy, Ethology, Behavior, Machine Vision, C. elegans, animal model
Play Button
Measuring the Effects of Bacteria on C. Elegans Behavior Using an Egg Retention Assay
Authors: Mona Gardner, Mary Rosell, Edith M. Myers.
Institutions: Fairleigh Dickinson University.
C. elegans egg-laying behavior is affected by environmental cues such as osmolarity1 and vibration2. In the total absence of food C. elegans also cease egg-laying and retain fertilized eggs in their uterus3. However, the effect of different sources of food, especially pathogenic bacteria and particularly Enterococcus faecalis, on egg-laying behavior is not well characterized. The egg-in-worm (EIW) assay is a useful tool to quantify the effects of different types of bacteria, in this case E. faecalis, on egg- laying behavior. EIW assays involve counting the number of eggs retained in the uterus of C. elegans4. The EIW assay involves bleaching staged, gravid adult C. elegans to remove the cuticle and separate the retained eggs from the animal. Prior to bleaching, worms are exposed to bacteria (or any type of environmental cue) for a fixed period of time. After bleaching, one is very easily able to count the number of eggs retained inside the uterus of the worms. In this assay, a quantifiable increase in egg retention after E. faecalis exposure can be easily measured. The EIW assay is a behavioral assay that may be used to screen for potentially pathogenic bacteria or the presence of environmental toxins. In addition, the EIW assay may be a tool to screen for drugs that affect neurotransmitter signaling since egg-laying behavior is modulated by neurotransmitters such as serotonin and acetylcholine5-9.
Developmental Biology, Issue 80, Microbiology, C. elegans, Behavior, Animal, Microbiology, Caenorhabditis elegans, Enterococcus faecalis, egg-laying behavior, animal model
Play Button
Dissecting and Recording from The C. Elegans Neuromuscular Junction
Authors: Janet Richmond.
Institutions: University of Illinois, Chicago.
Neurotransmission is the process by which neurons transfer information via chemical signals to their post-synaptic targets, on a rapid time scale. This complex process requires the coordinated activity of many pre- and post-synaptic proteins to ensure appropriate synaptic connectivity, conduction of electrical signals, targeting and priming of secretory vesicles, calcium sensing, vesicle fusion, localization and function of postsynaptic receptors and finally, recycling mechanisms. As neuroscientists it is our goal to elucidate which proteins function in each of these steps and understand their mechanisms of action. Electrophysiological recordings from synapses provide a quantifiable read out of the underlying electrical events that occur during synaptic transmission. By combining this technique with the powerful array of molecular and genetic tools available to manipulate synaptic proteins in C. elegans, we can analyze the resulting functional changes in synaptic transmission. The C. elegans NMJs formed between motor neurons and body wall muscles control locomotion, therefore, mutants with uncoordinated locomotory phenotypes (known as unc s) often perturb synaptic transmission at these synapses 1. Since unc mutants are maintained on a rich supply of a bacterial food source, they remain viable as long as they retain some pharyngeal pumping ability to ingest food. This, together with the fact that C. elegans exist as hermaphrodites, allows them to pass on mutant progeny without the need for elaborate mating behaviors. These attributes, coupled with our recent ability to record from the worms NMJs 2,3,7 make this an excellent model organism in which to address precisely how unc mutants impact neurotransmission. The dissection method involves immobilizing adult worms using a cyanoacrylic glue in order to make an incision in the worm cuticle exposing the NMJs. Since C. elegans adults are only 1 mm in length the dissection is performed with the use of a dissecting microscope and requires excellent hand-eye coordination. NMJ recordings are made by whole-cell voltage clamping individual body wall muscle cells and neurotransmitter release can be evoked using a variety of stimulation protocols including electrical stimulation, light-activated channel-rhodopsin-mediated depolarization 4 and hyperosmotic saline, all of which will be briefly described.
Neuroscience, Issue 24, Caenorhabditis elegans, electrophysiology, neuromuscular junction, synaptic transmission
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.